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Background African Americans (AA) remain underrepresented in Alzheimer’s disease (AD) research, despite the
prevalence of AD being double in AA compared to non-Hispanic whites. To address this disparity, our group has
established the Florida Consortium for African American Alzheimer’s Disease Studies (FCA3DS), focusing on the
identification of genetic risk factors and novel plasma biomarkers.

Method Utilizing FCA3DS whole exome sequence (WES) and plasma RNA samples from AD cases (n=151) and cog-
nitively unimpaired (CU) elderly controls (n=269), we have performed differential gene expression (DGE) and
expression quantitative trait locus (eQTL) analyses on 50 transcripts measured with a custom nanoString� panel.
We designed this panel to measure, in plasma, cell-free mRNA (cf-mRNA) levels of AD-relevant genes.

Findings Association with higher plasma CLU in CU vs. AD remained significant after Bonferroni correction. Study-
wide significant eQTL associations were observed with 105 WES variants in cis with 22 genes, including variants in
genes previously associated with AD risk in AA such as ABCA7 and AKAP9. Results from this plasma eQTL analysis
identified AD-risk variants in ABCA7 and AKAP9 that are significantly associated with lower and higher plasma mRNA
levels of these genes, respectively. Receiver operating characteristic analysis of age, sex APOE-e4 dosage, CLU, APP,
CD14, ABCA7, AKAP9 and APOE mRNA levels, and ABCA7 and AKAP9 eQTLs, achieved 77% area under the curve
to discriminate AD vs. CU, an 8% improvement over a model that only included age, sex and APOE-e4 dosage.

Interpretation Incorporating plasma mRNA levels could contribute to improved predictive value of AD biomarker
panels.
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Introduction
Alzheimer’s disease (AD) is the most common form of
dementia, currently affecting an estimated 6¢2 million
people in the United States.1 There is no cure yet for this
devastating and deadly disease which robs patients from
their memory and eventually renders them completely
incapacitated. The clinical diagnosis of AD is challenging
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Research in context

Evidence before this study

The identification of plasma biomarkers for Alzheimer’s
disease (AD) has become an important area of research
given their potential to enhance accessibility to an accu-
rate clinical diagnosis, which can in turn impact man-
agement and development of treatments. Several
studies have shown promising results for the utility of
plasma phosphorylated tau 217 (p-tau 217) and plasma
phosphorylated tau 181 (p-tau 181) as potential diag-
nostic biomarkers of AD, both being able to distinguish
AD from other dementias with higher accuracy than
other plasma biomarkers tested thus far. In this study
we focused on plasma cell-free mRNAs as potentially
complementary biomarkers that may increase the diag-
nostic accuracy of AD and which may also provide
insight into the pathobiological mechanisms underlying
the disease. We conducted a PubMed search for articles
published in any language up to August 15, 2021 that
were related to the evaluation of plasma cell-free mRNA
levels as biomarkers of AD, using search terms that
included ''Alzheimer's'' AND “cell-free'' AND ''mRNA'', OR
''Alzheimer's'' AND “plasma” AND “extracellular” AND
“RNA”, OR ''Alzheimer's'' AND “plasma” AND “RNA lev-
els”. We only found 6 publications that tested the asso-
ciation of plasma cell-free mRNA with AD diagnosis, and
only 3 evaluated diagnostic performance.

Added value of this study

None of the prior studies that evaluated plasma tran-
scripts as potential diagnostic biomarkers of AD were
conducted in an African American cohort. Our study
focuses on African Americans, a population that remains
underrepresented in AD research despite having twice
the risk of developing AD compared to non-Hispanic
Whites. Our study identified a set of 6 plasma cf-mRNAs
that along with sex, age and APOE-e4 allelic dosage
yield a receiver operating characteristic area under the
curve of 0.77 to differentiate AD cases vs. cognitively
unimpaired controls. Furthermore, unlike prior work,
our study conducted a targeted screen of cf-mRNAs
using a nanoString custom panel that measures mRNA
transcript counts of genes implicated in AD, inflamma-
tion or the immune response, as these transcripts have
the potential of being developed as theragnostic bio-
markers. Therefore, the value of our study lies in the
novelty of the targeted approach of testing specific
plasma cf-mRNA levels as potential biomarkers of AD,
its focus on an understudied and underserved popula-
tion, and identification of a predictive set of plasma cf-
mRNAs that may lead to improved biomarker panels of
AD.

Implications of all available evidence

Collectively with prior plasma biomarkers studies, the
findings of this study may contribute to the develop-
ment of minimally invasive biomarker panels for
improved accuracy of AD diagnosis which will enable

more effective disease management. Further, our study
provides an estimate of the AD predictive value for a
plasma cf-mRNA panel in African Americans that will
guide future studies of these novel biomarkers in this
underrepresented and other populations.
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due to other dementias that share similar symptoms, and
the heterogeneity of symptoms that AD patients present.2

A definite diagnosis of AD can only be made at autopsy
upon confirmation of the presence of co-existing extracel-
lular amyloid plaques and intraneuronal tau tangles,
which are the neuropathological hallmarks of AD.3 Neu-
roimaging modalities such as amyloid PET and tau PET
have been developed as diagnostic biomarkers that
improve the accuracy of a clinical diagnosis of AD.3,4

Cerebrospinal fluid (CSF) levels of specific isotypes of
amyloid (A) and tau protein, such as A42/A40 ratio and
phosphorylated tau at residues 181 and 217 (p-tau 181 and
p-tau 217) have been shown to have comparable diagnos-
tic sensitivity and specificity as PET biomarkers.5,6 How-
ever, there is a need for biomarkers that are less costly
and less invasive than PET and CSF biomarkers respec-
tively, in order to make them more accessible to the gen-
eral population. The development of plasma biomarkers
for AD could achieve both of these goals. One of the
most promising plasma biomarkers to date is plasma p-
tau 217 which has been shown to discriminate AD from
other dementias with accuracy equivalent to CSF p-tau
217 and tau PET (plasma p-tau 217 area under the curve
[AUC] =0¢96, CSF p-tau 217 AUC=0¢99, tau PET
AUC=0¢98).7 Similar results have been obtained with
plasma p-tau 181,8 although plasma p-tau 217 seems to
outperform p-tau 181 (plasma p-tau 217 AUC=0¢96,
plasma p-tau 181 AUC=0¢90)7 and both of these outper-
form plasma total tau.

Very few plasma AD biomarker studies have been
performed in African Americans (AA), and only one of
these, published by our group, analyzed tau levels in
AD cases and cognitively unimpaired (CU) participants.
In that study we found higher levels of plasma total tau
in AD compared to CU controls, yet this marker alone
was not sufficient to discriminate AD vs. CU partici-
pants (AUC=0¢55).9 Despite the tremendous progress
in AD biomarker research, there is still a need to
develop additional plasma biomarkers that add to the
predictive value of existing ones, and which assess the
contribution of biological processes beyond A and tau
that underlie the disease pathophysiology, such as
inflammation, as this type of theragnostic biomarker
could inform future treatment options.

Studies have explored the utility of cell free RNA (cf-
RNA) as potential plasma AD biomarkers that inher-
ently provide insight into the disease pathomechanism.
Published work in this area has primarily focused on
microRNAs,10 while few studies have profiled circulat-
ing, protein-coding messenger RNAs (cf-mRNA), but
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none of these studies have been performed in underrep-
resented populations such as AA. In the present study,
we explore the utility of cf-mRNA as potential AD bio-
markers in AA, a population that has twice the risk of
developing AD as non-Hispanic whites (NHW)11 and
which remains understudied in AD research.12 Given
the wealth of evidence implicating the immune
response and inflammation in the etiology of AD,13,14 in
this study we evaluated the discriminatory potential of
plasma cf-mRNA from genes that are involved in
inflammation or that have been previously shown to
associate with AD diagnosis. A total of 50 such tran-
scripts detectable in plasma were prioritized to assess
their potential as predictors of AD diagnosis in AA. Our
results demonstrate that analyzing just 6 key cf-mRNAs
(CLU, APP, CD14, ABCA7, AKAP9 and APOE) in con-
junction with age, sex, allelic dosage of APOE-e4 and
allelic dosage of the most significant ABCA7 and
AKAP9 plasma expression quantitative trait locus
(eQTL) can achieve 77% AUC for the classification of
AD cases vs. CU controls in AA.
Methods

Study population
A total of 530 self-reported AA study participants (242 AD
cases and 288 CU controls) were recruited for this study
at the Mayo Clinic in Jacksonville, Florida or at the Wien
Center for Alzheimer’s Disease and Memory Disorders,
Mount Sinai, Miami, Florida (Table 1). All CU controls
and AD cases included in this study consented to partici-
pate in Alzheimer’s disease research as part of the Florida
Consortium for African-American Alzheimer’s Disease
Studies (FCA3DS), and were diagnosed by a neurologist
as having possible or probable AD according to the
NINCDS-ADRDA criteria, or were CU elderly partici-
pants with a Clinical Dementia Rating scale score of 0 at
their last examination, as previously described.15
Plasma RNA sample preparation
A total of 10 ml of peripheral whole blood were collected
from patients in EDTA-Vacutainer tubes and
Analysis DGE

Diagnosis AD CU AD

N 151 269 139

Females (%) 69¢5 76¢6 67¢6
Age 77¢5§ 9¢2 80¢1 § 8¢4 77¢0 § 9¢3
APOE-e4 (%) 65¢6 34¢9 66¢2

Table 1: Characteristics of case-control series. Summary characteristics
eQTL and AD-risk association analyses. N represents sample size; Fema
and standard deviation of age at plasma draw, and APOE-e4 (%) is the
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centrifuged at 3000 rpm (1408 rcf) for 10 min. Plasma
was removed and stored as 0¢5 ml aliquots at -80°C. For
total RNA extraction from plasma a 0¢5 ml frozen ali-
quot of plasma was thawed on ice and centrifuged at 4°
C for 10 min at 3000 g to remove any potential cellular
contamination. A plasma volume of 400 ul was care-
fully removed and processed using QIAGEN’s miR-
Neasy Serum/Plasma Kit according to manufacturer’s
instructions with RWT buffer prepared using 45 ml iso-
propanol. The protocol included a column DNase treat-
ment. RNA was eluted in 14ul RNase free water. The
spectroscopic absorbance at 415 nm was recorded for
each plasma sample using Thermo ScientificTM Nano-
Drop 2000. RNA was visualized on an Agilent 2100
Bioanalyzer using RNA 6000 HS Pico Chip, though
concentrations could not be quantified accurately at
these picogram concentrations. Low RNA integrity
number (RIN) and absence of ribosomal 18s and 26s
bands indicated lack of cellular RNA contamination.
For RNA to cDNA conversion, 4 ul of RNA were reverse
transcribed using SuperScript IV VILO cDNA Synthesis
Kit (Life Technologies) following the workflow of the
low input protocol (nCounter �XT Assay User Manual).
Plasma RNAseq pilot study
To determine which transcripts could be detected in
human plasma, we conducted RNA sequencing on 7
plasma RNA samples from cognitively unimpaired (CU)
study participants. Total RNA was extracted from plasma
as described in the main methods section and was uti-
lized to prepare libraries for RNAseq with the Ovation�

SoLo kit for ultra-low input RNA which produces rRNA
depleted libraries. Between 7¢1 and 14¢9 million 50bp
paired-end raw read pairs were obtained. The Mayo Clinic
MAP-RSeq bioinformatic pipeline v2.1 was applied to
map raw reads to the human reference genome build
hg38.16 Gene read counts were calculated using Subread
package v1.4.17 Between 2¢3 and 5¢7 million mapped reads
were obtained, among which 1¢8-4¢9 million reads were
mapped to known genes. To assess the robustness of our
method to detect transcripts in plasma, we compared the
read counts from our plasma samples to those from a
eQTL AD-risk association

CU AD CU

225 230 244

74¢7 70¢0 74¢2
79¢8 § 8¢7 76¢4 § 9¢5 79¢6 § 9¢0
36¢0 63¢5 36¢1

are shown for FCA3DS AD and CU participants included in the DGE,
le (%) is the percentage of females in each group; Age is the mean
percentage of APOE-e4 carriers in each group.
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public dataset GSE106804,18 which contains read counts
from 15 plasma extracellular vesicle RNA samples of glio-
blastoma multiforme patients and healthy donor controls.
In our samples, there are 1048 genes with median read
counts �50, whereas in GSE106804, there are 396 such
genes; 262 genes are shared, and these 262 genes have a
Pearson correlation coefficient of 0¢8 between our sam-
ples and GSE106804 samples (Figure S1).
Measurement of plasma transcript levels
A nanoString� 50-gene custom panel was designed for
this study which targets mRNA from genes that are
known to be involved in the immune response or
inflammation and/or that harbor genetic variants
known to influence AD risk (see Table S1), and which
were detected in a plasma RNAseq pilot study. Addi-
tional evidence of the involvement of these genes in the
immune response related to AD was obtained from our
prior published work, in which AIF1, AOAH, BLNK,
CD14, CSF1R, HCK, IL1B, ITGAL, ITGB2, LY86, LY96,
LYZ, STAB1 were found to be part of a gene co-expres-
sion module in post-mortem temporal cortex tissue that
was identified as being enriched for an immune gene
ontology term and that has higher expression in tempo-
ral cortex of AD cases compared to non-AD.19 The RNA-
seq pilot study was performed as described in the
section above called “Plasma RNAseq pilot study”. The 50
genes whose transcripts are targeted on this custom
panel are listed on Table S1. The nanoString� custom
panel included a single probe per gene. The
nCounterTM CodeSet Design Report’s Probe Design
and Isoform Coverage are now shown in Tables S2 and
S3. Six genes were included in the ROC analysis mod-
els: APP, CD14, CLU, ABCA7, AKAP9 and APOE, and
the location of their probe in the context of their tran-
script sequence on the UCSC Genome Browser is
shown in Figure S2. Given low levels of transcripts in
plasma, a multiplex target enrichment (MTE) was per-
formed prior to hybridization. MTE primers were
pooled at a final concentration of 500 nM per oligo in
TE Buffer (pH 7¢5) (Integrated DNA Technologies).
Using pooled primers designed for the 50 target genes,
MTE reactions were performed on the cDNA using
Taqman� PreAmp Master Mix (Applied Biosystems),
for 10 cycles of amplification. Subsequently, 8 ul of the
resulting MTE reaction was denatured for 2 min at 95°
C and mixed with 8 ul of the nanoString� hybridization
master mix consisting of hybridization buffer and
Reporter CodeSet. Finally, 2 ul of the nanoString� Cap-
ture ProbeSet was added, mixed, and incubated for 18 h
at 65°C. Following overnight hybridization, excess
probes were removed using magnetic bead purification
on the nanoString� nCounter Prep Station and levels of
barcoded target molecules quantified using the nano-
String� nCounter Digital Analyzer following the man-
ufacturer’s protocol. Of the 447 plasma samples tested,
430 passed the default sample quality control (QC)
implemented in the NanoString� nSolverTM Analysis
Software, which includes imaging, binding density, pos-
itive control, and limit of detection QC. Of the 50 genes
tested in the custom panel, 41 passed QC (Table S1): 7
were excluded (CCL2, CR1, CRH, ICAM1, IL4, LY96 and
MS4A6A) due to having mean transcript counts � 50
among the samples that passed QC (50 counts is the
lower end of the dynamic range for NanoString� tech-
nology regardless of input levels), and two genes were
excluded due to a spillover effect of fluorescence signal
from the most abundant transcript in plasma, ACTB
and HDAC6. Given that there are no validated endoge-
nous control genes in plasma that can be utilized to nor-
malize gene counts across samples, inter-sample
variability was adjusted in the statistical models by
incorporating a unique identifier for each sample as a
random effects variable into the statistical analyses. In
addition, since cross-RLF calibration could not be imple-
mented, RLF ’’batch’’ was incorporated as a covariate in
the linear models (see statistical analyses section).
Validation of transcript level measurements
Genes whose transcript levels were significantly associated
with disease status or with genetic variants were validated
via relative quantification (qPCR) Taqman assays. The
qPCR reactions were performed using 4 ul of plasma
RNA from samples that based on nanoString� measure-
ment had the highest and lowest levels of the transcripts
of interest (15 highest and 15 lowest). The plasma RNA
from these samples were reverse transcribed using Super-
Script IV VILO cDNA and pre-amplified for 10 cycles
using target gene probes Hs00156548_m1 (CLU),
Hs00169098_m1 (APP), Hs02621496_s1 (CD14),
Hs01105081_m1 (ABCA7), Hs00323978_m1 (AKAP9),
Hs04931857_m1 (IL33), and HS0103996_m1 (STAT1).
The resulting template was used for qPCR employing
ABI Taqman� chemistry (Applied Biosystems) with the
Taqman minor groove binder probes. A negative control
lacking reverse transcription was included to confirm the
specificity of the Taqman probes. IL33 and STAT1 were
used as endogenous controls for normalization, as it was
determined based on the nanoString� counts that these
genes were most stably expressed across all plasma sam-
ples. Each sample was run in triplicate on a
QuantStudioTM 7 Flex Real-Time PCR instrument.
The analysis was performed using the QuantStudioTM

Real-Time PCR Software v1.6.1 (Applied Biosystems).
Whole exome sequence (WES)
WES data was generated for 250 AD and 286 CU Flor-
ida Consortium for African American Alzheimer’s Dis-
ease Studies (FCA3DS) study participants. Sample
preparation and sequencing for a subset of these sam-
ples has been previously described.15 FastQ files were
www.thelancet.com Vol 78 Month April, 2022
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processed through Mayo Clinic’s GenomeGPS pipeline.
Reads were aligned to the GRCh38 human reference
genome assembly using BWA-MEM20 and variant call-
ing and joint genotyping was performed using Genome
Analysis Tool Kit (GATK) v3.6 while implementing
Best Practices Workflow.21 Samples underwent QC,
which implemented the following criteria for inclusion:
coverage of at least 90% at 10x and 40% at 40x, contam-
ination VerifyBamID22 FREEMIX score less than 0.02,
genotyping quality median GQ of 99, minimum call
rate of 95%, transition to transversion (Ti/Tv) ratio of
approximately 2¢8 and a sex check in PLINK23 with
inbreeding coefficient of the X-chromosome for mal-
es>0¢7 and females <0¢3. Subsequently, samples were
evaluated for relatedness, and retained only one sample
from each set of 1st, 2nd and 3rd degree relatives. Princi-
pal component analysis was performed on samples after
resolving relatedness to evaluate population substruc-
ture and potential heterogeneity due to sequencing
batch and flowcell. WES was performed in two batches
and we performed comprehensive sample and variant
QC including evaluating heterogeneity due to sequenc-
ing batches (Figure S3). We did not identify any signifi-
cant variability due to sequencing batches and therefore
did not include “batch” as a variable in the model. Bi-
allelic variants passing VQSR filter, having a genotyping
rate equal to or greater than 98%, a minor allele fre-
quency of at least 2% and a Hardy-Weinberg p-value
greater than 5e-08 in controls were retained. Variants in
high variability regions of the genome were excluded. A
total of 474 samples (230 AD cases and 244 CU con-
trols) and 878,447 variants passed QC. Variants were
annotated using ANNOVAR.24 Regulome scores pro-
vide an indication of the functional potential of a variant
based on known and predicted regulatory elements and
was obtained through https://regulomedb.org/.25
Statistics. Sample size, randomisation and blinding. Tag-

gedPWe utilized every plasma sample that was available from
AD cases and CU controls in the FCA3DS cohort to maxi-
mize statistical power. Samples were randomized based
on age, sex and diagnosis in each batch for the quantifica-
tion of plasma transcripts and WES. The generation of
nanoString� and WES data were blinded to all grouping
and outcome variables. Inclusion criteria was the avail-
ability of a plasma sample as well as demographic and
clinical information required to perform the analyses.

Differential gene expression (DGE) analysis. Plasma
transcript measures quantified using the custom nano-
String� panel were log2-transformed and tested for dif-
ferential expression between AD cases and CU controls
using a linear mixed model adjusted for age, sex, optical
density (OD), batch, inter-sample variability and car-
tridge using the ‘lmer()’ function in the ‘lme4’ package
in R (v3.6.2). Given the low concentration of cf-RNA in
www.thelancet.com Vol 78 Month April, 2022
plasma, RNA concentration and RIN cannot be reliably
measured. Therefore, to adjust for all differences in
sample quality, including concentration, RIN, potential
differences due to banking time, and potential inter-
individual differences such as fasting status or medica-
tions, we implemented a linear mixed model after
obtaining random effect estimates for each sample. Car-
tridge was also encoded as random effects variable,
while all other covariates, including plasma OD and
batch were encoded as fixed effects in the model. Addi-
tionally, this analysis was repeated while adjusting for
APOE-e4 allelic dosage in the model. DGE was analyzed
using the following model, as well as a similar model
adjusted for APOE-e4 allelic dosage: y» � 1þ Gene þ
Gene : ADþ Gene : Ageþ Gene : Sexþ ODþ batchþ
ð1jSampleÞ þ ð1jcartridgeÞ.

eQTL analysis. Utilizing plasma transcript measures
and whole exome sequence (WES) genotypes from 139
FCA3DS AD cases and 225 FCA3DS CU controls (see
Supplementary Methods), a cis-eQTL analysis was per-
formed to test the association of exome variants with
plasma transcript counts. Each variant within 1Mb of a
targeted gene’s Ensembl gene coordinates (GRCh38)
was tested for association with log2-transformed tran-
script counts (Y) while accounting for diagnosis, age,
sex, APOE-e2 and APOE-e4 allelic dosage, the first three
principal components (PC), batch, OD, cartridge and a
variable accounting for inter-sample variability, using
the following linear mixed model implemented with the
lme4 package in R (v3.6.2): y » SNPdosage þADþ Ageþ
Sexþ APOEe2 þ APOEe4 þ PC1 þ PC2 þ PC3 þ ODþ bat
chþ ð1jSampleÞ þ ð1jcartridgeÞ. PCs to adjust for popu-
lation substructure were derived from WES genotypes
available for all samples in the FCA3DS AD case-control
series as previously described.26 No significant variabil-
ity due to sequencing batches was observed, therefore
“batch” was not included as a covariate in the model.
Analyses were repeated excluding APOE-e2 and APOE-
e4 allelic dosage from the model. Denominator degrees
of freedom for test statistic was obtained using Ken-
ward-Roger restricted maximum likelihood approxima-
tion in the lmerTest package in R. False discovery rate
(FDR) (Benjamini-Hochberg) adjusted q-values were
calculated in R for all tested cis-eQTLs. All variants that
were present in the WES data from this AA cohort that
had a MAF � 2% and that were in cis with genes of
interest were included in our eQTL analyses, even if
they have been observed in other populations besides
AA. The rationale for this is that we expect that an eQTL
may have biomarker potential in multiple populations.
Therefore, we did not exclude variants based on their
presence in other populations besides AA.

Association test of WES variants with AD-risk. The
association of WES variants with AD-risk in the
FCA3DS AD case-control series (230 AD cases and 244
5
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CU controls) was tested using multivariable logistic
regression in PLINK v1.9.23 Dosage of the minor allele
was tested for association with AD while accounting for
age, sex, APOE-e2 and APOE-e4 allelic dosage and the
first three PCs to account for population substructure.
Receiver operating characteristic (ROC) analysis. The
predictive value of variables to discern AD cases vs. CU
controls was evaluated using the AUC ROC curves
with the ‘pROC’ package in R v3.6.2. The base model
(M1) evaluated age, sex and APOE-e4 allelic dosage.
Plasma cf-mRNA measures of significant differen-
tially expressed genes (DEGs: CLU, APP and CD14)
were added to the second model (M2). Allelic dosage
of the variant that showed the most significant eQTL
association at the two loci that also showed associa-
tion with AD-risk in this dataset, ABCA7 and
AKAP9 loci (rs3752232 and rs171764315, respec-
tively), were added to the third model (M3). ABCA7
and AKAP9 plasma cf-mRNA measures were added
to the fourth model (M4). While the levels of APOE
plasma transcript only reached a suggestive level of
significance in the differential expression analysis
between AD cases and CU controls and no signifi-
cant eQTLs were detected at the APOE locus, APOE
is a known genetic risk factor for AD, therefore we
evaluated the contribution of APOE plasma cf-
mRNA levels in the fifth model (M5). The plasma cf-
mRNA measures utilized for these analyses were the
residuals of the log2-transformed counts of CLU,
APP, CD14, AKAP9, ABCA7 and APOE, after adjust-
ment for technical variables (OD, batch, cartridge,
and inter-sample variability). A secondary ROC anal-
ysis was performed to evaluate plasma total tau lev-
els that were available for a subset of the FCA3DS
AD cases and CU controls (N=331) as part of a previ-
ously published study.9 In this subset of the sam-
ples, models M1-M5 were evaluated, and residuals of
plasma total tau levels derived after adjusting for age
of plasma, plate and batch were added to M5 gener-
ating a sixth model (M6). The relationship between
plasma total tau levels and plasma levels of each of
the six cf-mRNA measures utilized for the ROC anal-
ysis in M6 was assessed using Pearson correlation.
Figure S4 shows the distribution of these measures
in these 331 participants as well as the Pearson corre-
lation coefficients. ROC curves comparing the AUC
of the base model (M1) to all other models was gen-
erated using the ‘plot.roc()’ function in ‘pROC’ pack-
age in R.
Ethics. Approval for the study was provided by the
Mayo Clinic Institutional Review Board (ID: 14-005465)
and informed consent was obtained from all study par-
ticipants.
Role of funders. This work was supported by the
National Institute on Aging [RF AG051504, U01
AG046139, R01 AG061796 to NET; P30 AG062677 to
JAL and NGR]; Florida Health Ed and Ethel Moore
Alzheimer’s Disease grants [5AZ03 and 7AZ17 to NET;
7AZ07 to MMC; 8AZ08 to JAL]. The funders of this
study had no role in study design, data collection, data
analysis, data interpretation, writing of the manuscript
or the decision to submit it for publication.
Results
In this study, we utilized plasma cf-RNA from 420
FCA3DS participants (Table 1) to determine if plasma
mRNA levels of key genes (Table S1) detectable in
plasma (Fig. S1) that are known to be involved in AD,
inflammation or the immune response differed
between AD and CU study participants (plasma DGE
analysis). We also evaluated the association between
genetic variants identified through WES in this cohort
and plasma transcript levels (plasma eQTL analysis), as
well as the association of these variants with AD-risk.
Lastly, we also examined the potential utility of plasma
DEGs and eQTLs identified in this study as AD bio-
markers that may aid in the classification of AD cases
and CU controls in AA.
Plasma differential gene expression (DGE)
In a linear regression model that was adjusted for sex,
age at plasma collection and technical covariates, we
found a significant difference between AD cases and
CU controls in plasma levels of 3 out of the 41 cf-
mRNAs that passed quality control (QC): APP, CD14
and CLU (Figure 1, Table S4). The association observed
with higher levels of APP and CLU transcripts in
plasma from CU participants compared to AD cases
remained significant after adjustment for APOE-e4 alle-
lic dosage. Furthermore, the association observed with
plasma CLU levels survived Bonferroni correction in
both linear regression models, adjusted for APOE-e4
allelic dosage (AD vs. CU =-0¢70, Bonferroni adjusted
p=0¢0002, t-test), and in the APOE-e4 unadjusted
model (AD vs. CU =-0¢63, Bonferroni adjusted
p=0¢0006, t-test). These significant DGE results were
validated by the observation that raw transcript counts,
as measured with our nanoString� custom panel, corre-
lated well with levels measured using relative quantifica-
tion (qPCR) Taqman assays, with Spearman correlation
r=0¢72�0¢86 (Figure S5).
Plasma eQTL analysis
In our plasma eQTL analysis, cf-mRNA levels from 22
of the 41 genes tested showed significant associations
with 105 WES variants that are in cis with these genes.
These eQTL associations achieved FDR q-values <0¢05
www.thelancet.com Vol 78 Month April, 2022



Figure 1. Log2-transformed plasma transcript counts for significant DEGs in the 420 FCA3DS AA AD vs. CU participants. (a) Log2-
transformed counts are shown for the three genes that showed nominally significant DGE using a mixed linear regression model
that includes relevant biological and technical covariates such as age, sex, batch, cartridge, optical density of the plasma sample,
and includes sample ID as a random effect to adjust for inter-sample technical variation. Error bars represent 95% confidence inter-
vals, the bottom and top of the box are the 25th and 75th percentiles, the line inside the box is the 50th percentile (median), and
outliers are shown as dots. (b) Gene b-coefficient and p-value (T-test) from DGE analysis is shown. Only CLU and APP were nominally
significant in the APOE-e4 adjusted model. CLU was significant in both the APOE-e4 adjusted and unadjusted models after Bonferroni
correction for multiple testing.

Articles
(Table S5). All 105 eQTLs were also tested for associa-
tion with AD-risk in the FCA3DS case-control series,
which detected nominally significant associations with
eQTLs at the ABCA7 and AKAP9 loci (Table S5). For
each gene with a significant eQTL (Q<0.05), pairwise
LD was calculated between the variant with the most
significant p-value and all other variants tested at that
locus using PLINK v1.9 utilizing WES genotypes from
the 371 FCA3DS participants that were included in the
eQTL analysis.

Two ABCA7 variants, rs3752232 and rs4147910,
were significantly associated with lower plasma ABCA7
cf-mRNA levels (=-0¢51, FDR q-value=2¢74E-04; =-0¢38,
FDR q-value=4¢01E-02, respectively), and with
increased AD-risk in this FCA3DS AA case-control
series (OR=1¢65, unadjusted-p=1¢13E-02; OR=1¢52,
unadjusted-p=2¢99E-03, respectively) (Table 2)); how-
ever, these AD-risk associations do not remain signifi-
cant after FDR adjustment (FDR q-value>0.05). These
www.thelancet.com Vol 78 Month April, 2022
variants are in strong linkage disequilibrium (LD) with
each other (r2=0¢7) (Figure 2 and Table S5), and also
reached nominal significance with increased AD-risk in
a genome-wide association study (GWAS) conducted in
a large NHW case-control series14 (Table 2). Annotation
of significant eQTLs with their Regulome Score25

revealed that one of these two ABCA7 cf-mRNA eQTLs,
rs3752232, had the strongest regulatory potential out of
all 105 cf-mRNA eQTLs identified in this study, with a
Regulome Score of 1f (Table S5). However, we note that
regulatory potential indicated by Regulome scores may
not be equivalent across all populations, and thus may
not be applicable to AA.

At the AKAP9 locus, 31 variants showed significant
association with plasma AKAP9 cf-mRNA, with FDR q-
values<0¢05 (Table S5). There were also nominally sig-
nificant associations with AD-risk (p-values<0¢05) in
the FCA3DS AD case-control series with 8 of these
AKAP9 cf-mRNA eQTLs (Table 2). We also observed
7
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nominal associations with AD-risk in the large NHW
AD-risk GWAS for 11 of the AKAP9 cf-mRNA eQTLs
(Table S5), 4 of which were also significant in FCA3DS
(Table 2). These variants have a consistent direction of
effect, such that variants that associate with higher risk
of AD also show significant association with higher lev-
els of AKAP9 cf-mRNA, and those with lower AD-risk
association also significantly associate with lower levels
of AKAP9 cf-mRNA. The LD between these eQTLs is
indicative of at least two independent AD-risk associa-
tion signals (Table S5 and Figure 2), one of which is
detected only in FCA3DS with two variants, rs57433727
and rs6174042, whose frequencies are 12% in AA and
0¢03% in NHW (Table S5).
ROC analysis
The utility of these plasma DEGs and eQTLs as poten-
tial biomarkers of AD was evaluated with the ROC anal-
ysis. Only the eQTL with the most significant AD-risk
association at each locus was included in the ROC mod-
els. Figure 3. shows that the greatest AUC to differenti-
ate AD cases vs. CU controls was achieved with a model
that included age, sex APOE-e4 allelic dosage, CLU,
APP, CD14, ABCA7, AKAP9 and APOE cf-mRNA levels,
and allelic dosage of the most significant ABCA7 and
AKAP9 cf-mRNA eQTLs. This model showed 77% AUC
to discriminate AD vs. CU (Figure 3a, model 5), an 8%
improvement over the base model that only included
age, sex and APOE-e4 dosage (Figure 3a, model 1).
Inclusion in this model of previously obtained plasma
total tau levels9 only increased the AUC by an additional
0¢06% (Figure S6). The effect of plasma total tau levels
appears to be independent of the effect observed with
the plasma levels of the six cf-mRNA that were included
in the ROC AUC model (Figure S4).
Discussion
Our study evaluates plasma transcript levels as potential
novel biomarkers of AD in AA. We chose to measure
gene expression specifically in plasma, as plasma sam-
ples are more readily available in the clinical setting.
The feasibility of gene expression measurements in
plasma had been established by others,27 but to our
knowledge has not previously been studied as diagnos-
tic biomarkers for AD in AA. Our study is of particular
importance given its focus on AA, a population that
remains vastly underrepresented in AD studies and
whose risk of developing AD is twice as high as for
NHW. In addition, the focus on genes functionally
implicated in inflammation is especially relevant in this
population whose high prevalence of diabetes and meta-
bolic syndrome, conditions associated with systemic
inflammation, may contribute to their increased risk of
AD.28 Thus, levels of the targeted cf-mRNA transcripts
could serve as biomarkers of the biological pathways
www.thelancet.com Vol 78 Month April, 2022



Figure 2. Regional association plots of cis eQTLs at the AKAP9 and ABCA7 loci. Locus zoom44 plots of all variants within 1Mb of
the gene were tested for association with gene expression in 364 AD cases and CU controls are shown. The -log10(p-value) of the
eQTL association is shown on the y-axis while the chromosomal position of each variant is show on the x-axis. The lead variant, rela-
tive to which LD was calculated for all other variants in cis, is shown as a purple diamond. LD values between the lead variant and
all other variants is colour coded based on the r2 in a population of African ancestry in Southwest USA.44 (a) Locus zoom plot for the
AKAP9 locus. (b) Locus zoom plot for the ABCA7 locus.

Articles
underlying the disease and ultimately guide the selec-
tion of optimal therapies.

In this study we found that CLU transcript levels in
plasma are significantly higher in CU compared to AD
cases. This finding is in line with results from published
studies that showed that higher baseline concentration
of plasma clusterin was associated with slower rates of
brain atrophy,29 and that the CLU rs11136000 AD-risk
allele is associated with low clusterin plasma levels.30

Others have also shown a neuroprotective effect of
www.thelancet.com Vol 78 Month April, 2022
clusterin,31 and that loss of CLU is associated with
greater accumulation of pathological tau in a mouse
model of tauopathy.32 However, other studies have
observed contradicting results such as clusterin
enhancing tau aggregate seeding in a cellular
model.33 Although, the role of clusterin in the etiol-
ogy of AD is not yet completely understood, our find-
ings suggest that plasma CLU cf-mRNA levels may
have the potential to serve as an AD biomarker in
this population.
9



Figure 3. ROC curves for APOE-e4 adjusted and unadjusted models. AUC for each model, along with the improvement of models M2 to M5 compared to the base model (M1) are shown.
(a) APOE-e4 adjusted ROC analysis wherein all models (M1 to M5) were adjusted for APOE-e4 allelic dosage. (b) APOE-e4 unadjusted models.
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We also detected significant cf-mRNA eQTL associa-
tions with 105 variants in cis with genes targeted in our
study. Importantly, significant ABCA7 and AKAP9 cf-
mRNA eQTLs also show association with AD-risk in
our FCA3DS AD case-control series. The direction of
effect of the ABCA7 cf-mRNA eQTLs is concordant with
published work in which ABCA7 variants that are asso-
ciated with increased risk of AD have lower ABCA7
gene expression in brain tissue.34 This suggests that
plasma transcript levels may reflect expression changes
in disease relevant tissues. In addition, in a previous
publication,15 we demonstrated that ABCA7 rs3752232
is associated with AD-risk in FCA3DS. In the present
plasma eQTL study, this variant was the most signifi-
cant plasma eQTL at the ABCA7 locus and had the
strongest regulatory potential out of all 105 cf-mRNA
eQTLs identified, with a Regulome Score of 1f
(Table S5), suggesting that rs3752232 may be a func-
tional variant underlying the association observed with
AD risk in our FCA3DS case-control series. Interest-
ingly, rs3752232 was previously shown to be correlated
with worse cognitive scores using Rey Complex Figure
Test copy score (b=-6¢861, Pcorrected=0¢013) in a
Korean cohort.35 This variant is 3�10 times more fre-
quent in AA (minor allele frequency, MAF=25%) than
in other populations [Korean MAF=8%, European (non-
Finnish) MAF=4%, Latino/Admixed American
MAF=2%],36 further underscoring the need for popula-
tion-specific studies.

AKAP9 rare variants were previously found to
increase the risk of AD in AA.37,38 Although we did not
detect an association in our study with those AKAP9
rare variants, likely due to their low frequency, we did
observe significant plasma AKAP9 eQTL associations
with 8 common variants (MAF>10% in FCA3DS partic-
ipants), all of which showed consistent associations
with higher risk of AD and higher AKAP9 cf-mRNA lev-
els. Four of these AKAP9 eQTLs also have nominal
associations with AD-risk in a NHW AD GWAS14

(Tables 2 and S5). Two other AKAP9 eQTLs, rs57433727
and rs6174042, that also associate with AD-risk in
FCA3DS (OR=1¢9, p=4E-3) had no reported associations
in the NHW AD-risk GWAS, likely due to their very low
frequency in NHW compared to AA (NHW
MAF=0¢03%, AA MAF=12%). To our knowledge this is
the first study to test the AD-risk association of AKAP9
eQTLs, and to report an association with AKAP9 cf-
mRNA eQTLs in any population. Further evaluation of
these AKAP9 eQTLs is warranted as they could provide
insight into the biological mechanism by which AKAP9
influences AD-risk.

ROC analysis of genes with significant plasma DGE
and eQTLs revealed a predictive value that could con-
tribute to improved AD biomarker panels, above and
beyond the predictive value of age, sex and APOE-e4
dosage. In our study, inclusion of the significant DGE
and eQTLs in the predictive model yielded an 8¢0%
www.thelancet.com Vol 78 Month April, 2022
improvement over a model that only included age, sex
and APOE-e4 dosage. The addition of plasma total tau
levels to this model only improved the AUC by 0¢06%
(Figure S5), underscoring the added value of the plasma
cf-mRNA measures as potential biomarkers. Impor-
tantly, these transcript levels may also allow for discrim-
ination of AD subtypes, such as those that may have a
distinct inflammatory component. A few studies have
evaluated in an AA cohort the use of plasma proteins or
metabolites as a fluid biomarker for AD, but none of
these have evaluated plasma cf-mRNAs.9,39�43 Future
studies should systematically evaluate the biomarker
potential of all transcripts detectable in plasma in
diverse populations and incorporate these plasma cf-
RNAs into a biomarker panel along with plasma levels
of proteins and metabolites that have been shown to
effectively discriminate AD from CU and other types of
dementias, such as A42/A40 ratio and p-tau, in order to
achieve greater discriminatory potential and add therag-
nostic value.

Despite the innovative aspects of our study including
assessment of plasma cf-mRNA in AA AD and CU par-
ticipants and evaluation of significant DGE and eQTL
for their predictive potential, our study has several weak-
nesses. These include the relatively small sample size,
clinically diagnosed AD without autopsy validation and
lack of a replication cohort. Yet, a priori estimates of
power indicated greater than 50% power to detect differ-
ential transcript levels at a=0.05 for =0.20 and a sample
of 200 vs. 200, and 100% power for =0.60 for the same
sample size. In this study consisting of 420 AD cases
and CU controls, we were able to detect significant asso-
ciation with differential plasma cf-RNA levels of CD14,
APP and CLU, with =0.29, -0.39, -0.70, respectively.
Also, in this study we specifically focused on variants in
our FCA3DS WES dataset that were significantly associ-
ated with plasma transcript levels. Therefore, other var-
iants previously found to associate with AD-risk in AA
that were not detected in our WES cohort, or which do
not show association with plasma transcript levels were
not evaluated. Additionally, the more recently estab-
lished p-tau analytes were not available at the time of
our study. This and sample limitations in our FCA3DS
cohort precluded inclusion of these p-tau measures in
our study. These weaknesses highlight the importance
of increasing recruitment of underrepresented groups
for AD research to achieve sample sizes as those for
NHW. In summary, our study establishes the novel
plasma cf-mRNA measures as potential future bio-
markers that can inform on perturbed pathways beyond
A and tau and improve diagnosis of AD in AA partici-
pants.
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