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Abstract

The adaptability of pathogenic bacteria to hosts is influenced by the genomic plasticity of the bacteria, which can be
increased by such mechanisms as horizontal gene transfer. Pathogenicity islands play a major role in this type of gene
transfer because they are large, horizontally acquired regions that harbor clusters of virulence genes that mediate the
adhesion, colonization, invasion, immune system evasion, and toxigenic properties of the acceptor organism. Currently,
pathogenicity islands are mainly identified in silico based on various characteristic features: (1) deviations in codon usage,
G+C content or dinucleotide frequency and (2) insertion sequences and/or tRNA genetic flanking regions together with
transposase coding genes. Several computational techniques for identifying pathogenicity islands exist. However, most of
these techniques are only directed at the detection of horizontally transferred genes and/or the absence of certain genomic
regions of the pathogenic bacterium in closely related non-pathogenic species. Here, we present a novel software suite
designed for the prediction of pathogenicity islands (pathogenicity island prediction software, or PIPS). In contrast to other
existing tools, our approach is capable of utilizing multiple features for pathogenicity island detection in an integrative
manner. We show that PIPS provides better accuracy than other available software packages. As an example, we used PIPS
to study the veterinary pathogen Corynebacterium pseudotuberculosis, in which we identified seven putative pathogenicity
islands.
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Introduction

Bacteria are the most abundant and diverse organisms on Earth

[1]. This diversity is mainly the result of the remarkable genomic

plasticity of bacteria, which allows bacteria to adapt to a wide

range of environments, enhancing their pathogenic potential [2,3].

Various mechanisms can promote genome plasticity, including

point mutations, gene conversion, chromosome rearrangements

(inversions and translocations), deletions, and the acquisition of

DNA from other cells through horizontal gene transfer (HGT).

Those mobile elements can be acquired via plasmids, bacterio-

phages, transposons, insertion sequences and genomic islands

(GEIs) [4].

GEIs play a major role in the fast and dramatic adaptation of

species phenotypes to different environments by carrying clusters

of genes that can cooperate to confer a cell with novel and useful

phenotypes, such as the ability to survive inside a host. GEIs are

large genomic regions that present deviations in codon usage,

G+C content or dinucleotide frequency compared to other parts of

the organism’s genome; these characteristics are hallmarks of

chromosome regions that were acquired horizontally from other

species in a single block. GEIs are often flanked by insertion

sequences or tRNA genes and transposase coding genes; these

segments are responsible for the genomic incorporation of alien

DNA obtained through transformation, conjugation or bacterio-

phage infection [5].

Horizontally acquired genes
GEIs acquired by transposase-mediated insertion have inverted

repeats (IR) or insertion sequences (IS) in their flanking regions

and often harbor tRNA coding sequences [6]. Genes coding for

tRNA and tmRNA (hereafter tRNA genes) are ‘‘hot spots’’ for the

insertion of genetic elements; they possess a 39-terminal sequence

that is recognized by integrases and are frequently found in selC

and leuX tRNA genes (selenocysteine and leucine, respectively)

[6,7].

The identification of horizontally acquired regions is usually

based on the detection of a chromosome region’s G+C content

and codon usage that differs from that found in the rest of the

genome. Clusters of horizontally acquired genes may have a

skewed G+C content and codon usage, reflecting a distinct

genomic signature from a donor organism [8]. Although these

G+C content-skewed regions within an acceptor organism genome

remain functional to some extent, there is selective pressure for the

acquired region to adapt its codon usage to that of the acceptor
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organism to enhance expression. This adaptation in codon usage is

driven by selective forces, such as codon/anticodon linkage and a

greater frequency of a certain codon for the tRNA gene [9].

Codon usage bias in bacteria is closely related to base composition,

and the adoption of preferential G+C- or A+T-rich codons may

lead to a similar G+C content of genes throughout the genome

[10]. Given the high density of coding regions in prokaryotic

genomes, codon usage adaptation, in addition to point mutations

and other evolutionary forces, can lead to homogeneity in the base

composition of bacteria. Consequently, the identification of mobile

genomic regions based solely on their discrepant genomic

signature is usually only possible for regions that were recently

acquired from distant organisms [11,12].

In addition to the aforementioned features, Hsiao et al. [13]

demonstrated that GEIs have a high frequency of hypothetical

proteins (putative proteins with unknown function) when com-

pared to the rest of the genome. These investigators indicated that

this higher frequency could result from gene acquisition from

organisms that have not yet been sequenced, including non-

culturable bacteria.

Virulence factors and pathogenicity islands
GEIs may carry a number of coding regions that are useful for a

cell. The GEIs that carry gene coding for virulence factors are

collectively known as pathogenicity islands (PAIs). PAIs are

characterized by the high frequency of genes that code for factors

that enable or enhance the parasitic growth of the microorganism

within a host [14]. Virulence factors mediate adhesion, coloniza-

tion, invasion, immune system evasion and toxigenesis, which are

necessary for infection [15].

Hacker et al. [5] first described PAIs after observing the loss of

virulence of pathogenic varieties of Escherichia coli through deletions

of hemolysin and fimbrial adhesin genes. They demonstrated that

these genes are located in the same chromosomal region and can be

removed by deletion events, both in vitro and in vivo. PAI iden-

tification using traditional molecular biology techniques without

genomic information services is laborious and time-consuming

because of the need for phenotypic analyses of the strains and the

delimitation of the target genes. Additionally, PAIs often present

variable stability, mosaic structure and uncharacterized genes.

In silico analysis of pathogenicity islands
PAI analysis is becoming more feasible with the increasing

number of sequenced prokaryotic genomes and the development

of new bioinformatics methods that can assemble data retrieved

from next-generation sequencers (NGS). NGS plataforms have the

potential to increase the number of completed genome projects

orders of magnitude more rapidly than the earlier Sanger method

and at a small fraction of the cost. Consequently, the need for the

development of genomic data retrieval softwares is increasing.

Several computational programs have been specifically designed

for spotting PAIs and other HGTs. However, most of the

programs use criteria that are not sufficiently stringent to provide

useable sensitivity and specificity. Overall, existing software only

screens for horizontal gene transfer, through G+C content or

dinucleotide deviations (e.g., wavelet analysis of the G+C content,

cumulative GC profile, dP-web, IVOM, IslandPath and PAI-IDA)

[16–23] and codon usage deviation (SIGI-HMM and PAI-IDA)

[16,24] or for the absence of elements of the putative PAI in non-

pathogenic species (IslandPath, Islander, IslandPick and tRNAcc)

[7,8,20,25], which may result in the detection of false-positive PAIs

[8,26]. Pundhir et al. [27] affirm that ‘‘Although efficient in the

detection of GIs, these tools give much false positive results for

PAIs. This is because a region showing distinct nucleotide content

may be alien to the host genome but may not necessarily be

involved in Pathogenicity’’. Therefore, these tools may detect a

metabolic island, a GEI associated with secondary metabolite

biosynthesis, as a false-positive PAI if it exhibits all of the PAI

features except for the virulence factors. Finally, some PAIs may

exhibit deviations only in the G+C content or codon usage,

demonstrating the importance of using more than one software

system in a multi-pronged approach.

Two currently available PAI detection programs use a multi-

pronged strategy for the detection of PAIs, accounting for several

characteristics of the genome. One of these programs, PredictBias,

identifies PAIs by its genomic signature, its absence in taxonom-

ically related organisms and the presence of genes coding for

virulence factors, classifying them as either biased-composition

PAIs if they present horizontal transfer characteristics or unbiased-

composition PAIs otherwise [27]. Another program, IslandViewer,

performs a combined analysis using three other programs:

ColomboSIGI-HMM, based on codon usage analysis of each

coding sequence (CDS) of the genome; IslandPick, which

characterizes PAIs by their absence in phylogenetically closely

related organisms; and IslandPath-DIMOB, which finds regions

that have dinucleotide content deviation and harbor genes related

to mobility [8,28,29].

Although PredictBias and IslandViewer are robust programs

that use multi-pronged strategies, they have some restrictions. For

example, PredictBias can only be used in a web-based interface;

the genome sequence must be sent to the server to be analyzed. A

web-based interface can be a limitation, such as when the genome

sequence is not yet published and, thus, the data cannot be sent to

third parties. Island Viewer, on the other hand, includes a source

code for installation on a personal server. However, IslandPick,

one of the programs that Island Viewer requires, is strongly

dependent on an in-house MySQL database of all published

bacterial genomes, which make its use very time-consuming.

Moreover, this program requires a very fast server with an

unconventional configuration.

Our main goal in this work was to develop new software to

predict PAIs with more efficiently than currently available

software and to make the software easier to install on a personal

computer. Our software, PIPS (pathogenicity island prediction

software), predicts PAIs using a novel and more complete

approach based on the detection of multiple PAI features: atypical

G+C content, codon usage deviation, virulence factors, hypothet-

ical proteins, transposases, flanking tRNA and its absence in non-

pathogenic organisms.

In the next sections, we describe the implementation of this

software, which is used with several other tools. Model organisms

of the genera Corynebacterium and Escherichia were used in the

validation process. The results and discussion section includes data

derived from the analyses of Corynebacterium diphtheriae and

Escherichia coli that validate and prove the superior efficiency of

this program over other multi-pronged tools. We also performed a

case study on Corynebacterium pseudotuberculosis that demonstrates the

importance of examining various PAI features along with

comparisons of PAIs between closely related species.

Materials and Methods

The steps that are required to use PIPS and the necessary input

information are represented in the flowchart in Figure 1.

Genomic signature
Putatively acquired regions are identified based on the analysis

of G+C content and codon usage patterns, as described below.

PIPS: Pathogenicity Island Prediction Software
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Codon usage deviation. The Colombo SIGI-HMM soft-

ware was used to predict acquired genes and their putative origins

based on taxon-specific differences in codon usage [29]. This

software analyzes sequences of predicted proteins of an .embl

input file using a hidden Markov model (HMM). This method

considers a pattern of observations issued from a hidden Markov

chain structure. Additionally, Colombo SIGI-HMM allows the

parameter sensitivity to be configured. We pre-configured the

parameter sensitivity to 95% to detect any minor anomalies in

codon usage because the data are subjected to other major

analyses at later stages.

G+C deviation. The Artemis software includes a tool that

detects regions with atypical G+C content. This tool calculates the

mean G+C content of the genome along with its standard

deviation and uses 2.5 standard deviations (SD) as a boundary

limit (cutoff) to predict regions with atypical G+C content [30].

The high accuracy of this tool is due to its 1,000-base window size,

which identifies even intergenic regions. However, the standard

deviation boundary cannot be configured in this program. The

base composition of the genome and its coding sequences (CDSs)

were analyzed with a Perl script, using input files in .fna and .ffn

formats. The script also analyzes the G+C content of the genome

and each CDS using 1.5 SD as a boundary to identify putatively

acquired regions, as described by Jain et al. [31].

To validate the script, the complete C. diphtheriae genome was

analyzed using Artemis to generate a positive dataset of all genome

CDSs with atypical G+C; the sensitivity and specificity of the

method were calculated with configurations varying from 0.1 to

3.0 SD. These data were plotted and analyzed in a receiver

operating characteristic (ROC) curve (Figure 2) [32].

Based on the ROC curve, the boundary is located between 1.0

and 1.5 SD. The area under the curve (AUC) was then analyzed to

determine the most precise value, i.e., the value that gives the

largest AUC (Figure 2) [32], which corresponds to the output data

generated by the script with a 1.5 SD boundary configuration.

Transposases
Putative transposase genes are identified by PIPS, which uses

HMMER3 [33] to search a bacterial transposase protein database

that was retrieved from the Pfam protein families database [34].

The HMMsearch only considers alignments with an e-value of 1e-

5 to avoid erroneous alignments that could result in false-positive

prediction of transposase genes. A Perl script was created to

process the HMMER3 output file and generate a list of putative

transposases.

Virulence factors
Virulence genes are identified using BLASTP (BLAST-NCBI

[35]) searches with an e-value of 1e-5 against a virulence factor

database, mVIRdb. This database contains proteins from eight

sources, including toxin, virulence factor and antibiotic resistance

gene sequences [36].

Hypothetical proteins
The term ‘‘hypothetical protein’’ is used to identify putative

coding sequences without significant matches against non-

redundant protein and protein domain databases during genome

annotation. Data from annotation in the genome .embl file are

used to identify hypothetical proteins. Alternatively, automatic

annotation of a whole genome nucleotide file can be processed on

our website using an annotation tool (Annotatiohmm). Annota-

tiohmm is an additional software system that is specifically

designed to predict ORFs using the software genemark [37],

Figure 1. Flowchart presenting each PAI analysis step performed by PIPS. The procedure is divided into the following steps: (A) data
treatment; (B) automatic analyses; and (C) manual analyses.
doi:10.1371/journal.pone.0030848.g001

PIPS: Pathogenicity Island Prediction Software

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e30848



based on a closely related species HMM profile. After the pre-

diction, it performs HMM searches in the Pfam protein families

database to create an .embl file, which can be used by PIPS

[33,34].

Transfer RNAs
Transfer RNA genes are identified by the software tRNAscan-

SE [38], and the output file is parsed by a Perl script to generate a

file that can be used in Artemis and ACT (Artemis comparison

tool) software to identify flanking tRNAs.

Genomic plasticity
Genomic plasticity analyses are performed using the premise

that most pathogenicity islands are absent in non-pathogenic

organisms of the same genus or other related species [4]. PIPS

analyses may also be performed with a closely related pathogenic

organism. However, the pathogenicity islands shared by the two

organisms will not be detected during the identification process. In

addition, it may erroneously identify other classes of GEIs (e.g.,

resistance islands and metabolic islands) as PAIs. Therefore, the

use and careful choice of the non-pathogenic species is crucial.

PIPS performs two different analyses to identify regions with

genomic plasticity. First, an automatic analysis generates a list of

putative pathogenicity islands. Second, it creates files that can be

manually analyzed to complement and curate the automatic

analysis.

Automatic analysis. After the identification of genes that are

related to virulence and CDSs presenting characteristics that

suggest horizontal transfer, PIPS performs a protein similarity

search using BLASTP with the pathogenic bacterium (query)

against a non-pathogenic species (subject). The input file in this

step contains the predicted protein sequences from the two

genomes, and the BLASTP is performed with an e-value of 1e-5.

The blastp output file is parsed by Perl scripts that find regions of

the non-pathogenic bacterium (subject) that are absent in the

pathogenic bacterium (query). Finally, the CDSs are clustered in

major regions using their genome coordinates and are identified as

‘‘putative pathogenicity islands’’ based on the finding of virulence

factors and characteristics that indicate horizontal transfer, i.e.,

G+C content deviation or codon usage deviation at higher

frequencies than found in the whole genome sequence.

Manual analysis. A second protein search is performed

using tblastx against the non-pathogenic species with an e-value of

1e-5. The output file is parsed by a Perl script, generating a

comparison file that can be used in the ACT software. This tool

permits the visualization of protein similarity areas and insertion,

deletion, translocation and inversion regions [39].

The Corynebacterium genus
Corynebacterium diphtheriae strain NCTC 13129 [GenBank:

BX248353] – This microorganism is the etiological agent of

diphtheria, an infectious disease of the upper respiratory tract,

which has been largely controlled by widespread vaccination.

Diphtheria has re-emerged in some regions, however, especially in

Europe, causing considerable mortality because of the appearance

of new biotypes and inadequate vaccination [40].

C. diphtheriae was chosen to validate PIPS because it is a

pathogenic species with 13 putative PAIs that is closely related to

C. pseudotuberculosis. These 13 PAIs were identified by performing

analyses based on the following: anomalies in nucleotide com-

position (e.g., G+C content, GC skew and/or dinucleotide

frequency); their absence in Corynebacterium glutamicum and

Corynebacterium efficiens; flanking tRNAs; and the presence of genes

Figure 2. ROC curve showing the sensitivity and specificity of the Perl script for the identification of regions with GC content
deviation. Y-axis: sensitivity; X-axis: 100-specificity. The higher the accuracy is, the closer the curve is to the upper-left corner.
doi:10.1371/journal.pone.0030848.g002
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encoding virulence factors, such as fimbrial and fimbria-related

genes, iron-uptake systems, a potential siderophore biosynthesis

system, a lantibiotic biosynthesis system, exported proteins, two-

component-system proteins, insertion sequence transposases and

the tox gene, which is located in a corynephage-acquired region

and is responsible for the pathognomonic symptoms of diphtheria

[41].

C. glutamicum strain ATCC 13032 [GenBank: BX927147] was

chosen for the comparison analyses, which is non-pathogenic and

of biotechnological interest, being widely used for the industrial

production of amino acids such as L-glutamic acid and L-lysine

[42].

C. pseudotuberculosis strains 1002 [GenBank: CP001809] and

C231 [GenBank: CP001829] were chosen to test PIPS after

validation, both of which are facultative intracellular pathogens.

This species is the etiological agent of the globally distributed

disease known as caseous lymphadenitis (CLA), which mainly

affects small ruminants. However, this bacterial species can affect a

wide range of host species, causing different diseases. C.

pseudotuberculosis is less well studied than C. diphtheriae. The virulence

factors of C. pseudotuberculosis that lead to CLA have not yet been

exhaustively characterized, making studies concerning PAIs in this

species invaluable [43].

The Escherichia coli species
Among the E. coli species, we chose the uropathogenic E. coli

(UPEC) strain CFT073 [GenBank: AE014075], a pyelonephrito-

genic UPEC isolate that has a wide range of putative and known

virulence genes that are responsible for survival in the host. The

UPEC strains deserve great attention because they are responsible

for up to 90% of uncomplicated urinary tract infections. In

addition, using comparative genomic hybridization analysis and

combining genomics, bioinformatics, and microarray technologies,

13 pathogenicity islands larger than 30 kb have already been

described in E. coli strain CFT073 [44].

Escherichia coli strain K-12, substrain MG1655 [GenBank:

U00096], was chosen for the genomic plasticity comparison with

the UPEC strain CFT073 because it is the best-studied non-

pathogenic strain of this species. In addition, the genomic

sequence of this strain undergoes constant curation and updating,

reducing erroneous annotations [45,46].

Results and Discussion

Software validation using C. diphtheriae PAIs
A genomic region was identified as a putative PAI of C.

diphtheriae (PICD) when it had the following properties. First, it

presented most of the PAI features in C. diphtheriae (e.g., higher

concentration inside the genomic region than in the whole genome

of virulence factors and/or hypothetical proteins and CDSs with

codon usage deviation and/or atypical G+C content). Second, it

was absent in C. glutamicum. PIPS found 12 of the 13 C. diphtheriae

PAIs; except for C. diphtheriae PICDs 10 and 13, all of the islands

were 1–7 CDSs larger than the published sequences (Figure S1).

Comparison between PIPS and other programs
To compare the efficiency of PIPS in identifying PAIs with the

results of other available programs, we analyzed the sensitivity and

specificity using published data, with C. diphtheriae PAIs as a

positive dataset (Table 1). For this task, each CDS in a genome was

labeled as ‘‘positive’’ when it was harbored by a PAI and

‘‘negative’’ otherwise. For more detailed information concerning

the composition of PAIs predicted by the programs, see Table S1.

PredictBias showed good specificity (88.7%), at the cost of sensi-

tivity (2.4%), when using only predicted PAIs (PredictBias_PAI) as

a positive dataset for the test (Table 1). The sensitivity was higher

(30.8%) when GEIs identified by the program (Table 1) were used

as a positive dataset (PredictBias). The classification errors may be

a consequence of the virulence factor database used by the

program. The database was created using an NCBI search with

the following keywords: ‘Virulence’, ‘Adhesin’, ‘Siderophore’,

‘Invasin’, ‘Endotoxin’ and ‘Exotoxin’ [36]. The size of the data-

base is a determining factor in discerning PAIs from GEIs. The

larger the database is, the higher the probability of correct

classification of a gene as a virulence factor and, consequently, the

higher the probability of correct PAI identification.

IslandViewer identified 10 C. diphtheriae PAIs; however, their

sizes varied from those of the published PAIs. Two of the three

programs used in IslandViewer, IslandPath-DIMOB and Colom-

bo/SIGI-HMM, had low sensitivity for PAI prediction (13.6%

and 14%, respectively). However, the poor performance of

Colombo/SIGI-HMM mainly results from the high stringency

of its parameters. In our case, setting the program’s ‘‘sensitivity’’

parameter to 95% resulted in higher sensitivity and proved to be

an efficient approach for the identification of regions with codon

usage deviation.

IslandPick had a higher sensitivity (65.2%) than the other

programs used in IslandViewer (Table 1). This software performs

analyses that are based on the premise that PAIs are absent in

related non-pathogenic organisms. The superior performance of

this strategy corroborates the importance of genomic comparisons

between the bacterium to be analyzed and a non-pathogenic strain

or species of the same genus. Finally, the programs IslandPick,

IslandPath-DIMOB and Colombo/SIGI-HMM, when combined

in IslandViewer, gave a higher sensitivity for predicting PAIs

(74.4%) than when used alone (65.2%, 13.6% and 14.0%,

respectively), which demonstrates the importance of a combined

analysis instead solely analyzing a single PAI feature.

PIPS correctly identified 12 of the 13 PAIs. Based on C.

diphtheriae genomic annotation, the only PAI that was not identified

by PIPS, PICD 5 of C. diphtheriae, has an atypical G+C content of

52.2%. However, when a boundary value of 1.5 standard

deviations was used to identify atypical G+C content, we found

reference values that varied from 45.95 to 60.04%. In addition,

when using Artemis, the annotation tool did not indicate any

atypical G+C in this PAI, which is in agreement with PIPS.

Moreover, except for its absence in C. glutamicum, PICD 5 of C.

diphtheriae did not show any other PAI feature. Additionally, the

Table 1. Comparison between the software used to identify
pathogenicity islands in the C. diphtheriae strain NCTC 13129.

Software Sensitivity (%) Specificity(%) Accuracy(%)

IslandPath_DIMOB 13.6 98.3 89.2

IslandPick 65.2 81.9 80.1

SIGI_HMM 14.0 94.9 86.2

IslandViewer 74.4 76.4 76.2

PredictBias_GEI 30.8 84.4 78.6

PredictBias_PAI 2.4 88.7 79.4

PIPS_Auto 86.4 85.0 85.1

PIPS_Manual 96.8 87.1 88.1

doi:10.1371/journal.pone.0030848.t001
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IslandViewer and PredictBias results also indicate that the

classification of PICD 5 of C. diphtheriae as a PAI is erroneous.

Finally, automatic analysis using PIPS gave better performance

than the previously available techniques (86.4% sensitivity, 85.0%

specificity). However, manual analysis of PIPS results in improved

identification of the PAIs (96.8% sensitivity, 87.1 specificity),

showing the importance of manual curation of the data based on

biological knowledge.

Identification of the well-studied pathogenicity islands of
the uropathogenic E. coli strain CFT 073

After the validation of PIPS with a Gram-positive bacterium, we

analyzed the UPEC strain CFT073 to determine how well PIPS

performs with a Gram-negative bacterium. Gram-negative

bacteria are important in this context because their PAIs tend to

present all of the PAI features concurrently; additionally, E. coli

PAIs have been extensively described in the literature [5,7,44,47–

51]. The UPEC strain CFT073 was chosen because it possesses

several known PAIs. We used 13 PAIs described by Lloyd et al.

[44] as our gold standard and compared the accuracy of PIPS with

IslandViewer and PredictBias, as we had performed with C.

diphtheriae. The E. coli strain K-12 was used as the non-pathogenic

closely related organism for validation in this step. The sensitivity

and specificity of the methods are shown in Table 2.

The specificity achieved by the other methods (93.7–99.3%) was

greater than that of PIPS (93.7%), although PIPS had a much

higher sensitivity (94.8%) than the other methods (7.5–60%). This

reduced specificity may result from novel pathogenicity islands

that were not previously identified rather than false-positive

results. In addition, the higher accuracy of PIPS (93.9%) when

compared to the other methods (84.5–90.2%) supports our

previous conclusion that PIPS gives the best performance when

identifying true positive and true negative CDSs, based on the

analysis of PAIs of the UPEC strain CFT073.

Case study: C. pseudotuberculosis
After validating PIPS, we identified putative PAIs of C.

pseudotuberculosis. The underlying properties (i.e., codon usage,

G+C content, virulence factors and hypothetical proteins) of the C.

pseudotuberculosis (PICPs) and C. diphtheriae (PICDs) PAIs are given in

Table 3. For further details, please refer to Figure S2.

G+C content. C. pseudotuberculosis PICPs had similar

frequencies of CDSs with G+C content deviations to those

identified in C. diphtheriae PICDs. Compared to the frequency in

their respective genomes, the frequency of CDSs with G+C

content deviation in C. pseudotuberculosis PICPs and C. diphtheriae

PICDs was approximately doubled.

Codon usage. The frequency of CDSs with codon usage

deviation was found to be higher in the C. diphtheriae PICDs than in

the C. pseudotuberculosis PICPs, reflecting the patterns found in the

genomes of C. diphtheriae and C. pseudotuberculosis (Table 3).

However, the frequency of CDSs with codon usage deviation in

C. pseudotuberculosis PICPs, although lower than the frequency in C.

diphtheriae PICDs, was three times that in the C. pseudotuberculosis

genome (Table 3). In PICDs, the frequency of this feature was

twice that in the whole genome.

Virulence factors. The frequency of virulence factors in C.

pseudotuberculosis PICPs is approximately twice that in other parts of

the C. pseudotuberculosis genome, in contrast to findings in C.

diphtheriae PICDs (Table 3). When looking at PAIs separately, the

frequencies of virulence factors in C. pseudotuberculosis PICPs were

also higher than in C. diphtheriae PICDs; however, C. diphtheriae

PICDs had higher frequencies of hypothetical proteins, i.e.,

putative proteins without significant similarity to any previously

described protein (Table 3). These proteins may have an unknown

role in pathogenicity, possibly explaining the low frequencies of

the possible virulence factors found in these regions.

Frequencies of the features in each C. pseudotuberculosis
PICP

The properties that were analyzed in a global genomic view in

the previous section (i.e., codon usage, G+C content, virulence

factors and hypothetical proteins) were assessed for each C.

pseudotuberculosis PICP to compare their contributions to the

classification. To plot this graph, we used the frequency, in

percent, of the CDSs, presenting the chosen feature in the C.

pseudotuberculosis PICP relative to the total number of CDSs in the

same PICP.

Table 2. Comparison between the software used to identify
pathogenicity islands in the uropathogenic E. coli strain CFT
073.

Software Sensitivity (%) Specificity(%) Accuracy(%)

IslandPath_DIMOB 44.5 99.3 90.2

IslandPick 7.5 99.7 84.5

SIGI_HMM 21.9 96.9 84.5

IslandViewer 55.8 96.2 89.5

PredictBias_GEI 60.0 93.7 88.1

PredictBias_PAI 39.2 96.2 86.8

PIPS_Auto 94.8 93.7 93.9

doi:10.1371/journal.pone.0030848.t002

Table 3. Percentage of PAI features along the genome and the pathogenicity islands of C. pseudotuberculosis and C. diphtheriae.

Codon usage deviation (%) GC content deviation (%) Virulence factors (%) Hypothetical proteins (%)

C. diphtheriae NCTC 13129 PICDs 45.20 20.80 18.40 39.20

C. diphtheriae NCTC 13129 genome 26.89 9.52 17.45 27.19

C. pseudotuberculosis 1002 PICPs 14.79 23.08 30.77 31.95

C. pseudotuberculosis 1002 genome 3.52 11.65 17.27 31.95

C. pseudotuberculosis C231 PICPs 19.62 20.25 32.91 31.65

C. pseudotuberculosis C231 genome 3.80 10.76 17.77 31.64

doi:10.1371/journal.pone.0030848.t003
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In a comparison of the frequency of CDSs with codon usage

deviation, C. pseudotuberculosis PICPs 3, 5, 6 and 7 had higher

frequencies than those found in the whole genome of C.

pseudotuberculosis 1002. In C. pseudotuberculosis C231, together with

the previously described PAIs (PICPs 3, 5, 6 and 7), C.

pseudotuberculosis PICP1 also had a greater frequency of CDSs with

codon usage deviation than that of the whole genome (Figure 3).

This observation may mean that C. pseudotuberculosis PICP1 has

become more adapted to the acceptor’s codon usage in strain 1002

when compared to the same PAI in strain C231. The frequency of

CDSs with G+C content deviation in strains 1002 and C231 was

higher in C. pseudotuberculosis PICPs 1, 3, 5 and 6 (Figure 3).

In general, the frequency of genes with similarity to virulence

factors in PAIs was greater than that in the rest of the genome,

except for C. pseudotuberculosis PICP5. However, this island, along

with C. pseudotuberculosis PICPs 3 and 6, had higher frequencies of

hypothetical proteins.

No single characteristic was consistent throughout all C.

pseudotuberculosis PICPs. However, the absence of C. pseudotuberculosis

PICPs in non-pathogenic bacteria, in addition to a high frequency

of at least one of the classic PAI features, and the finding of

virulence genes were used as determining factors for the

characterization of a PAI.

Co-occurrence of pathogenicity islands in C.
pseudotuberculosis and C. diphtheriae

C. pseudotuberculosis PICPs were compared to the genome of C.

diphtheriae NCTC 13129 to determine whether these islands are

present in this organism.

Interestingly, most C. pseudotuberculosis PICP3 genes are found in

the genome of C. diphtheriae NCTC 13129, with the same gene

order, identified as C. diphtheriae PICD 3 (Figure 4). The presence

of this PAI in two pathogenic species and its absence in non-

pathogenic C. glutamicum provide evidence for the importance of

this region for determining the virulence of C. pseudotuberculosis and

C. diphtheriae.

Moreover, the flanking regions of the PICP5 of C. pseudotuber-

culosis are the same as those of PICD8 of C. diphtheriae (Figure 5).

This pattern highlights this region as a putative ‘‘hotspot’’ for the

insertion of transposons and, most likely, GEIs.

Conclusions
Pathogenicity islands play a major role in the virulence of

pathogenic bacteria, and therefore, their correct identification and

characterization may provide valuable data.

We developed software (PIPS) that accurately identifies

pathogenicity islands; it is easy to install, which makes it accessible

even to researchers with little computational knowledge. In

addition, this software has a web-based interface that is platform

and installation independent, facilitating fast analysis. Moreover,

PIPS uses a complete approach that is based on the detection of

multiple PAIs, i.e., atypical G+C content, codon usage deviation,

virulence factors, hypothetical proteins, transposases, flanking

tRNA and its absence in non-pathogenic organisms.

During the validation, this software identified 12 of the 13

previously described C. diphtheriae PAIs, demonstrating its superior

efficiency compared to the other currently available software

systems, which identified 6 and 10 PAIs (PredictBias and

IslandViewer, respectively). Furthermore, PIPS achieved a high

Figure 3. Frequencies of PAI features within the PICPs and in the full genomes of C. pseudotuberculosis strains 1002 and C231. Y-axis:
frequency in percentage; X-axis: PICPs and genomes of C. pseudotuberculosis strains 1002 and C231. The frequencies of the features in each PICP and
in the whole genomes of the two strains are represented in the following colors: blue for codon usage deviation; red for GC content deviation; green
for virulence factors; and purple for hypothetical proteins.
doi:10.1371/journal.pone.0030848.g003
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Figure 4. PICP3 and PICD3 (top and bottom, respectively) in the C. pseudotuberculosis and C. diphtheriae genomes. Cp1002 and C.
diphtheriae NCTC 13129 are shown at the top and bottom, respectively. Regions of similarity between the two genomes are marked in pink. Regions
of similarity between two PAIs are marked in yellow, showing the presence of PICD3 in C. pseudotuberculosis with an insertion. Image generated by
ACT (the Artemis Comparison Tool).
doi:10.1371/journal.pone.0030848.g004

Figure 5. Replacement of the C. diphtheriae PICD8 (bottom) with C. pseudotuberculosis PICP5 (top). Regions of similarity are represented
by lines between the two genomes. The flanking regions of PICD8 and PICP5 are highlighted in yellow, showing the region of replacement. Image
generated by ACT (the Artemis Comparison Tool).
doi:10.1371/journal.pone.0030848.g005
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overall sensitivity, specificity and accuracy in identifying PAIs in C.

diphtheriae NCTC13129 and E. coli CFT073. Moreover, we

predicted 7 PAIs in C. pseudotuberculosis and showed that no single

characteristic was consistent throughout all of the C. pseudotuber-

culosis PICPs. This latter finding, in addition to our success with

this program, highlights the need for a multi-pronged strategy

toward PAI identification that heavily weights the absence in a

closely related non-pathogenic organism in addition to signs of

HGT and the presence of virulence factors.

Finally, the identification of C. pseudotuberculosis PICP3, an island

that is shared by C. pseudotuberculosis and C. diphtheriae, along with

the identification of C. pseudotuberculosis PICP5, an island that is

located in a putative ‘‘hotspot’’, corroborates the accuracy of the

program for correct identification of PAIs.

Future PIPS development will focus on increasing the software

speed in searches for insertion sequences. The next versions will

also aim to facilitate analysis through the implementation of a

graphic interface and minimization of the required programs

(Availability and requirements are described in Appendix S1).

Supporting Information

Figure S1 Prediction of PICD12 of C. diphtheriae with a
different size than the literature prediction. At the top, the

C. diphtheriae genome; at the bottom, the C. glutamicum genome. In

green, highlighted by an orange box, C. diphtheriae PICD12 as
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