
cancers

Article

Pan-Cancer Analysis of Radiotherapy Benefits and
Immune Infiltration in Multiple Human Cancers

Pengbo Wen 1,2, Yang Gao 1,2, Bin Chen 1,2, Xiaojing Qi 1,2, Guanshuo Hu 1,2, An Xu 1,
Junfeng Xia 3, Lijun Wu 1, Huayi Lu 4,* and Guoping Zhao 1,*

1 Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science,
Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution
Control Technology, Hefei 230031, China; wenpb@mail.ustc.edu.cn (P.W.); gy.sunny@foxmail.com (Y.G.);
upets@mail.ustc.edu.cn (B.C.); qxj0308@mail.ustc.edu.cn (X.Q.); hgs12345@mail.ustc.edu.cn (G.H.);
anxu@ipp.ac.cn (A.X.); ljw@ipp.ac.cn (L.W.)

2 University of Science and Technology of China, Hefei 230026, China
3 Institute of Physical Science and Information Technology, School of Computer Science and Technology,

Anhui University, Hefei 230039, China; jfxia@ahu.edu.cn
4 Department of Ophthalmology & Visual Sciences, Division of Life Sciences and Medicine, University of

Science and Technology of China, Hefei 230026, China
* Correspondence: Lhy510@jlu.edu.cn (H.L.); gpz@ipp.ac.cn (G.Z.)

Received: 4 March 2020; Accepted: 8 April 2020; Published: 13 April 2020
����������
�������

Abstract: Response to radiotherapy (RT) in cancers varies widely among patients. Therefore, it is
very important to predict who will benefit from RT before clinical treatment. Consideration of the
immune tumor microenvironment (TME) could provide novel insight into tumor treatment options.
In this study, we investigated the link between immune infiltration status and clinical RT outcome
in order to identify certain leukocyte subsets that could potentially influence the clinical RT benefit
across cancers. By integrally analyzing the TCGA data across seven cancers, we identified complex
associations between immune infiltration and patients RT outcomes. Besides, immune cells showed
large differences in their populations in various cancers, and the most abundant cells were resting
memory CD4 T cells. Additionally, the proportion of activated CD4 memory T cells and activated
mast cells, albeit at low number, were closely related to RT overall survival in multiple cancers.
Furthermore, a prognostic model for RT outcomes was established with good performance based on
the immune infiltration status. Summarized, immune infiltration was found to be of significant clinical
relevance to RT outcomes. These findings may help to shed light on the impact of tumor-associated
immune cell infiltration on cancer RT outcomes, and identify biomarkers and therapeutic targets.
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1. Introduction

Radiotherapy (RT) is the primary method for cancer treatment given to approximately 60%
of all newly diagnosed patients [1]. Significant physical advances in RT have been achieved by
developing methods of treatment planning and delivery [2]. However, due to differences in tumor
radiosensitivity, not all patients derive survival benefit from RT, while suffering serious adverse
consequences [3,4]. Thus, radiosensitivity prediction has always been a topic of primary importance in
the field of biologically guided personalized treatment strategies in radiation oncology [5,6].

In the current era of precision medicine, high-throughput technologies have provided an
opportunity to approach the development of radiosensitivity biomarkers from a different perspective.
For example, based on a 10-gene signature, Eschrich et al. developed the radiosensitivity index (RSI),
which is directly proportional to tumor radioresistance [7]. Further, Speers et al. created a human
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breast cancer (BRCA)-specific radiosensitivity signature (RSS) with biological relevance and validated
this signature for the prediction of local recurrence [8]. Finally, Gene Ontology (GO) analyses were
employed to define key molecular biomarkers governing response to radiation in rectal cancer [9].
However, all these studies were based on the intrinsic radiation response of tumor cells and the effects
of the TME on this response were ignored [10,11].

For decades, research into improving outcomes from RT focused almost entirely on the cancer
cell itself, ignoring complex biological interactions between the tumor and the stroma in which it
grows—the so-called TME. As a result, classical radiobiology largely failed to appreciate that the
effects of RT on the TME, and the responses that are triggered within it, may be critical in determining
the success or failure of therapy. TME is the environment around a tumor, composed of a dynamic,
disorganized, and corrupted mixture of a variety of different molecules [12,13]. TME were reported to
closely associate with tumor growth, metastasis, and response to clinical treatment [1,14–17]. Due to
its negative effect on the TME, radiation itself was considered to be immunosuppressive. Recently,
TME was regarded as a “Game Changer” in designing RT [18]. On one hand, the effect of radiation
on tumor cells could induce the release of new antigens and trigger the immune system to activate
tumor-specific T cells. On the other hand, radiation could enhance TME immune infiltration, thereby
overcoming some of the barriers to tumor rejection [19–21]. Cancer cells often express programmed
cell death-ligand 1 (PD-L1) and subsequently induce T-cell apoptosis, and PD-L1 status is an important
factor in the prediction of the clinical outcome following RT in BRCA patients [22]. However, a
comprehensive analysis of the correlation of RT outcome with immune infiltration has not yet been
reported [23].

To comprehensively evaluate clinically relevant immune infiltration in RT, which may function
as a prognostic predictor of different cancer types, we integrated and analyzed clinical information
and RNA-sequencing data from seven cancers in this study. In addition, to demonstrate the potential
clinical translational value of our findings, an immune infiltration-based prognostic signature was
developed, which represents a promising tool for overall survival (OS) prediction in BRCA patients
with RT treatment.

2. Results

2.1. Subsection

2.1.1. Patient and Tumor Characteristics in Seven Human Cancers

Integrated analysis was performed on patients in The Cancer Genome Atlas (TCGA) cohort
(Supplementary Table S1). For different cancer types, the number of samples (with RT information)
ranged from 984 in the case of BRCA to 35 in the case of CHOL (Figure 1A). Sample sizes greater
than 50 were considered in our analysis, including breast invasive carcinoma (BRCA, 551 samples),
brain low-grade glioma (LGG, 299 samples), thyroid carcinoma (THCA, 299 samples), head and
neck squamous-cell carcinoma (HNSC, 275 samples), uterine corpus endometrial carcinoma (UCEC,
229 samples), cervical squamous-cell carcinoma and endocervical adenocarcinoma (CESC, 175),
and glioblastoma multiforme (GBM, 138). The percent adoption of RT in different cancers ranged
from 86.79% to 0.00% (Figure 1B). The 10 cancers in which more than 30% of patients received
radiation therapy, in order of RT treatment frequency, were: GBM (86.79%), CESC (72.92%), HNSC
(64.86%), THCA (62.95%), LGG (61.78%), BRCA (56.00%), uterine carcinosarcoma (UCS; 47.06%), UCEC
(44.38%), thyroid carcinoma (THYM; 35.34%), and mesothelioma (MESO; 30.00%) (Figure 1B). After
comprehensive consideration, seven types of cancers were selected for subsequent analysis (Figure 1C).
The characteristics of patients with one of the seven types of cancers are summarized in Supplementary
Table S2.
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Figure 1. Overview of the samples downloaded from TCGA. (A) Number of samples for each cancer 
type were shown, sorted by the number of samples receiving radiation therapy. (B) The percent 
adoption of RT in different cancers. The red and green represent the patients with or without RT, 
respectively. (C) Cancers with a total sample size greater than 50 and a RT application rate greater 
than 30% were selected for subsequent analysis. (D) According to the immune infiltration level and 
RT status, the patients with each cancer were divided into four different subgroups. Immune Score 
was calculated by ESTIMATE algorithm. Take subgroup (a) as an example, these patients received 
RT and their tumors had a high level of immune infiltration. In the subsequent analysis, we compared 
the survival differences between different subgroups, they are: (a + b) vs. (c + d), (a) vs. (b), (a) vs. (c), 
(b) vs. (d), (c) vs. (d), respectively. 

2.1.2. Profiles of immune infiltration and RT outcome 

The correlation between immune infiltration and cancer stage is widely recognized. Currently, 
the cancer stage is an important indicator for RT management. However, we found that the cancer 
stage is not a universal indicator for the RT management by univariate cox analysis (Table 1). Thus, 
we hold the opinion that the immune infiltration level is a powerful supplement for the existing 
clinical indicators. 

Table 1. Univariate Cox regression analysis. 

Cancer Type Variable HR 95% CI p value 

CESC 
Clinical Stage 1.3751 0.9999～1.8911 0.05 

Histologic Grade 0.7737 0.4646～1.2881 0.32 

HNSC 
Clinical Stage 1.0854 0.9396～1.2537 0.26 

Histologic Grade 1.0664 0.8763～1.2975 0.52 

UCEC Clinical Stage 1.9276 1.6120～2.3035 <0.05 
Histologic Grade 2.7256 1.9058～3.8981 <0.05 

THCA Clinical Stage 2.8735 1.5947～5.1773 <0.05 
Histologic Grade - - - 

BRCA Clinical Stage 4.0612 1.9292～8.5491 <0.05 

Figure 1. Overview of the samples downloaded from TCGA. (A) Number of samples for each cancer
type were shown, sorted by the number of samples receiving radiation therapy. (B) The percent
adoption of RT in different cancers. The red and green represent the patients with or without RT,
respectively. (C) Cancers with a total sample size greater than 50 and a RT application rate greater than
30% were selected for subsequent analysis. (D) According to the immune infiltration level and RT
status, the patients with each cancer were divided into four different subgroups. Immune Score was
calculated by ESTIMATE algorithm. Take subgroup (a) as an example, these patients received RT and
their tumors had a high level of immune infiltration. In the subsequent analysis, we compared the
survival differences between different subgroups, they are: (a + b) vs. (c + d), (a) vs. (b), (a) vs. (c),
(b) vs. (d), (c) vs. (d), respectively.

2.1.2. Profiles of Immune Infiltration and RT Outcome

The correlation between immune infiltration and cancer stage is widely recognized. Currently,
the cancer stage is an important indicator for RT management. However, we found that the cancer
stage is not a universal indicator for the RT management by univariate cox analysis (Table 1). Thus,
we hold the opinion that the immune infiltration level is a powerful supplement for the existing
clinical indicators.

To verify the relationship between immune infiltration and RT outcome for each cancer, whole
samples were classified into four different subgroups (Figure 1D) according to each sample’s immune
infiltration and RT status. More specifically, after calculating the immune infiltration level of each
patient using the ESTIMATE algorithm, we divided the patients into positive and negative groups.
The patients with an immune score greater than zero were defined as positive, and those with a score
below zero were defined as negative. Then, we compared the prognosis of each patient subjected to RT.
Pan-cancer survival analysis showed that not all cancer types benefit from RT (Figure 2, first column of
Figure 2).
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Table 1. Univariate Cox regression analysis.

Cancer Type Variable HR 95% CI p Value

CESC
Clinical Stage 1.3751 0.9999~1.8911 0.05

Histologic Grade 0.7737 0.4646~1.2881 0.32

HNSC
Clinical Stage 1.0854 0.9396~1.2537 0.26

Histologic Grade 1.0664 0.8763~1.2975 0.52

UCEC
Clinical Stage 1.9276 1.6120~2.3035 <0.05

Histologic Grade 2.7256 1.9058~3.8981 <0.05

THCA
Clinical Stage 2.8735 1.5947~5.1773 <0.05

Histologic Grade - - -

BRCA
Clinical Stage 4.0612 1.9292~8.5491 <0.05

Histologic Grade - - -

LGG
Clinical Stage - - -

Histologic Grade 2.7072 1.7316~4.2321 <0.05

GBM
Clinical Stage - - -

Histologic Grade - - -

Notes: HR = Hazard radio, CI = Confidence interval, “-” = No information in TCGA, cannot be calculated. p value
< 0.05 indicates statistical significance. HR = 1 indicates the variable has no impact on the outcome. HR < 1 indicates
that the variable decreases the likelihood of the outcome. HR > 1 indicates that the variable increases the likelihood
of the outcome.

To evaluate the relationship between immune infiltration and patient prognosis, our analysis also
included those patients without receiving RT and made all the possible subsets (second-fourth column
of Figure 2). According to our analysis, for BRCA patients (Figure 2A1), RT had significant positive
association with OS (Figure 2A1, p = 0.0228). Besides, higher level immune infiltration improved
BRCA patients’ OS (p = 0.0186; Figure 2A2). For LGG patients with negative immune status, RT could
greatly improve OS (p = 0.0001; Figure 2E5). For HNSC and GBM patients with positive immune
status, RT could also greatly improve OS time (p = 0.0208 and p = 0.0001, respectively (Figure 2D4,
Figure 2C4). By contrast, RT and immune infiltration had no effect on patients with THCA, UCEC,
or CESC (Figure 2F, Figure 2G, Figure 2D). Overall, immune infiltration levels were associated with
patients’ RT outcomes, which have considerable significance in guiding decisions in the clinical context.

2.1.3. Immune Cell Subpopulations and RT Outcomes

The level of immune infiltration is determined by the number of immune cell types in the TME.
Depending on cell type and functional interactions, immune cells play a central role in resisting or
accelerating tumor growth in patients through their behaviors, such as defending against, or obliterating,
potential hazards. Accordingly, in this section, we intended to find immune cells that are related to the
prognosis of patients receiving radiotherapy.

Owing to technical limitations, accurate information about immune cell distribution in TME
cannot be easily acquired. Here, to explore the relationship between immune cell composition in the
TME and prognosis of RT, CIBERSORT algorithm was used to characterize leukocyte subsets for each
patient from the gene expression profiles. Based on unsupervised hierarchical clustering, the heat map
shows levels of immune cell composition for the seven types of cancer patients (Figure 3A). It indicated
that immune cell composition was markedly distinct among different cancer types. The levels of
resting CD4 memory T cells, M2 macrophages, and CD8 T cells were high in many cancer types, while
gammadelta T cells, naive CD4 T cells and memory B cells constituted a low proportion of the total cells.
Furthermore, glioma tissue contained the highest percentages of M2 macrophages and monocytes
among all cancers. To explore the potential connections of immune cells, the correlation coefficients
between 22 immune cells based on their abundance were calculated (Supplementary Figure S1–S7).
Accordingly, the correlation coefficients in the form of a network were visualized (Figure 3B–H).
Although, the correlation coefficient cannot be quantitatively compared between different cancers,
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due to the difference in the sample size of each cancer. It could illustrate that the association of immune
cells in each type of cancer varies widely.
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column represents a different grouping. For each type of cancer (A-G), we performed five different 
survival analysis (numbers 1–5, refer to Figure 1D). A Kaplan–Meier Plotter was used to test for 
survival prediction capacity. A combination of letters (A-G) and numbers (1–5) were used to number 
all the results. Correspondingly, the patients with an immune score greater than zero were defined as 
positive (+), and those with a score below zero were defined as negative (-). Additionally, patients 
with or without RT treatment were defined as positive (+) or negative (-), respectively. A total of seven 
types of cancer were analyzed: BRCA(A1-A5), CESC(B1-B5), GBM(C1-C5), HNSC(D1-D5), LGG(E1-
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Figure 2. Survival analysis across seven cancer types. Each row represents a type of cancer and each
column represents a different grouping. For each type of cancer (A–G), we performed five different
survival analysis (numbers 1–5, refer to Figure 1D). A Kaplan–Meier Plotter was used to test for
survival prediction capacity. A combination of letters (A–G) and numbers (1–5) were used to number
all the results. Correspondingly, the patients with an immune score greater than zero were defined as
positive (+), and those with a score below zero were defined as negative (-). Additionally, patients
with or without RT treatment were defined as positive (+) or negative (-), respectively. A total of seven
types of cancer were analyzed: BRCA (A1–A5), CESC (B1–B5), GBM (C1–C5), HNSC (D1–D5), LGG
(E1–E5), THCA (F1–F5), UCEC (G1–G5). For C3 and C5, the data was insufficient for analysis. The fill
color was related to the p value, the darker the more statistically significant.
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Figure 3. Composition of immune cells and their correlations across seven cancer types. (A) Heatmap
was used to exhibit the different immune cells abundance across seven cancer types. Each column
represents a patient sample, and each row represents an immune cell. The color represents the
abundance of the different immune cells. The color bars above the picture represent different types
of cancer, they are UCEC, THCA, LGG, HNSC, CESC, GBM, BRCA, respectively. (B–H) Correlation
of 22 immune cells in TME across seven cancer types, among which the line thicknesses and color
represented correlation, blue represented negative correlation, red represented positive correlation, and
the thicker the line, the larger the correlation coefficient. Each dot in the figure represents an immune
cell. In these figures, only the cells with high correlation coefficients were shown.

Next, we inferred that divergence in immune cell subpopulation levels might serve as an essential
proxy for individual differences and, therefore, hold prognostic value. Kaplan–Meier analysis was
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utilized to investigate the RT prognostic value of 22 tumors infiltrating immune cells across seven
cancer types. According to the 154 (22 × 7) results of Kaplan-Meier analysis, we found that eight
types of immune cells were associated with RT outcomes (Figure 4A). Among them, ‘T cells CD4
memory activated’ and ‘Mast cells activated’ were related to the RT outcomes in multiple cancer types
(Figure 4A). Interestingly, as shown in Figure 4, a certain immune cell subset may have opposite effects
on RT outcome in different types of cancer. For example, ‘mast cells activated’ was positively related
to the 10-year OS of patients with LGG (Figure 4J), but negatively related to the patients with CESC
(Figure 4C) and THCA (Figure 4M). A similar phenomenon was also found for ‘T cells CD4 memory
activated’, high infiltration of ‘T cells CD4 memory activated’ was positively related with RT outcome
in BRCA (p = 0.006) and CESC (p = 0.015), but negatively related in GBM (p = 0.001). Taken together,
these findings suggest that immune cell subpopulations could provide additional prognostic value for
RT outcomes.
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2.1.4. BRCA radiosensitivity signature based on immune infiltration 

Previous studies have generated an RSS base on the intrinsic radiosensitivity in BRCA by the 
integration of post-radiation clonogenic survival data with gene expression data [11,24–26]. To 
demonstrate whether immune infiltration level has predictive ability for RT outcomes, we developed 
a Radiosensitivity Signature (RSS) in BRCA (Figure 5). 
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Figure 4. Prognostic value of 22 tumors infiltrating immune cells across seven cancer types. The radar
chart (A) gives an overview of the cell types with prognostic value. According to the Kaplan–Meier
analysis, only cells that displayed significant correlation RT outcomes were shown in this figure (B–P).
Red lines indicate high immune infiltration of a certain cell, and blue lines indicate low immune
infiltration. Each picture corresponds to a different type of cancer BRCA (B), CESC (C–F), GBM (G),
HNSC (H,I), LGG (J), THCA (K–P).

2.1.4. BRCA Radiosensitivity Signature Based on Immune Infiltration

Previous studies have generated an RSS base on the intrinsic radiosensitivity in BRCA by
the integration of post-radiation clonogenic survival data with gene expression data [11,24–26].
To demonstrate whether immune infiltration level has predictive ability for RT outcomes, we developed
a Radiosensitivity Signature (RSS) in BRCA (Figure 5).Cancers 2020, 12, x FOR PEER REVIEW 9 of 16 
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Figure 5. Study designs. A prognostic classifier was constructed in the discovery cohort (n = 157) and
was further certified in the validation cohort (n = 157).

Considering the clinical characteristics of BRCA (Supplementary Materials), we selected 314
samples from the TCGA dataset. These samples were equally divided into discovery and validation
cohorts, respectively. Of the 268 curated differentially expressed genes (DEGs), 65 were significantly
associated with RT patient outcomes (Supplemental Figure S8). The survival-related genes were
further optimized by univariate regression analysis (Figure 5). To obtain the optimal cutoff values of
the survival-related genes, Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression
analysis [27] was performed based on the survival associated with 14 genes in the discovery cohort
(Figure 6A,B). Three-genes signature was curated to construct the prediction model (Figure 6C–F,
Supplemental Table S3). The area under the receiver operating characteristic (ROC) curve for the
immune infiltrating score was 0.853 (Figure 6G). Moreover, the risk score was an independent
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prognostic factor in the validation cohort, based on the univariate and multivariate Cox regression
model (Supplemental Table S4). This indicated that the RSS has a good performance on discovery cohort.Cancers 2020, 12, x FOR PEER REVIEW 10 of 16 
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which indicated that the variable decreases the likelihood of the outcome. (D, E) Distribution of the 
RSS in the discovery cohort. Left panel: classification of patients into different risk groups based on 
the optimal RSS. Right panel: distribution of patients’ survival time and status. ROC analysis showed 
the diagnostic value of risk score in discovery cohort (G) and validation cohort (H). 
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statistics, RT is applied in over 60% of GBM, CESC, and HNSC cases. Besides, increasing survival 
time after treatment in patients with BRCA, LGG, or GBM, RT could also be used as palliative therapy 
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studies in some tumor models have suggested that RT-induced changes in the TME might, in fact, 

Figure 6. Construction and validation of the RSS. (A,B) Fourteen survival-related genes selected by
LASSO Cox regression analysis. LASSO coefficient profiles of the immune-infiltrating cell. Right: using
10-fold cross-validation to the optimal penalty parameter lambda. All the genes’ HR <1 (C), which
indicated that the variable decreases the likelihood of the outcome. (D,E) Distribution of the RSS in the
discovery cohort. Left panel: classification of patients into different risk groups based on the optimal
RSS. Right panel: distribution of patients’ survival time and status. (F) Heatmap for comparison
between high risk score and low risk score patients for the expression of 3 genes. ROC analysis showed
the diagnostic value of risk score in discovery cohort (G) and validation cohort (H).

To further validate the robustness of the 3-genes signature (the RSS), the validation group was
applied to evaluate the prognostic value of the proposed scoring model. The same formulae for the
immune cell infiltration score and the optimal cut-off point for each immune cell type were applied
to the validation group as to the discovery group. Likewise, ROC analysis was also performed on
the validation cohort to assess the prognostic value of the scoring model. The area under the curve
was 0.79 (Figure 6H), which indicated the RSS has a high predictive ability. This was a good proof
of the validity of the IRS model we constructed. In agreement with the results above, the effective
prediction model further demonstrates that immune infiltration is a considerable indicator of clinical
RT management and radiotherapy outcome precision.

3. Discussion

In this study, we performed an integrated analysis of immune infiltration and RT outcomes across
multiple cancers. Based on the seven cancer types from the TCGA dataset, we found that immune
invasion levels in certain types of cancers correlate with RT patient prognosis and that knowledge of
immune cell subpopulation could provide additional prognostic value in the context of RT treatment.
To our knowledge, our study firstly demonstrated the relationship between clinical RT outcomes
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and immune infiltration status in multiple cancer types. Additionally, we validated the immune
infiltration-dependent RSS, which was alleged to reflect radiosensitivity in the BRCA dataset, and the
result suggested that this gene signature could be a predictive marker for the response of these patients
to RT.

As an example of a local ablative physical therapy, RT uses high energy radiation for local cancer
treatment. It can induce double-strand DNA damage, single-strand breaks, misrepair, and chromosome
aberrations in cancer cells [28]. As the most effective cytotoxic method available for the treatment of
patients with solid tumors, RT has a wide range of applications [29]. Consistent with our statistics,
RT is applied in over 60% of GBM, CESC, and HNSC cases. Besides, increasing survival time after
treatment in patients with BRCA, LGG, or GBM, RT could also be used as palliative therapy to relieve
symptoms and improve the quality of life of patients with CESC or UCEC.

For many years, in order to improve the outcomes of RT, most studies focused on mechanisms
internal to the cancer cell (intrinsic radiosensitivity), ignoring complex interactions between the tumor
and the TME in which it grows (extrinsic radiosensitivity) [19–21]. Moreover, pre-clinical studies in
some tumor models have suggested that RT-induced changes in the TME might, in fact, promote
tumor invasion and spread the tumor in certain situations [30–32]. Thus, attempts to combine RT
with recent targeted therapies were often predicated on their potential to enhance radiation-induced
cancer cell death rather than on their capacity to modify the interactions between the cancer cell and
its surroundings.

Recently, researchers have developed the view that the complex reactions of the immune system
to an irradiated TME are dual-purpose, performing both immunostimulatory and immunosuppressive
functions [12,33]. Tumor-infiltrating immune cells play an indispensable role in such interactions.
These cells migrate from the periphery to tumor tissues and exert vital functional roles in promoting
and/or regulating tumor progression and growth. Specifically, radiation could exert effects on cells
intrinsic to the TME, such as altered production of inflammatory cytokines, antigen exposure and DC
priming, as well as relative increases in radioresistant immunosuppressive macrophage and T-cell
populations. Furthermore, emerging evidence suggests that infiltrating immune cells play major roles
in the diagnosis and treatment of cancer patients [33,34]. Hence, in this study, we focused on the
prognostic value of immune infiltration to predict patient RT outcomes.

For the seven cancer types analyzed, we found that different types of infiltrating immune cells
vary—not only among different types of cancers, but also within the same type of tumor, or at different
time points in the same patient. Differences in immune cell composition may reflect tumor heterogeneity,
but its relationship with tumor-infiltrating immune cells is controversial, with some authors proposing
that tumors with high heterogeneity may generate neoantigens that attract immune cells and others
claiming that immune cells provide selection pressure that shapes tumor heterogeneity [35–37].

In the upcoming era of combination immunotherapy, it is becoming critical to understand the TME
immune infiltration in order to boost antitumor immunity. According to our previous research, it was
found that most studies in recent decades focused only on the intrinsic radiation sensitivity in tumor
cells [38], and ignoring complex biological interactions between the tumor and the stroma in which it
grows [39]. In this study, we identified activated mast cells and the CD4 memory T cell that are closely
related to patient RT outcomes. Mast cells are a part of the immune system, and it has been reported
that the cell will accumulate in tissues undergoing angiogenesis during tumor growth, wound healing,
and tissue repair. Mast cells can secrete angiogenic factors such as vascular endothelial growth factor
(VEGF). Heissig et al. observed that irradiation fosters mast cell-dependent vascular regeneration in a
limb ischemia model. They demonstrated that irradiation could promote VEGF production by mast
cells in a matrix metalloproteinase-9 (MMP-9)-dependent manner [40]. Interestingly, in CESC and
THCA (Figure 4C,M), activated mast cells were negatively correlated to RT outcome. Here, we hold the
opinion that radiation could induce mast cell activation and VEGF releasing. Thus, the VEGF would
promote the revascularization in the TME, cause tumor recurrence, and lead to poor RT outcome.
Moreover, T cells are a type of white blood cell at the core of adaptive immunity, and tailors the
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body’s immune response to specific pathogens. According to previous studies, T-cell activation
requires several signals: antigen in an appropriate major histocompatibility complex (MHC) binding
to a T-cell receptor (TCR); co-stimulatory signals (e.g., from an APC); background levels of cytokine
stimulation [41]. Radiation-induced neoantigens promote T-cell activation, thereby enhancing immune
effects. Besides, low and high doses of radiation could have different effects on T cell activation [42]. It
may explain our results, among which CD4 memory T cells are positively correlated with RT outcomes
in BRCA and CESE, and negatively correlated in GBM. Although our study confirmed that immune
cell abundance is closely related to RT outcome, the relationship between immune cell localization and
RT outcomes need to be further studied.

Additionally, response to RT varies widely among cancer patients. Therefore, it is of substantial
clinical importance to be able to predict which patients will benefit from RT before treatment is initiated.
Prognostic signatures constructed by intrinsic tumor radiosensitivity have been reported in many
studies. In this work, we developed an RSS based solely on the immune infiltration status (external
radiosensitivity) of BRCA, and this RSS possesses a similar predictive power to other methods.

4. Materials and Methods

4.1. Data Acquisition

The expression data and corresponding clinical information of the patients were downloaded
from TCGA (https://portal.gdc.cancer.gov/).

4.2. Inferring Tumor Purity

ESTIMATE [43] (Estimation of STromal and Immune cells in MAlignant Tumor tissues using
Expression data) is an algorithm that uses gene expression signatures to infer the fraction of stromal
and immune cells in tumor samples. The algorithm, stromal and immune scores can be calculated
to predict the level of infiltrating stromal and immune cells in tumor tissue. More information can
be acquired online at https://bioinformatics.mdanderson.org/public-software/estimate/. In this study,
the ESTIMATE method was applied for assessment of the infiltration of immune cells in tumor samples
using gene expression data that were downloaded from TCGA database. According to the immune
score, all the samples were divided into high and low groups separately.

4.3. CIBERSORT Deconvolution Algorithm

To characterize the abundance of immune cells in malignant tissues, the CIBERSORT method [44]
was adopted in our study. CIBERSORT is a computational approach that accurately resolves relative
fractions of diverse cell subsets in GEPs from complex tissues. Basically, CIBERSORT requires an input
matrix of reference gene expression signatures, collectively used to estimate the relative proportions
of each cell type of interest [33]. We downloaded the leukocyte gene signature matrix, termed LM22
(http://cibersort.stanford.edu), which contains 547 genes that distinguish 22 human hematopoietic
cell phenotypes, including seven T-cell types, naive and memory B cells, plasma cells, natural killer
(NK) cells, and myeloid subsets. In combination with the LM22 signature matrix, CIBERSORT was
used to estimate the fractions of 22 immune cell types in our study. As CIBERSORT computes an
empirical p-value of deconvolution to denote the accuracy of results, we only retained the samples
with CIBERSORT p-values < 0.05 for subsequent analysis. In the final output of CIBERSORT, the sum
of the predicted immune cell type fractions was 1 within each sample, and thus, the outputs were
directly integrated to generate an entire matrix of immune cell fractions.

4.4. BRCA Radiosensitivity Signature Construction and Validation

The patients were randomly separated into a discovery cohort and validation cohort. The discovery
cohort was used to discover potentially predictive relationships. The validation set was used to validate
the predictive power of the model that generated from discovery cohort. In the discovery cohort,

https://portal.gdc.cancer.gov/
https://bioinformatics.mdanderson.org/public-software/estimate/
http://cibersort.stanford.edu
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after performing differentially expressed gene analysis, we used univariate Cox regression analysis to
identify prognostic genes, and genes with a cut-off of p < 0.05 were considered significant. Since too
many genes are correlated with RT outcome, lasso-penalized Cox regression analysis was used to
exclude genes with low correlation and to filter out highly related genes (ref). Then, a prognostic gene
signature was constructed based on the linear combination of the regression coefficient derived from the
lasso Cox regression model coefficients (β) multiplied with its mRNA expression level. The risk score
= (β1 * Gene1) + (β2 * Gene2) + (β3 * Gene3) + · · · + (βN * GeneN). The optimal cut-off value was
investigated by The R package “survival” and “survminer” and two-sided log-rank test. Patients were
classified into a high-risk and low-risk cohort according to the threshold. The time-dependent receiver
operating characteristic (ROC) curve was drawn to evaluate the predictive value of the prognostic
gene signature for overall survival using the R package “survivalROC”.

4.5. Statistics and Analysis

All statistical tests were two-sided, and p-values of less than 0.050 were considered statistically
significant. These tests were performed by R version 3.6.0 (http://www.r-project.org). Several R packages
were used in our study including: “limma”, “e1071”, “parallel”, “survival”, “ggplot2”, “pheatmap”,
“corrplot”, “glmnet”, “survminer”, “survivalROC”, “Hmisc”, “lattice”, “Formula”, “foreign”, “rms”.
Additionally, the networks were visualized by Cytoscape 3.5.1 (https://cytoscape.org/).

5. Conclusions

In conclusion, our study performed a pan-cancer analysis to reveal that immune infiltration
influences RT outcomes. Its findings have the potential to redirect focus in the field from intrinsic
radiosensitivity to extrinsic radiosensitivity (Figure 7). Thus, it is imperative to explore the heterogeneity
of immune cell indicators for prognostic prediction in multiple cancers in the near-term and potentially
for individualized treatment further in the future. Increased knowledge of the effects of irradiation on
TME cells may help in the optimization of treatments that involve RT.
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