
PANCREATIC CELL FATE

To be or not to be
Chromatin remodeling processes can drive acinar cell fate decisions.
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E
very single cell in the body contains the

same genetic information. However, dif-

ferent types of cells activate distinct sets

of genes at different times and locations, which

allows them to carry out their precise roles. How

do cells achieve this?

The answer lies in a specific structure called

chromatin, which is formed of nucleosome units,

in which a defined amount of DNA is wrapped

around a core of histone proteins. To activate a

specific gene, the chromatin first needs to be

remodeled to provide access to the transcription

machinery (Strahl and Allis, 2000). This process

is firmly controlled by chromatin remodeling

proteins, which disrupt the tight contact

between DNA and histones, and mobilize the

nucleosomes to reveal the ‘hidden’ genes

(Owen-Hughes, 2003; Bossen et al., 2015).

Failures in the chromatin remodeling machin-

ery can severely hamper the function of a cell, or

worse, foster malignant transformations that can

lead to cancer (Feinberg et al., 2016;

Plass et al., 2013; Wilson and Roberts, 2011).

This affects in particular the subunits of the chro-

matin remodeling complex called SWI/SNF

(Kadoch et al., 2013). So far, it has remained

unclear how mutations within this structure can

lead to the development of tumors. Now, in

eLife, Scott Lowe and colleagues from the

Memorial Sloan Kettering Cancer Center, the

Hannover Medical School and the University of

Michigan – including Geulah Livshits as first

author – report how a subunit of SWI/SNF,

called Arid1a, is involved in the development of

pancreatic cancer (Livshits et al., 2018).

Pancreatic cancer is one of the most aggres-

sive types of cancer, with a five-year survival rate

of less than 8% (Siegel et al., 2016). Around a

quarter of pancreatic cancers contain mutations

in the SWI/SNF complex, which are commonly

accompanied by mutations in a gene called Kras

(Hingorani et al., 2003). Now, Livshits et al. ele-

gantly introduce the subunit Arid1a as a pivotal

player in directing the fate of acinar cells – the

cells that produce digestive enzymes to help

break down food – in the presence of the can-

cer-causing or oncogenic Kras.

The researchers engineered a mouse model

with a Kras mutation that allowed them to turn

off Arid1a specifically in the acinar cells by feed-

ing the mice antibiotics. When comparing the

pancreas of adult mice with either a Kras muta-

tion only, with deactivated Arid1a only, or with

both a Kras mutation and deactivated Arid1a,

the results revealed that the consequences of

removing Arid1a were determined by the Kras

mutation status and the time point of Arid1a

depletion in relation to oncogenic activation of

Kras (Figure 1).

Mice without a Kras mutation and without

Arid1a did not show any precancerous lesions in

their cells, suggesting that the SWI/SNF protein

may be dispensable for maintaining the architec-

ture of acinar cells in the absence of oncogenic

Kras (Figure 1A). However, inactivating Arid1a

in the context of a preexisting Kras mutation sig-

nificantly accelerated the symptoms of the mice

within two weeks: the acinar cells of these mice

started to transform into a different phenotype

and stopped producing digestive enzymes –

instead, they started making other proteins,
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such as mucins, which are typically found in pre-

cancerous or cancerous cells in the pancreas

(Figure 1B). Most importantly, these symptoms

remained irreversible, even when the antibiotics

were removed.

Removing Arid1a in mice embryos at the same

time as activating the Kras mutation did not have

the same effect (Figure 1C): as the Kras mutation

alone eventually leads to formation of pancreatic

cancer. The thorough histological and molecular

analyses of Livshits et al. demonstrate that a lack

of Arid1a can increase the sensitivity of acinar

cells to oncogenic signals, leading to the forma-

tion of pancreatic cancer. Nevertheless, Arid1a’s

contribution to pancreatic carcinogenesis

strongly depends on the molecular (mutated

Kras) and temporal context (when the Kras muta-

tion occurs).

Due to Arid1a’s ability to influence cell fate, a

loss of Arid1a combined with a Kras mutation

Figure 1. Schematic illustration of the molecular changes that can alter the identity of acinar cells in the

pancreas. Livshits et al. show that a subunit of the chromatin remodeling protein SWI/SNF, called Arid1a, could

contribute to the development of pancreatic cancer. (A) Mice without a Kras mutation and without Arid1a (yellow)

did not show any cancer symptoms, suggesting that a lack of Arid1a alone cannot drive the reprogramming of

acinar cells (pink). (B) Inactivating Arid1a in the context of a preexisting Kras mutation irreversibly boosts the

development of pancreatic cancer (PDAC). (C) Removing Arid1a at the same time as activating the Kras mutation

(KrasG12D, red) does not accelerate the formation of precursor lesions that could lead to pancreatic cancer.
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may therefore severely alter the composition of

chromatin. Indeed, when Livshits et al. looked at

the chromatin organization, it showed that mice

without Arid1a had an abnormal chromatin

structure, with genes encoding digestive

enzymes being less accessible than in mice with

normal Arid1a levels.

Together, the data by Livshits et al. character-

ize Arid1a as a critical but context-dependent

gate keeper of acinar cell fate and pancreatic

carcinogenesis. Since chromatin regulatory pro-

teins control reversible processes, they repre-

sent promising targets for new therapeutic

approaches in cancer treatment. Hence, disen-

tangling the interdependence of the chromatin

regulatory protein and context-defining molecu-

lar changes in the development of pancreatic

cancer and other malignancies, constitutes a dif-

ficult but crucial challenge of future studies in

the field.
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