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Skeletal muscle protein synthesis is a highly complex process, influenced by nutritional
status, mechanical stimuli, repair programs, hormones, and growth factors. The
molecular aspects of protein synthesis are centered around the mTORC1 complex.
However, the intricacies of mTORC1 regulation, both up and downstream, have
expanded overtime. Moreover, the plastic nature of skeletal muscle makes it a unique
tissue, having to coordinate between temporal changes in myofiber metabolism and
hypertrophy/atrophy stimuli within a tissue with considerable protein content. Skeletal
muscle manages the push and pull between anabolic and catabolic pathways through
key regulatory proteins to promote energy production in times of nutrient deprivation
or activate anabolic pathways in times of nutrient availability and anabolic stimuli.
Branched-chain amino acids (BCAAs) can be used for both energy production and
signaling to induce protein synthesis. The metabolism of BCAAs occur in tandem with
energetic and anabolic processes, converging at several points along their respective
pathways. The fate of intramuscular BCAAs adds another layer of regulation, which
has consequences to promote or inhibit muscle fiber protein anabolism. This review will
outline the general mechanisms of muscle protein synthesis and describe how metabolic
pathways can regulate this process. Lastly, we will discuss how BCAA availability and
demand coordinate with synthesis mechanisms and identify key factors involved in
intramuscular BCAA trafficking.

Keywords: skeletal muscle, branch chain amino acids, protein synthesis, BCKD, branched-chain α-ketoacid
dehydrogenase, AMPK (5′-AMP activated kinase), mammalian target of rapamycin

BRIEF OVERVIEW OF PROTEIN TRANSLATION

Protein synthesis is regulated primarily at the initiation phase of protein translation. A series of
signaling proteins, referred to as eukaryotic initiation factors (eIFs), ultimately control this process
and depend on upstream signals to modulate their activity. The pathways involved in protein
synthesis are extensive, however, two different events govern the translation process, described
in Figure 1. The binding of the methionyl tRNA (met-tRNA) to the 40S ribosomal subunit is
regulated by the eukaryotic initiation factor 2 eIF2 (Price and Proud, 1994). eIF2 binds GTP
and the eIF2-GTP-met-tRNA binds to the 40S ribosomal complex forming the 43S preinitiation
complex. Once the start codon of an mRNA binds to the complex, GTP is hydrolyzed back to
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GDP. The complex cannot form the 43S preinitiation complex
until GTP is reformed (Panniers and Henshaw, 1983; Price and
Proud, 1994). The enzyme guanine nucleotide exchange factor
eIF-2B will return GDP back to GTP and allow the complex
to be active again. The regulation of this process is at the
phosphorylation state of the α subunit of eIF2. When eIF2 is
phosphorylated, eIF2B is inhibited from recycling GDP back to
GTP and translation is stopped (Rowlands et al., 1988). eIF2
is phosphorylated by several kinases including double stranded
RNA-dependent protein kinase (PKR), heme-regulated inhibitor
kinase (HRI), eukaryotic translation initiation factor 2-alpha
kinase 3 (PERK), the yeast general control non-derepressible 2
(GCN2) (Proud, 2005), and more recently, glycogen synthase
kinase-3 beta (GSK3β) (Welsh et al., 1998). Each kinase appears
to target eIF2 under different cellular stresses. PKR is activated
in the presence of double stranded RNA (dsRNA) commonly
found from viral infections (Meurs et al., 1990). PKR inactivates
eIF2 as a protective mechanism to shut down protein synthesis
and stop viral replication. HRI was discovered in reticulocytes
(Crosby et al., 2000). When heme is deprived from reticulocytes
protein synthesis is shut off. This process is associated with
the inactivation and subsequent phosphorylation of eIF2. Of
these regulators, only GCN2, GSK3β, and PERK regulate eIF2
based on amino acid availability. Their respective actions are
illustrated in Figure 1. GCN2 is extensively studied in yeast
during inhibition of protein synthesis by amino acid deprivation
(Marton et al., 1993). It inactivates eIF2 by phosphorylation at
serine 51. GSK3β has been shown to be a key regulator in insulin-
dependent protein synthesis in skeletal muscle by inactivating
eIF2 through phosphorylation at serine 540 (Jefferson et al.,
1999). GSK3β and its role in muscle protein synthesis will be
discussed in more detail later in the review. PERK has been found
to target and inhibit eIF2 by phosphorylation at serine 51 under
various conditions, including iron or heme-deficiency, amino

Abbreviations: 4E-BP1, the eukaryotic initiation factor 4E binding protein 1; ADP,
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Branched-chain amino acid aminotransferase; BCKDH, branched-chain α-keto
acid dehydrogenase; BDK, BCKDH kinase; BKAs, branched-chain keto acids;
DEPTOR, DEP domain-containing mTOR-interacting protein; eEF, Eukaryotic
elongation factor; eIF, eukaryotic initiation factor; GAP, GTPase-activating protein;
GCN2, general control non-derepressible 2; GDP, Guanosine diphosphate; GEF,
guanine nucleotide exchange factor; GSK3β, glycogen synthase kinase-3; GTP,
Guanosine-5′-triphosphate; HRI, heme-regulated inhibitor kinase; IGF-1, Insulin-
like growth factor; IRS, insulin receptor substrate; mLst8, mammalian LST8
homolog; mSin1, the mammalian stress-activated protein kinase-interacting 1;
mTOR, mechanistic Target of Rapamycin; mTORC1, mammalian/mechanistic
Target of Rapamycin Complex 1; mTORC2, mammalian/mechanistic Target
of Rapamycin Complex 2; P70S6K, P70 Ribosomal protein S6 kinase;
PDK-1, phosphoinositide-dependent kinase 1; PERK, eukaryotic translation
initiation factor 2-alpha kinase 3; PGC-1α, Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha; PI3K, phosphatidylinositol 3-kinase;
PI3P, phosphatidylinositol 3-phosphate; PIP3, phosphatidylinositol (3,4,5)-
trisphosphate; PKB, Protein kinase B; PKR, double stranded RNA-dependent
protein kinase; PPM1K, protein phosphatase 1K; PRAS40, proline-rich Akt
substrate, 40 kDa; Rag, Ras related GTP binding; Raptor, the regulatory-
associated protein of mTOR (Raptor); REDD1, protein regulated in DNA
damage and development 1; Rheb, Ras homolog enriched in brain; Rictor, the
rapamycin-insensitive companion of mTOR; RTK, receptor tyrosine kinase; TCA,
tricarboxylic acid; TOR, Target of Rapamycin; TSC, Tuberous sclerosis complex.

acid starvation, viral infection, and accumulation of unfolded
proteins (Dever, 2002).

The remaining regulatory mechanisms of protein translation
are downstream of the mammalian target of rapamycin complex
1 (mTORC1). mTOR is a Ser/Thr kinase involved in a variety
of processes including cell growth and differentiation, protein
synthesis, and actin cytoskeletal organization. The mTORC1
complex can phosphorylate both 4E-BP1 and p70S6K to activate
two downstream translation pathways, seen in Figure 1. Upon
phosphorylation, the 4E-BP1 detaches from eIF4E and binds
the eIF4F complex (Mader et al., 1995). The eIF4F complex
recruits the 40S ribosomal subunit to mRNA through the 5′-
cap structure (Proud, 2007). The eIF4F complex consists of three
subunits each with distinct functions. eIF4E binds the 5′mRNA,
eIF4A is an ATP-dependent RNA helicase and eIF4G serves as
structural support for both eIF4E and 4A to form the eIF4F
complex. eIF4E has been identified as a main regulatory protein
for translation initiation through the eIF4F pathway. During
instances of hypophosphorylation, 4E-BP1 remains bound to
eIF4E and translation is turned off (Mader et al., 1995).

THE CANONICAL IGF/Akt/mTORC1
PATHWAY

The upstream pathways controlling mRNA translation are,
in part, through the IGF-1/mTORC1 pathway (Glass, 2010),
illustrated in Figure 2. The IGF-Akt (PKB) signaling pathway is
well established for its role in regulation of skeletal muscle mass
controlling both protein synthesis, degradation, and apoptotic
pathways (Frost and Lang, 2007). The binding of IGF-1
activates the receptor tyrosine kinase IGF-1 receptor and recruits
insulin receptor substrate (IRS), in particular IRS-1 (Sun et al.,
1991; Yamauchi et al., 1998). This leads to the activation of
phosphatidylinositol 3′-kinase (PI3K) and the eventual activation
of the serine-threonine kinase Akt (PKB) via phosphorylation at
serine 473 (Alessi et al., 1997; Andjelkovic et al., 1997; Moelling
et al., 2002). Akt is a focal point in insulin and IGF-1 signaling
in a variety of tissues. Akt is also phosphorylated by mTORC2
(Sarbassov et al., 2005), which will be discussed later in the review.
Upon activation, Akt is involved in a multitude of downstream
pathways that will promote muscle growth. During skeletal
muscle hypertrophy, Akt activation is increased when examined
in vivo (Bodine et al., 2001) and in cultured myotubes (Rommel
et al., 2001). In addition, a genetically altered, constitutively
active Akt was able to induce muscle hypertrophy independent
of additional treatments (Bodine et al., 2001; Lai et al., 2004).
Akt acts through mTORC1 pathways to initiate and enhance
protein synthesis. In addition, Akt can enhance protein synthesis
through inhibition of proteins that impede protein synthesis
such as GSK-3β and PRAS40. As mentioned previously, GSK3β

is an inhibitor of protein synthesis through phosphorylation
and inhibition of eIF2. Akt phosphorylates GSK3β at Ser9
and inactivates its kinase activity, thus allowing the initiation
of protein synthesis. Activation of the Akt/GSK3β pathway
is observed in muscle in vitro, using anabolic stimulus on
C2C12 myotubes. Administration of IGF-1 resulted in myotube
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FIGURE 1 | Translation Overview. Protein translation occurs, in part, by mTORC1-dependent regulation of p70S6K and the 4E-BP1/eIF4E complex and the
mTORC1-independent eIF2 complex. mTORC1 activation is achieved through several points of regulation including, but not limited to phosphorylation at ser2448,
inactivation of the TSC1/2 complex, binding of GTP-bound RHEB and translocation to the lysosome. Upon activation, mTORC1 will phosphorylate p70S6K at
Thr389. This activates p70S6K to phosphorylate ribosomal protein S6 at ser236/236 and initiate RNA translation. mTORC1 can also regulate the eIF4E complex by
phosphorylating 4E-BP1 which results in detachment of 4E-BP1 from eIF4E. This frees eIF4E to bind with eIF4A and eIF4G which will initiate binding of mRNA to the
ribosome. A third point of translation initiation is the eIF2 complex. eIF2 forms a ternary complex with GTP and the Met-rRNA binds to the 40S ribosomal subunit to
start the translation process. Its regulation is mediated through phosphorylation by various kinases including GSK-3β, PERK, and GCN2. Phosphorylation of eIF2
inhibits the guanine nucleotide exchange function of eIF2B and prevents translation.

hypertrophy, associated with hyperphosphorylation of both Akt
and GSK3β (Rommel et al., 2001).

There are several regulatory points throughout the IGF-
1/Akt/mTORC1 pathway, yet mTORC1 appears to be the gateway
to downstream anabolic signaling. mTOR assembles into two
distinct complexes, mTORC1 and mTORC2. mTORC1 consists
of raptor (regulated associated protein of mTOR), mLST8,
DEPTOR, PRAS40, and mTOR. mTORC2 consists of rictor
(rapamycin insensitive companion of mTOR), mSIN1, mLST8,
DEPTOR, and mTOR. mTORC1 activation is well described
through PI3K/Akt signaling. Akt can phosphorylate several
proteins that regulate mTORC1 activity including mTORC1
itself, PRAS40 and tuberous sclerosis complex 2 (TSC2) (Sancak
et al., 2007; Vander Haar et al., 2007). Currently, the signaling
mechanism for Akt through TSC2 is the most well described
pathway. Akt phosphorylates TSC2 on multiple residues leading
to its inactivation. TSC2 is a GTPase activating protein for Rheb.
Therefore, inactivation of TSC2 by Akt increases the amount of
GTP:Rheb complex bound to mTOR and leads to its activation.
The second mechanism by which Akt can activate mTORC1
is through phosphorylation of the mTORC1 inhibitor PRAS40.
Phosphorylated PRAS40 will disassociate from mTORC1, release
its inhibition and increase mTOR kinase activity (Wang et al.,
2012). In relation to mTORC1, there is a limited understanding

of the role of mTORC2 in muscle protein synthesis and growth
(Bentzinger et al., 2008). Initial studies have shown mTORC2 to
be involved in organization of actin cytoskeleton and possibly
phosphorylate Akt at Ser473 (Jacinto et al., 2004). In addition,
there may be a coordinated effort for both mTOR complexes to
work together for maximizing muscle protein synthesis under
anabolic conditions (Ogasawara et al., 2020).

THE mTORC1 COMPLEX

The mTORC1 complex has several related protein-protein
complexes which regulate signaling activity. Each protein has
a unique function in the complex. Raptor acts as a scaffolding
protein to recruit downstream targets of mTOR, p70S6K, and 4E-
BP1 (Hara et al., 2002; Kim et al., 2002). It is also the anchoring
protein used by the Rag GTPases to recruit mTORC1 to the
lysosome (Sancak et al., 2008). In skeletal muscle, raptor KO mice
have a marked reduction in phosphorylation of both p70S6K and
4E-BP1 (Bentzinger et al., 2008). In addition, p70S6K and 4E-BP1
proteins have common mTORC1 signaling (TOS) motifs, which
are essential for mTORC1-targeted phosphorylation (Dunlop
et al., 2009). The raptor protein can also be modified at multiple
phosphorylation sites. Phosphorylation of raptor appears to
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FIGURE 2 | IGF-1/Akt signaling. The binding of growth factors such as IGF-1 and insulin activates receptor tyrosine kinases (RTKs), which recruits and activates
IRS-1. IRS-1 then activates phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), which consists of a regulator subunit (p85) and a catalytic subunit (p110). PI3K
generates phosphoinositide 3,4, 5-phosphate (PIP3). PIP3 recruits and activates PDK1 and Akt. In addition to PIP3 signaling, mTORC2 can also phosphorylate and
activate Akt. From there, Akt can signal through both mTORC1 and eIF2 pathways to increase protein synthesis. Akt can phosphorylate and inactivate GSK-3β,
which is an inhibitor of the eIF2 complex. Akt can also activate the mTORC1 complex through inactivation of TSC1/2 and PRAS40. AMPK is a negative regulator of
the IGF-1/Akt pathway, inhibiting mTORC1 activity through activation of the TSC1/2 complex and direct inhibition of mTORC1.

happen in a sequential manner (Foster et al., 2010). Once
activated, mTOR will phosphorylate raptor at Ser863, which
primes raptor for phosphorylation at several other sites including
Ser859/855 (Foster et al., 2010). The phosphorylation events must
be in the presence of adequate amino acid concentrations. In
HEK293 cells, insulin-stimulated phosphorylation of raptor was
not evident in amino acid depleted serum showing amino acid
availability is critical for mTORC1 activity despite the availability
of other growth factors (Foster et al., 2010). Raptor can also
be phosphorylated by the 5′-adenosine monophosphate-activated
protein kinase (AMPK) at Ser792, which inhibits raptor function
and related mTORC1 activity (Gwinn et al., 2008). Skeletal
muscle raptor phosphorylation at the AMPK targeted Ser792 is
associated with body weight loss during cancer-associated muscle
wasting (White et al., 2011).

The protein PRAS40 is another member of the TORC1
complex. PRAS40 has been shown to be an inhibitor of mTOR
activity (Sancak et al., 2007; Wang et al., 2007). PRAS40 is bound
to the inactive mTORC1 complex and directly inhibits substrate
binding to raptor preventing downstream phosphorylation
(Wang et al., 2007). Akt has been shown to phosphorylate and
inhibit PRAS40 binding to raptor (Vander Haar et al., 2007),
however, mTOR can phosphorylate PRAS40 as well (Foster
et al., 2010). Upon activation from insulin or amino acids,
activated mTOR can phosphorylate PRAS40 which facilitated

its disassociation from the complex (Foster et al., 2010). Once
PRAS40 is off the complex, raptor can bind p70S6K and
4E-BP1 for eventual phosphorylation. In male mice, muscle
PRAS40 phosphorylation is responsive to circulating testosterone
and muscle mass (White et al., 2012). Castration decreases
phospho PRAS40, which is rescued with androgen add-back
(White et al., 2012).

DEP domain-containing mTOR-interacting protein is a
relatively recent addition to the mTORC1 complex, having
an inhibitory function on mTORC1 activity (Peterson et al.,
2009). mTORC1 and DEPTOR negatively regulate each other,
depending on nutrient availability. In a low nutrient state, the
PZD domain of DEPTOR binds to the C-terminal portion
of mTOR and inhibits downstream signaling to p70S6K and
4E-BP1. In addition, it also activates mTORC2/Akt signaling
by relieving the mTORC1 negative feedback inhibition of
PI3K (Peterson et al., 2009). During nutrient availably and
subsequent mTORC1 activity, DEPTOR is phosphorylated
and released from the mTORC1 complex. The reduction in
protein expression is also accompanied with a suppression
of DEPTOR mRNA expression (Peterson et al., 2009). In
C2C12 myotubes, the knockdown of DEPTOR increased protein
synthesis and associated mTORC1 signaling (Kazi et al., 2011).
DEPTOR knockdown, in vivo, resulted in an attenuation
of immobilization-induced muscle atrophy associated with

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 May 2021 | Volume 9 | Article 656604

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-656604 May 25, 2021 Time: 17:13 # 5

White Amino Acids and Muscle Protein Synthesis

increased muscle protein synthesis (Kazi et al., 2011). The
sensitivity of DEPTOR to atrophy conditions has been replicated
by others showing DEPTOR expression increases with limb
immobilization (Shimkus et al., 2018) and hind limb unloading
(Roberson et al., 2020). The regulation of DEPTOR from nutrient
availability does not appear as strong as mechanical loading,
as fasting/refeeding did not alter DEPTOR protein expression
(Shimkus et al., 2018). However, further investigation is needed
to determine how DEPTOR is regulated under different nutrients
and availability of amino acids.

NEGATIVE REGULATORS OF mTORC1

There are several negative regulators of mTORC1 activity existing
outside the mTORC1 complex. Two well documented inhibitors
are AMPK and the protein regulated in DNA damage and
development 1 (REDD1, also referred to as Rtp801 and DDIT4).
Their respective interactions with the Akt/mTOR pathways are
shown in Figures 2, 3. AMPK and mTOR are key energy
sensors in the cell, and function to regulate processes to either
inhibit or enhance ATP production depending on nutrient
availability. AMPK will be discussed in more detail later in
this review. REDD1 is thought to inhibit mTORC1 signaling
through activation of upstream TSC2 (Brugarolas et al., 2004;
Reiling and Hafen, 2004; Sofer et al., 2005). In addition,
REDD1 protein and mRNA expression are increased with
cellular stress events including ATP depletion (Sofer et al.,
2005), DNA damage (Lin et al., 2005), endoplasmic reticulum
stress (Wang et al., 2003; Protiva et al., 2008), and hypoxia
(Shoshani et al., 2002; Brugarolas et al., 2004; Reiling and
Hafen, 2004; Schwarzer et al., 2005). Furthermore, treatment
with the synthetic glucocorticoid dexamethasone has shown
to increase REDD1 mRNA and protein in skeletal muscle as
well as L6 myotubes (Wang et al., 2006). Glucocorticoids such
as cortisone are elevated during fasting states which, in part
through REDD1, may play a role in the inhibition of mTORC1
signaling and the subsequent reduction in protein synthesis.
REDD1 protein and mRNA expression was increased with
18 h of starvation in rats which coincided with a reduction
in mTORC1 signaling (McGhee et al., 2009). Upon refeeding,
REDD1 protein and mRNA expression was returned to baseline
and mTORC1 signaling was increased. Interestingly, fasting-
induced glucocorticoid concentrations directly correlated with
REDD1 expression showing evidence of cross talk between
energy-sensitive hormones and energy-sensitive signaling within
muscle (McGhee et al., 2009). Finally, the loss of REDD1 during
a mechanical-overload hypertrophy stimuli enhanced the rate of
muscle protein synthesis (Gordon et al., 2016), again, suggesting
its role as a negative regulator of muscle protein anabolism.

AMPK PROMOTES CATABOLISM OVER
ANABOLISM

AMPK is activated through the buildup of low energy phosphate
group, AMP or by phosphorylation by one or more upstream

kinases at a threonine residue within the activation loop of the
α subunit (Hawley et al., 1996; Stein et al., 2000). The multiple
targets that AMP can activate will induce a large activation in
the activity of AMPK with relatively small changes in AMP.
The energy state of the cell is not solely monitored by AMP
concentrations. High ATP concentrations will oppose activation
of AMP-induced pathways. Thus, the AMP:ATP ratio appears
to the critical readout of cellular energy status and regulator
of AMPK activity.

During physiological conditions, AMPK can be regulated by
chemical mediators of metabolism in addition to ATP:AMP
levels. Cellular levels of phosphocreatine can allosterically inhibit
AMPK activity (Ponticos et al., 1998). In addition, glycogen
content of the cell can affect AMPK activity (Hudson et al.,
2003; Polekhina et al., 2003). The β-subunits of AMPK contain
a glycogen binding domain. Reports in human and rodent
muscle show high glycogen stores can inhibit AMPK activation
(Wojtaszewski et al., 2002, 2003). Over expression of AMPK in
culture has shown AMPK to localize in large glycogen granules
(Hudson et al., 2003). Glycogen will not only bind AMPK, but
also contain in close proximity glycogen synthase, a substrate
of AMPK. Considering AMPK is allosterically regulated by
phosphocreatine and glycogen stores, it has been speculated that
AMPK is regulated by both short and long term energy stores
(Hardie, 2003).

AMPK TARGETS mTORC1 TO
SUPPRESS PROTEIN SYNTHESIS

AMPK has been shown to inhibit protein synthesis in skeletal
muscle (Rolfe and Brown, 1997; Bolster et al., 2002; Deshmukh
et al., 2008; Thomson et al., 2008; Mounier et al., 2009), liver
(Reiter et al., 2005), and cultured myotubes (Williamson et al.,
2006; Tong et al., 2009). The potency of AMPK signaling
was described by Pruznak et al. (2008), showing AMPK
activation can override the stimulatory effects of leucine on
muscle protein synthesis (Pruznak et al., 2008). In contrast,
deletion of the AMPKα1 gene in primary myotubes resulted
in cell hypertrophy (Mounier et al., 2009). The mechanism
by which AMPK inhibits muscle protein synthesis is through
the inhibition of the mTORC1 complex (Bolster et al., 2002;
Horman et al., 2002; Chan et al., 2004; Gwinn et al., 2008). There
are currently three proposed mechanisms by which AMPK can
inhibit mTORC1 signaling. The first is through phosphorylation
of mTOR on Thr2446 (Cheng et al., 2004). This process does
not directly inhibit mTOR activity, however, phosphorylation
at Ser2446 prevents phosphorylation of Ser2448 which has
been shown to increase mTOR activity (Bolster et al., 2002;
Chiang and Abraham, 2005). The second method, and perhaps
the best described mechanism, is through AMPK-mediated
phosphorylation of the tuberous sclerosis complex 2 (TSC2) gene
product Tuberin on Thr1227 and Ser1345 (Inoki et al., 2003).
TSC2 combines with TSC1 to form a GTPase activator protein
(GAP) for the Ras homolog enriched in brain (Rheb), causing
an increase in GDP bound to Rheb (Zhang et al., 2003; Long
et al., 2005a). The binding of the GDP:Rheb complex to mTORC1
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inhibitors mTOR. The third mechanism, as discussed earlier in
the review, is the phosphorylation of raptor (Gwinn et al., 2008).
This promotes binding of the 14-3-3 protein and inhibition of
raptor to signal downstream to p70S6K and 4E-BP1.

The AMPK pathways has been heavily investigated in muscle
in regards to other aspects of mTORC1 signaling. In C2C12 cells,
AICAR-induced AMPK activation showed a reduction in protein
synthesis, polysome aggregation and downstream mTORC1
signaling proteins 4E-BP1, p70S6K and eEF2 (Williamson et al.,
2006). Although Akt, upstream of mTORC1, remained unaffected
with AICAR treatment, downstream AMPK targets raptor and
TSC2 were effected with AMPK activation. In addition, AICAR
increased the amount of TSC1 bound to TSC2 (Williamson et al.,
2006), suggesting increased GTPase activity and inhibition of
Rheb. A study by Du et al. (Tong et al., 2009) treated C2C12 cells
with both AICAR and IGF-1 to determine if AMPK signaling
can inhibit IGF-1 signaling, with the hypothesis that IGF-1
signaling originates upstream of mTORC1. AICAR treatment
without IGF-1 resulted in cell atrophy caused by a reduction in
signaling related to protein synthesis and an increase in markers
of protein degradation. The addition of IGF-1 did not rescue the
inhibition of AICAR treatment despite a significant increase in
Akt, supporting the proposed mechanism of potent mTORC1
inhibition by AMPK.

AMPK has been examined in rodent models of muscle
hypertrophy to determine its role in growth suppression.
Overload-induced hypertrophy of the plantaris muscle was
enhanced in AMPKα1−/− mice. This occurred in conjunction
with an increase in phosphorylation of downstream targets
of mTORC1 signaling p70S6K and 4E-BP1 (Mounier et al.,
2009). In contrast, AICAR treatment resulted in a reduction in
the percentage of plantaris muscle mass gained after 1 week
of over load (Gordon et al., 2008). In the same study, there
was a significant negative correlation between the percentage
of plantaris hypertrophy and AMPK phosphorylation status
in the plantaris muscle. In addition, there were also negative
correlations between phosphorylation status of AMPK and
p70S6K, eEF2 and 4E-BP1.

Catabolic signaling through AMPK can override amino
acid-induced mTORC1 activation. AICAR treatment prevented
leucine-stimulated protein synthesis in the mouse gastrocnemius
muscle (Pruznak et al., 2008). The prevention of synthesis was
accompanied with the prevention of mTOR activation. AMPK
can phosphorylate and activate TSC-2, which subsequently
inactivates mTOR. AICAR treatment did not increase the
phosphorylation of TSC-2 or alter TSC-1/TSC-2 binding.
However, AICAR treatment did increase phosphorylation of
raptor independent of leucine treatment. The activation of
downstream signaling proteins p70S6K1, 4E-BP1, and eIF4F
were increased with leucine administration and prevented when
leucine was given with AICAR treatment. This data is in
agreement with the results from Du et al. (Du et al., 2007)
who showed AICAR treatment prevents a leucine-induced
increase in protein synthesis in C2C12 myoblasts. In support of
these data, myoblasts expressing a dominant negative AMPKα

subunit were administered AICAR. Without AMPK activation,
leucine was able to increase protein synthesis even with AICAR

treatment. Once again, suggesting AMPK-induced inhibition of
protein synthesis was through the reduction in mTORC1. These
results support the hypothesis that cellular energy demands can
supersede the anabolic potential of amino acid availability.

AMINO ACID AVAILABILITY AND
mTORC1 ACTIVITY

Although mTORC1 is a key component of the IGF-1/insulin
signaling pathway, mTORC1 can be activated independent of
upstream signaling by amino acids (Potier et al., 2009). Branched-
chain amino acids (BCAAs), especially leucine, are potent
regulators of mTORC1 activity and increase rates of protein
synthesis (Goberdhan et al., 2009). Infusion of an amino acid
mixture into resting human subjects increased protein synthesis
as early as 30 min after infusion and remained elevated for 90 min
(Bohe et al., 2001). Amino acid infusion has been shown to
increase phosphorylation of downstream targets of mTORC1,
p70S6K, and 4E-BP1 (Greiwe et al., 2001; Liu et al., 2001) without
effecting Akt (Greiwe et al., 2001) or its downstream target
GSK3β (Liu et al., 2004). In the rodent, mTORC1 activity is
necessary for BCAAs to induce anabolic signaling, as rapamycin
prevented leucine-induced increased phosphorylation of p70S6K
and 4E-BP1 (Anthony et al., 2000).

Despite strong evidence suggesting BCAAs activate mTORC1
signaling, the direct mechanism for mTORC1 activation remains
unclear, especially in skeletal muscle. It has been proposed that
BCAAs work through both a TSC1/2 dependent (Gao et al., 2002)
and independent (Smith et al., 2005) manner to activate mTORC1
activity. The TSC1/2 complex can mediate amino acid signaling
to mTORC1 (Gao et al., 2002), which could be regulated through
relative localization of TSC1/2 and mTOR on the lysosome
(Demetriades et al., 2014; Menon et al., 2014). Other reports have
shown evidence for TSC1/2 independent activation of mTORC1
signaling through RAG and Rheb. In mammals, there are four
RAG GTPases (A-D) shown to have a role in amino acid signaling
to mTORC1 (Schurmann et al., 1995; Kim et al., 2008; Sancak
et al., 2008). Amino acids can convert RAG to an active formation
including Rag A/B loaded with GTP and Rag C/D loaded with a
GDP. The active Rag A/B recruits the mTORC1 complex to the
lysosome through raptor where it is activated by Rheb (Sancak
et al., 2008). Rheb activates mTORC1 by direct associated and
activation of the mTOR catalytic domain (Long et al., 2005a,b).
The regulation of mTORC1 activation with and without amino
acid availability is illustrated in Figure 3.

REGULATION OF AMINO ACID
METABOLISM

Amino acid metabolism has been well described, especially in
the context of insulin resistant and obesity (White and Newgard,
2019). In skeletal muscle, the balance between amino acid
catabolism and anabolism is complex, due to both metabolic
and anabolic flux of the myofiber. BCAAs, in particular, are a
widely used source to generate TCA/Krebs cycle intermediates
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FIGURE 3 | Translation pathways with or without amino acid availability. Without amino acid availability (left image), the heterodimeric Rag protein is loaded with GTP
on Rag C/D while Rag A/B has the GDP. This conformation localizes the TSC1/2 complex to the lysosome to prevent GDP-Rheb conversion to GTP and prevents
the recruitment of mTORC1 to the lysosome. This renders both S6 and 4E-BP1 unphosphorylated, shutting off translation. In addition, the inactive mTORC1 with be
further suppressed by inhibitors DEPTOR, REDD1 and PRAS. On the eIF2 pathway, the absence of amino acids maintains GCN2 and PERK activity, which
phosphorylates eIF2, inhibiting guanine nucleotide exchange of eIF2 by eIF2B. With eIF2 bound to GDP, it will release from the ribosome and stop translation. Upon
availability of amino acids (right image), RagA/B is now loaded with GTP as it maintains binding to ragulator. This initiates removal of TSC1/2 from the lysosome and
Rag-induced recruitment of mTORC1 to the lysosome via raptor. Once at the lysosome, mTOR kinase activity is activated by GTP-bound Rheb and will
phosphorylate p70S6K and 4E-BP1 to initiate translation. mTORC1 activation will also disassociate inhibitors DEPTOR and PRAS40. Once dissociated, DEPTROR
is quickly degraded. In relation to eIF2, the availability of amino acids will inhibit GCN2 and PERK, reversing phosphorylation on eIF2 and allowing guanine nucleotide
exchange of eIF2 back to GTP. This will bind the eIF2 complex to the 40S ribosomal subunit and initiate protein translation.

for energy production. Although the majority of amino acid
metabolism occurs in the liver, skeletal muscle has high
expression of the branched-chain aminotransferase (BCAT).
Interestingly, despite its metabolic nature, the liver does not
express BCAT, rendering a unique pathway of BCAA metabolism
to skeletal muscle (Hutson, 1989; White et al., 2020). BCAT-
mediated transamination of leucine generates α-ketoisocaproate,
the first step of BCAA catabolism in muscle. The second step
of leucine catabolism is an irreversible oxidative decarboxylation
of α-ketoisocaproate, which is catalyzed by the branched-chain
α-keto acid dehydrogenase (BCKDH). This reaction is a rate-
limiting step in leucine metabolism (Harris et al., 1990, 1994).

Branched-chain α-keto acid dehydrogenase is a highly
regulated dehydrogenase enzyme responsible for metabolizing
branched-chain keto acids (BCKA) into branched-chain acyl
CoAs. The branched-chain CoAs are further metabolized into
acetyl CoA or Succinyl CoA and used as TCA intermediates
for energy (Walejko et al., 2021). The multi-subunit BCKDH
complex consists of three components including the e1, e2,
and e3 subunits. Each subunit carries out different reactions
to convert BCKAs into branched-chain acyl CoAs. There are
two opposing regulators of BCKDH activity, the BCKDH kinase
(BDK) and the PPM1K phosphatase (also referred to as PP2Cm)
(White et al., 2018). Both enzymes perform phosphorylation and
dephosphorylation, respectively, of serine 293 of the e1a subunit.
In the liver, increased phosphorylation of BCKDH on serine 293
occurs secondary to elevated expression of BDK, and decreased

expression of PPM1K (She et al., 2007; Lian et al., 2015). Murine
knockout models of either BDK or PPM1K (Joshi et al., 2006; Lu
et al., 2009) show the significance of their respective role in BCAA
metabolism, as each manipulation effects circulating BCAAs
accordingly. Currently, there is limited understanding of this
pathway in skeletal muscle, especially in regards to anabolic and
catabolic conditions. BCAA fate and the antagonist relationship
between BCKDH and PPM1K is shown in Figure 4.

As AMPK is a potent inhibitor of mTORC1 activity, it would
also make sense that AMPK would regulate muscle amino
acid metabolism. AICAR-induced AMPK activation can increase
BCKDH activity in skeletal muscle through a reduction in BDK
protein (Lian et al., 2015). Although AICAR increased PPM1K
in liver and adipose tissue, muscle PPM1K was not effected
by AICAR treatment (Lian et al., 2015). Skeletal muscle PGC-
1α over-expression increases gene expression of branched-chain
amino transferase (BCAT) 2 and BCKDH, while BDK was not
changed. BCAAs levels in the PGC-1α mice were decreased in
both muscle and blood (Hatazawa et al., 2014). These outcomes
show the coupled relationship between two potent metabolic
regulators, i.e., AMPK and PGC-1α, and the shift from anabolism
to BCAA catabolism.

The extent of BCAA metabolism can have an impact on
global muscle metabolism, as excess BCAAs or branched-
chain ketoacids can inhibit insulin signaling in muscle in vitro
(Moghei et al., 2016; Biswas et al., 2020) and in vivo
(White et al., 2016, 2018; Wang et al., 2019). Interestingly, this
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FIGURE 4 | Molecular mechanisms of amino acid trafficking. Amino acids, especially BCAAs, enter the cell via their respective transporters. Once in the cell,
depending on metabolic need, they can be metabolized for energy or used for other biochemical processes like protein synthesis. If needed for energy, the enzyme
BCAT metabolizes the BCAA into branched-chain keto acids, which undergo a series of catabolic reactions to produce C3 and C5 CoAs by BCKDH. The C3/5 CoAs
are then converted to either acetyl CoA or Succinyl CoA and can enter the TCA cycle. BCKDH is regulated by phosphorylation/dephosphorylation by the kinase BDK
and the phosphatase PPM1K, respectively. Phosphorylation of BCKDH by BDK inhibits BCKDH activity while dephosphorylation by PPM1K activates BCKDH and
increases generation of BCAA-derived CoAs for energy production. The activation of the BCAT/BCKDH pathway pulls amino acids away from the associated
mTORC1 complexes and inhibits protein synthesis. If BDK is able to phosphorylate BCKDH, or PPM1K is inhibited, amino acids would be available to active
mTORC1 and initiate protein translation. AMPK can regulate BCAA metabolism by increasing PPM1K and lowering BDK expression, which will activate BCKDH and
increase BCAA flux to the TCA cycle. AMPK can simultaneously block mTORC1 signaling through activation of TSC1/2 or direct inhibition of mTOR and raptor.

result is dependent on certain BCAAs or a mixture of BCAAs
as valine does seem to interfere with myotube insulin signaling
in vitro (Rivera et al., 2020). Nutrient availability may also
regulate metabolic fate of leucine. In C2C12 myotubes, leucine
is used preferentially for protein synthesis rather than oxidation
for energy production (Estrada-Alcalde et al., 2017). However,
in the setting of high palmate, leucine oxidation increases and
its incorporation into proteins decreases (Estrada-Alcalde et al.,
2017). Moreover, high fat feeding increase BCKDH activity in
muscle promoting amino acid catabolism (White et al., 2016).
This again, points to the complexity of muscle metabolism and
substrate availability altering BCAA trafficking. The proposed
BCAA trafficking and related AMPK signaling pathways are
shown in Figure 4.

In the context of muscle mass regulation, muscle BDK
knockout mice have no overt muscle mass phenotype under
a typical chow diet, despite a lower BCAA concentration in
blood and muscle (Ishikawa et al., 2017). However, under a low
protein diet, the lack of BDK magnifies myofibrillar protein loss
associated with a reduction in mTORC1 signaling activity. Of
note, protein restriction resulted in a reduction of myofibrillar

protein synthesis, but not total (soluble) protein, indicating a
preferential degradation of myofibrillar proteins to compensate
for the low protein diet. A natural hypothesis would point to
autophagy as a mechanism to provide amino acids during the
restricted feeding. However, this study showed no difference
in LC3I/II protein expression, and so the authors concluded
autophagy was not playing a role and contributing to the
myofibrillar degradation during the low protein diet (Ishikawa
et al., 2017). This study highlights the interaction between
BCAA metabolism and protein synthesis pathways, supporting
an interactive crosstalk between the two processes. More work is
needed to gain a better understanding of the molecular network
between BCAA trafficking and mTORC1 signaling.

CONCLUSION AND PERSPECTIVE

Together, muscle protein synthesis is an interactive process,
taking input from numerous anabolic and catabolic pathways.
The unique plasticity of skeletal muscle adds more layers
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of regulation, incorporating both metabolic demands and
mechanical stimuli into these already intricate pathways.
Moreover, there must be an adequate combination of mechanical
stimuli and nutritional availability to maintain or hypertrophy
myofiber size. In relation to other tissues, especially tumor
biology, the molecular mechanisms involved in skeletal muscle
protein synthesis are less developed. This concept is supported by
the fact that the majority of citations in this review investigating
amino acid metabolism and regulation of mTORC1 are not
in muscle tissue. This is interesting, considering the extensive
protein content of skeletal muscle and the potential utility of
skeletal muscle as a model to investigate the complexities of
protein synthesis. In regards to muscle signaling pathways, the
IGF-1/insulin pathway dominates the literature since muscle
is a major therapeutic target for diabetes drugs. However, the
anabolic pathways in muscle have been relatively neglected since
muscle atrophy/wasting is still considered a secondary symptom
among various diseases and not targeted as commonly for
pharmaceutical intervention.

A better understanding of the interface between muscle
amino acid metabolism and synthesis pathways could uncover
additional regulators of muscle protein synthesis. The high
expression of BCAT in skeletal muscle supports the preference of
branched-chain amino acids as a bioenergetic substrate. There is a
gap in our understanding of fate decisions of BCAAs and anabolic
signaling in muscle. This could be a result of the temporal nature
of muscle energetics, having diverse metabolism with changes in
nutrient availability and contractile activity. AMPK is an obvious
regulator of BCAA fate, effecting both catabolic and anabolic
signaling pathways, including direct/indirect effects on mTORC1
and BCKDH. However, it would not be surprising to identify
additional regulators of BCAA metabolism having an impact on
both catabolic and anabolic processes.

As for translational potential of these pathways to offset
muscle atrophy/wasting, identification of anabolic pathways,
unique to skeletal muscle, could open up therapeutic targets.

The potency of these pathways to regulate muscle mass is
supported by strong in vivo studies using preclinical models
discussed throughout his review. Manipulation of key regulatory
proteins within the mTORC1 signaling pathway can accelerate
(Ishikawa et al., 2017) or preserve (Kazi et al., 2011) the loss in
muscle mass and/or protein synthesis under atrophy-promoting
conditions. Since we now have a general understanding of
these pathways, why are there no available drugs to offset
muscle wasting? The challenge is to identify key targets within
these complex pathways and manipulate them in a muscle-
specific manner. The mTORC1 pathway is tightly controlled and
ubiquitous across many cell types. Promoting muscle anabolism
by manipulating global mTORC1 activity will most likely alter
the delicate balance of non-muscle cells and promote unchecked
growth and malignancies. Finding key regulators within the
mTORC1 pathway, specific to muscle would be ideal for drug
development. This warrants continued investigation of anabolic
pathways, especially within skeletal muscle.
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