A vaccinia virus renaissance

New vaccine and immunotherapeutic uses after smallpox eradication

Paulo H. Verardi,* Allison Titong and Caitlin J. Hagen[†]

Department of Pathobiology and Veterinary Science; College of Agriculture and Natural Resources; University of Connecticut; Storrs, CT USA

[†]Current Affiliation: Novartis Vaccines and Diagnostics; Cambridge, MA USA

Key words: vaccinia virus, vaccines, smallpox, cancer immunotherapy, oncolytic cancer therapy, viral vectors

Abbreviations: VACV, vaccinia virus; MVA, Modified Vaccinia Ankara; IMV, intracellular mature virus; EEV, extracellular enveloped virus; TAA, tumor-associated antigen; TK, thymidine kinase; FDA, Food and Drug Administration

In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics and oncolytic virotherapies.

Next-Generation Smallpox Vaccines

Smallpox was successfully eradicated through the efforts of the World Health Organization (WHO) in 1979.^{1,2} However, in the last decade there has been a renewed interest in the development

*Correspondence to: Paulo H. Verardi; Email: paulo.verardi@uconn.edu Submitted: 06/04/12; Accepted: 06/10/12 http://dx.doi.org/10.4161/hv.21080

of next-generation smallpox vaccines due to the threat of bioterrorism and the possible emergence of other orthopoxviruses (such as monkeypox virus) as significant human pathogens. Although the smallpox vaccines used during the smallpox eradication campaign (now called first-generation vaccines) were very efficacious, they were typically propagated in the skin of calves² under conditions that did not adhere to good manufacturing practices (GMP). VACV strains widely used during the smallpox eradication campaign included the New York City Board of Health (NYCBH), Lister and EM-63 (Table 1). These live vaccines were commonly administered by scarification with a bifurcated needle, leading to a cutaneous reaction due to local virus replication. The resulting scar at the site of inoculation, known as the "take," has been historically accepted as the correlate of protection for smallpox.¹⁻³ However, these first-generation smallpox vaccines were associated with a number of adverse reactions ranging from mild (e.g., malaise, mild rash and fever) to severe (e.g., eczema vaccinatum, progressive vaccinia and post-vaccinial encephalitis).^{2,4} Over the years, susceptibility to more severe complications was correlated with pre-existing conditions such as atopic dermatitis, immunosupression (e.g., due to HIV/AIDS and immunosuppressive therapy), and cardiac disease. Individuals with such conditions, or with contacts that have such conditions, are currently contraindicated for smallpox vaccination.^{5,6}

A number of second-generation vaccines have been developed focusing on sterile cell culture techniques for vaccine propagation (Table 1). For example, the Elstree-BN vaccine developed by Bavarian Nordic was grown in chick embryo fibroblasts,⁷ and the cell-cultured smallpox vaccine (CCSV) developed by DynPort Vaccine Company was derived from the NYCBH strain grown on normal diploid MRC-5 human lung cell cultures.⁸ Similarly, Acambis (now part of Sanofi Pasteur) isolated a single clone derived from the Dryvax vaccine that was grown in Vero cells and named ACAM2000.⁹ ACAM2000 was less neurovirulent than Dryvax in mice and nonhuman primates,¹⁰ provided equivalent immunogenicity in clinical trials,¹¹ and was licensed in 2007 in the US.¹² However, the overall safety profile of ACAM2000 and other second-generation smallpox vaccines is still comparable to

Table 1. Some first and next-generation smallpox vaccines

Vaccine (parental strain)	Description	Advantages	Disadvantages	Reference(s)
First generation				
Dryvax (NYCBH)	Propagated in calf skin, used in the US eradication campaign, replaced by ACAM2000 in 2007	Well characterized, low pathogenicity, "take" (correlate of protection)	Adverse reactions ranging from mild to severe	2, 78
Lister	Propagated mainly in calf skin, widely used in the eradication campaigns in UK, Africa, Asia, Oceania	Well characterized, moderate pathogenicity, "take" (correlate of protection)	Adverse reactions ranging from mild to severe	2
EM-63	Propagated in calf skin, used in the former Soviet Union	Well characterized, low pathogenicity, "take" (correlate of protection)	Adverse reactions ranging from mild to severe	2
Second generation				
ACAM2000 (Dryvax)	Single clone derived from Dryvax and propagated in Vero cells, FDA licensed and part of the US Strategic National Stockpile	Improved manufacturing (produced under GMP), less neurovirulent, immu- nologically non-inferior to Dryvax in clinical trials, "take" (correlate of protection)	Similar safety profile as Dryvax (adverse reactions ranging from mild to severe)	9–12
Elstree-BN (Lister)	Derived from the Lister/Elstree- RIVM strain and passaged in chicken embryo fibroblasts, phase I clinical trials completed	Improved manufacturing, "take" (correlate of protection)	Adverse reactions ranging from mild to severe	7, 54
CCSV (NYCBH)	Cell-Culture Smallpox Vaccine (CCSV) propagated in MRC-5 cells, Phase I clinical trials completed	Improved manufacturing, "take" (correlate of protection)	Adverse reactions ranging from mild to severe	8, 54
Third Generation				
Imvamune [*] (MVA)	Derived from Modified Vaccinia Ankara (MVA) strain 571 and passaged in serum free chicken embryo fibro- blasts, replication defective in most mammalian cells, under fast track sta- tus at the FDA (phase III trials)	Improved safety profile, extensive clinical testing	Efficacy against smallpox unknown, boosting may be required for protection, no observable "take"	13, 14, 16, 17, 54
NYVAC (Copenhagen)	Derived from Copenhagen strain by deletion of 18 nonessential genes leading to a high degree of attenua- tion and reduced ability to grown in human cells	Improved safety profile	Efficacy against smallpox unknown, induces lower antibody responses in humans, boosting may be required for protection, no observable "take"	18–20
LC16m8 (Lister)	Derived from Lister strain by passage in rabbit kidney cells at low tem- perature and selection of small pock formation clone on chorioallantoic membranes, disruption in the B5R gene, licensed in Japan	Improved safety profile (milder reactions in children and less virulent), "take" (correlate of protection)	Efficacy against smallpox unknown	21–26

Table 1. Some first and next-generation smallpox vaccines (continued)

Vaccine (parental strain)	Description	Advantages	Disadvantages	Reference(s)
Fourth generation				
DNA vaccines	Single or combination of VACV IMV specific genes (A27, D8L, F9L, H3L, L1R), EEV specific genes (A33R, A56R, B5R), core antigen (A4L), or variola virus gene counterparts	Improved safety profile, protection in animal models	No clinical trials, boosting may be required for protec- tion, no observable "take"	27–30
Protein (subunit) vaccines	Single or combination of VACV IMV specific genes (A27, H3L, L1R) and EEV specific genes (A33R, B5R)	Improved safety profile, protection in animal models	No clinical trials, boosting may be required for protec- tion, no observable "take"	31–33
T-cell epitope vaccines	Multi-T-cell epitope vaccine based on antigenic sequences and DNA-prime, peptide-boost	Improved safety profile, protection in mice	No clinical trials, boosting may be required for protection, no observable "take"	34

the first-generation vaccines such as Dryvax, with similar rates of complications.¹¹

A number of highly attenuated strains of VACV have been developed and are now being considered as safer smallpox vaccine alternatives, called third-generation smallpox vaccines (Table 1). One example is Modified Vaccinia Ankara (MVA), that was developed by passage of VACV strain Ankara over 570 times in chick embryo fibroblasts.¹³ Inoculation with MVA leads to abortive infections in mammals and most mammalian cells, but expression of viral genes still occurs.¹⁴ This highly attenuated VACV strain has been extensively tested in humans and has sparked considerable interest because it has been demonstrated to be extremely safe.¹⁵ However, MVA propagation is limited to chick embryo fibroblasts and a few other mammalian cell lines where yield is low,14 and the immunogenicity is not as robust compared with previous smallpox vaccine generations. For example, immune responses in phase I and II clinical trials to an MVAbased vaccine developed by Bavarian Nordic (Imvamune®) are dose-dependent and can require two immunizations to achieve immune responses similar to first-generation vaccines. 16,17

Genetic manipulation of the VACV genome has also played a role in the development of highly attenuated VACV strains. The Copenhagen strain of VACV was considered to have higher pathogenicity,² but the deletion of 18 non-essential genes led to the highly attenuated NYVAC strain that is still immunogenic. ^{18,19} However, NYVAC induces lower antibody responses in humans when compared with Dryvax or Lister first-generation vaccine strains, and it does not induce anti-A27 antibodies that are seen in the immune response to first-generation vaccines and can neutralize intracellular mature virus (IMV). ²⁰ Two major disadvantages of highly attenuated VACV strains such as MVA and NYVAC is that they do not produce a "take" in vaccinees and their efficacy against smallpox was never determined.

An additional third-generation vaccine is LC16m8, an attenuated VACV derived from the Lister strain that has an excellent safety profile. ²¹⁻²³ LC16m8 contains a mutation in the B5R gene, which causes the virus to produce smaller plaques and replicate

less efficiently in Vero cells,^{24,25} but unlike MVA, LC16m8 produces a "take" in vaccinees.^{22,23} This vaccine was licensed in Japan and used in the 1970s eradication campaign, but since smallpox was no longer endemic at that time, its efficacy against smallpox is currently unknown. A disadvantage that must be considered is that LC16m8 does not induce neutralizing antibodies against the B5 protein, the main target for extracellular enveloped virus (EEV) neutralizing antibodies.²⁶

A number of different approaches are being used for the development of the so-called fourth-generation smallpox vaccines that eliminate the possibility of the VACV vector to cause adverse events or revert to a more pathogenic phenotype (Table 1). These include the development of subunit and DNA vaccines typically composed of VACV (or variola virus counterpart) membrane proteins that elicit neutralizing antibodies against the IMV and EEV forms of the virus.²⁷⁻³³ A particularly new approach is the use of conserved and immunogenic multi-T-cell epitopes that are used in a DNA-prime, peptide boost vaccine regimen.³⁴ These fourth-generation vaccines have shown to be protective using animal models, but none are currently being tested in clinical trials, and to be efficacious against smallpox they will likely require booster immunizations.

Vaccinia Viruses as Animal Vaccine Vectors

The successful use and extensive characterization of VACV during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity, its heat stability and low cost of production, makes VACV particularly attractive for the development of animal vaccines. ^{35,36} A large number of antigens from animal pathogens have been expressed in VACV, and the majority elicit protective immune responses (examples shown in Table 2). The most successful recombinant VACV vaccine has been the oral vaccine for sylvatic rabies (Raboral V-RG®) that expresses the rabies glycoprotein (G). ^{37,38} This recombinant virus is packaged into vaccine baits that are distributed in areas affected by rabies. The heat

Table 2. Some vaccinia virus-vectored animal vaccines

Pathogen (Species)	Parental VACV Strain	Protein(s) Expressed /Comments	Reference(s)
Rabies virus (foxes, raccoons, skunks, coyotes)	Copenhagen	Glycoprotein G, licensed in the US as Raboral V-RG°	37–39
Rinderpest virus (ruminants, cattle, buffalo), Peste-des-petits-ruminants virus (goats and sheep)	NYCBH, Copenhagen	Rinderpest virus fusion (F) and hemagglutinin (H) genes	40, 41, 79
Vesicular stomatitis virus (horses, cattle, pigs)	Western Reserve (WR)	Glycoprotein G	80
Newcastle disease virus (chickens)	Elstree	Fusion (F)	81, 82
Leishmania (dogs)	MVA	Tryparedoxin peroxidase (TRYP), DNA/MVA prime/ boost	83
Canine distemper virus (dogs)	Copenhagen	Measles virus fusion (F) or hemagglutinin (H) genes	84
Echinococcus granulosus (marsupial wildlife, possums)	Lister	Eg95 (oncosphere-stage antigen)	85
Rift Valley fever virus (cattle, sheep, zoonotic disease in humans)	Copenhagen	Glycoproteins Gn and Gc	86

stability of the V-RG vaccine proved to be extremely helpful in sylvatic rabies vaccination programs, which have led to better control of rabies in Europe and North America.³⁹ Several recombinant VACV vaccines engineered to express the fusion and hemagglutinin glycoproteins of rinderpest virus have also been developed,^{40,41} providing sterilizing immunity to cattle challenged with virulent rinderpest virus over one year after vaccination.⁴¹ Recombinant VACVs expressing heterologous viral antigens have also been protective against peste-des-petits-ruminants virus, vesicular stomatitis virus, Newcastle disease virus, canine distemper virus, and Rift Valley fever virus in a variety of animal species (reviewed in Table 2).

Vaccinia Viruses as Human Vaccine Vectors

The use of VACV as a vector for human vaccines against infections agents has also been extensively investigated (Table 3), with most of the effort focused on the development of vaccines against HIV. Initially, replication-competent VACVs were typically employed, but more recent efforts center on the use of replication-defective poxviruses due to safety concerns. In addition, replication-defective poxvirus vectors, including MVA, NYVAC and avipoxviruses (such as canarypox virus and fowlpox virus), offer the advantage of allowing multiple booster immunizations even in subjects with pre-existing immunity. 42 The only Phase III trial to show any evidence of protection against HIV has been the RV144 trial in Thailand. 43 The RV144 vaccine regimen consisted of four priming injections of a recombinant canarypox expressing HIV-1 Gag, protease and Env, followed by two booster immunizations with a recombinant Env subunit vaccine. The trial involved 16,402 subjects and the estimated vaccine efficacy (prevention of HIV-1 infection) was 31.2%. 43 The results from the RV144 Thai trial, albeit modest, reinvigorated the HIV vaccine community and their interest in poxvirus-vectored HIV vaccines. A number of phase I and II HIV clinical trials, usually in the form of a DNA prime and recombinant MVA or NYVAC boost, have shown that these vaccine regimens are safe, immunogenic,

and have the potential to improve the efficacy obtained with the RV144 Thai trial (Table 3).

Recombinant MVA has also been extensively used alone or in prime-boost strategies in vaccine clinical trials for other viral diseases such as influenza and hepatitis B, as well as bacterial and parasitic diseases such as tuberculosis and malaria (Table 3). Three malaria phase I trials with recombinant chimpanzee adenovirus (ChAd63) and MVA expressing different Plasmodium falciparum antigens have shown that this primeboost strategy is safe and immunogenic. 44-46 Likewise, phase I trials with an MVA vector expressing the Mycobacterium tuberculosis 85A antigen, aimed to serve as a booster immunization after bacille Calmette-Guerin (BCG) vaccination, showed that the vaccine can induce potent Th1 responses.⁴⁷ Lastly, a number of other constructs are being developed and investigated in pre-clinical trials, including vaccines against hepatitis C virus,48 respiratory syncytial virus,49 anthrax (with the advantage of being a dual vaccine against anthrax and smallpox),50 and Nipah virus.51

Vaccinia Viruses as Immunotherapeutic Cancer Vectors

The ability of VACV to induce potent immune responses to tumor-associated antigens (TAAs) expressed in its genome has been employed for the development of immunotherapies for cancer (Table 4). One example is PROSTVAC® (Bavarian Nordic), a therapeutic cancer vaccine for prostate cancer that consists of a replication-competent VACV prime followed by multiple replication-defective avian poxvirus (fowlpox) boosts. 52,53 Both poxviruses express a modified prostate-specific antigen (PSA), along with three T-cell costimulatory molecules termed TRICOM (B7.1, ICAM-1 and LFA-3). The immune response to the altered PSA (with a single amino acid change in an HLA-A2 epitope) is aimed to target cancerous prostate cells, while the costimulatory molecules increase the immunogenicity of the constructs. This treatment has been studied in phase II clinical trials in patients

Table 3. Some vaccinia virus-vectored human vaccines

Pathogen (disease)	Vaccine name (VACV parental strain)	Protein(s) expressed	Comments	Reference(s)
HIV-1 (AIDS)	Sanofi Pasteur ALVAC-HIV (canarypox) prime and VaxGen AIDSVAX subunit boost	ALVAC-HIV: HIV-1 Gag and PR B; Env E AIDSVAX: HIV-1 Env B/E	Used canarypox (an avian poxvirus), first phase III HIV vaccine clinical trial (RV144) that yielded some protection (31.2% efficacy), revitalized the HIV vaccine community	43
HIV-1 (AIDS)	DNA prime and MVA-CMDR (MVA) boost	DNA: HIV-1 Env A/B/C, Rev B, RT B, Gag A/B MVA-CMDR: HIV-1 Env E, Gag/ Pol A	Phase I/II trials completed, safe and immunogenic with T-cell and antibody responses	87
HIV-1 (AIDS)	DNA prime and NYVAC-C (Copenhagen) boost	HIV-1 Gag, Pol, Nef, Env C	Phase II trials completed, safe and immu- nogenic with T-cell and antibody responses (non-neutralizing)	54, 88–90
HIV-1 (AIDS)	MVA-B (MVA)	HIV-1 Env, Gag, Pol, Nef B	Phase I trial completed, safe, immunogenic with T-cell and antibody responses	91
HIV-1 (AIDS)	GeoVax pGA2/JS7 DNA and MVA/HIV62 (MVA) boost	DNA (complex): HIV-1 Gag, PR, RT, Env, Tat, Rev, and Vpu MVA: HIV-1 Gag, PR, RT, and Env	Produce non-infectious virus-like particles (VLPs), Phase I trial completed, Phase IIa ongoing, trial with inclusion of GM-CSF as an adjuvant started in 2012	54, 92
Plasmodium falciparum (Malaria)	Chimpanzee Adenovirus (ChAd63) prime and MVA boost	Merozoite surface protein 1 (MSP1), or T-cell multiple epit- ope fused to the thrombospon- din-related adhesion protein (ME-TRAP), or apical membrane antigen 1 (AMA1)	Three phase I trials suggest that the chim- panzee adenovirus prime / MVA boost strat- egy is safe and highly immunogenic	44–46
Mycobacterium tuberculosis (Tuberculosis)	Aeras MVA85A (MVA)	Highly conserved <i>M. tuberculosis</i> antigen 85A	Aim is to boost immunity induced by the current tuberculosis vaccine <i>M. bovis</i> bacille Calmette-Guerin (BCG), phase I trial completed and vaccine induced potent Th1 cell responses, phase II trials ongoing	47
Influenza virus (Influenza)	MVA-NP+M1 (MVA)	Influenza A Nucleoprotein (NP) and Matrix protein 1 (M1)	Phase I trials concluded, safe and immunogenic (induces high T-cell responses)	93
Hepatitis B virus (HBV)	DNA prime and MVA.HBs (MVA) boost	HBV S antigen (HBsAg) geno- type D	Therapeutic vaccine trial resulted in variable immune responses that did not control HBV infection	94

with metastatic castration-resistant prostate cancer, where treatment was well tolerated, death rate was reduced by 44%, and the median overall survival was 8.5 mo longer than in patients receiving control vectors.^{52,53} This increase in overall survival was noticeably superior to that afforded by the currently approved treatment (docetaxel, 2–3 mo increase in overall survival), and Phase III clinical trials are ongoing.^{52,54} Bavarian Nordic is also performing clinical trials with an MVA vector (MVA-BN® PRO) expressing two prostate TAAs, PSA along with prostatic acid phosphatase (PAP),^{54,55} and with MVA-BN® HER2, an MVA vector expressing the TAA human epidermal growth factor receptor 2 (HER2) to treat breast cancer.^{54,56}

TroVax® (Oxford BioMedica) is an MVA vector that expresses the human oncofetal antigen 5T4, a placental glycoprotein

overexpressed in a number of different cancers (Table 4).⁵⁷ When administered alone or in conjuction with other treatments (e.g., chemotherapy and cytokines), Trovax® mounted high anti-5T4 immune responses that were associated with increased overall survival.^{54,57-61} Poxvirus vectors expressing another TAA, the cancer-testis NY-ESO-1 antigen, were tested in phase II clinical trials in a VACV prime followed by fowlpox boost regimen with melanoma and ovarian cancer patients that were at risk for recurrence or progression after completion of their primary therapy.^{54,62} The trials provided evidence for an extended overall survival and progression-free survival in patients that developed detectable anti-NY-ESO-1 immune responses.⁶²

TG4010 (Transgene SA) is an MVA vector that expresses mucin-1 (MUC-1), a TAA expressed by glandular epithelia and

Table 4. Some vaccinia virus vectors used for cancer immunotherapy

Cancer	Therapy name (VACV parental strain)	Protein(s) expressed	Comments	Reference(s)
Prostate	Bavarian Nordic PROSTVAC-V (NYCBH) prime and PROSTVAC-F (fowlpox) boosters	PSA and TRICOM (T-cell costimulatory molecules B7.1, ICAM-1, and LFA-3)	Phase II trials showed an enhanced median overall survival in patients with metastatic castration-resistant prostate cancer, currently in Phase III trials	52–54
Prostate	Bavarian Nordic MVA-BN [®] PRO (MVA)	PSA and PAP	Under phase I/II trials, additional studies targeting antigens to exosomes show improved efficacy	54, 55
Various such as colorectal, renal, ovarian, fallopian, peritoneal, prostate	Oxford BioMedica TroVax [®] (MVA)	Human oncofetal antigen 5T4	Alone or in conjunction with other treatments, 5T4 antibody responses correlated with increased survival, phase II and III ongoing/completed	54, 57–61
Breast	Bavarian Nordic MVA-BN° HER2 (MVA-BN)	Human epidermal growth factor receptor 2 (HER2)	Phase I completed	54, 56
Lung carcinoma, solid tumors	Transgene TG4010 (MVA)	Mucin-1 (MUC-1) and IL-2	Phase I completed, II/III ongoing	54, 63, 64
Ovarian, melanoma	VACV NY-ESO-1 (NYCBH) prime and fowlpox NY-ESO-1 boosters	NY-ESO-1 (cancer/testis antigen)	Phase II trials completed	54, 62
Breast, lung, ovarian	Bavarian Nordic CV-301 (MVA-BN), formally known as PANVAC	Carcinoembryonic anti- gen (CEA), MUC-1, and TRICOM	Phase II trials ongoing	54, 65

by some cancers, as well as the immostimulatory cytokine IL-2 (Table 4).⁶³ Results from a Phase IIb study with non-small-cell lung cancer patients in combination with chemotherapy suggests that TG4010 has beneficial effects and additional trials are ongoing.^{54,64} Finally, CV-301 (Bavarian Nordic), formerly known as PANVAC, is an MVA vector that in addition to MUC-1, also expresses carcinoembryonic antigen (CEA) and the TRICOM set of T-cell costimulatory molecules, having a potential effect on multiple cancers.⁶⁵ A recent pilot study in patients with metastatic breast and ovarian cancer suggests that CV-301 may be beneficial to patients and a phase II study is underway.^{54,65}

Vaccinia Viruses as Oncolytic Cancer Therapy Vectors

Oncolytic viruses are promising new therapies for the clinical treatment of cancers. As a replication-competent virus, VACV displays a natural tumor tropism and kills cancer cells through apoptosis and other mechanisms.⁶⁶ Moreover, recombinant VACVs in which the vaccinia growth factor (VGF) and thymidine kinase (TK) genes have been deleted acquire enhanced tumor selectivity (tropism), likely because actively dividing cancer cells

Table 5. Some vaccinia virus vectors used for oncolytic cancer therapy

Cancer	Therapy Name (VACV Parental Strain)	Protein(s) Expressed	Comments	Reference(s)
Various such as melanoma, colorectal, liver, lung, renal, squamous cell, head and neck	Jennerex Biotherapeutics JX-594 (Dryvax, TK)	GM-CSF and β-galactosidase	Antitumor and antivascular activities, phase I and II trials ongoing/completed	54, 69–71
Various such as melanoma, breast, liver, colorectal	Jennerex vvDD-CDSR (Western Reserve, TK ⁻ and VGF ⁻)	Cytosine deaminase (CD) and somatostatin receptor (SMR)	Highly selective and oncolytic for tumors with gene-directed enzyme prodrug therapy using 5-fluorocytosine, SMR gene is used for molecular imaging, phase I trials ongoing	54, 72, 73
Advanced solid tumors, head and neck, peritoneal	Genelux GL-ONC1 (Lister, F14.5L, TK, and A56R)	Renilla luciferase-GFP fusion, β-galactosidase, β-glucuronidase	Tumor specific replication and solid tumor size reduction in pre-clinical trials, phase I and II trials ongoing	54, 74–76

have high metabolic rates that make VGF and TK expression by VACV dispensable.^{67,68} Systemic administration of these oncolytic VACV vectors (e.g., intravenously) targets both tumors and metastases, and current clinical trials show that VACV vectors can be an effective oncolytic cancer therapy (Table 5). In addition, recombinant VACVs expressing host immunomodulating genes such as human GM-CSF and other cytokines, anti-angiogenic agents and extracellular matrix genes also show enhanced tumor selectivity and oncolytic effects.⁶⁶ For example, JX-594 (Jennerex Biotherapeutics) is a TK negative VACV expressing GM-CSF. In patients with hepatocellular carcinoma, treatment with JX-594 resulted in antitumor and antivascular activities,⁶⁹ and in clinical trials patients with metastatic liver cancer and metastatic melanoma tolerated treatment and anti-tumor effects were observed.^{70,71} Another example is vvDD-CDSR (Jennerex Biotherapeutics), a TK and VGF negative vector engineered to express a reporting gene (somatostatin receptor) for molecular in vivo imaging after systemic delivery, as well as the prodrug-activating enzyme cytosine deaminase for therapy with 5-fluorocytosine. 72,73 These modifications allow vvDD-CDSR to be highly tumor selective and oncolytic. Finally, GL-ONC1 (Genelux), also known as GLV-1h68, is a light-emitting oncolytic VACV expressing a luciferase-green fluorescent protein (GFP) fusion gene and containing deletions in the F14.5L, TK, and A56R genes.74 In pre-clinical trials it showed tumor-specific replication and solid tumor size reduction. 74-76 In addition, VACVs with tumor selectivity and light-emitting or imaging features (such as expression of somatostatin receptor and 111 In-pentreteodide treatment) can be innovative and helpful tools to non-invasively detect and locate primary and metastatic tumors, as well as to track the therapeutic vector during treatment.^{72,77}

Future Perspectives

Since the eradication of smallpox more than 30 y ago, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This renewed interest in both

References

- Wehrle PF. A reality in our time—certification of the global eradication of smallpox. J Infect Dis 1980; 142:636-8; PMID:7003037; http://dx.doi. org/10.1093/infdis/142.4.636.
- Fenner F, Henderson DA, Arita I, Jeek Z, Ladnyi ID. Smallpox and its eradication. Geneva, Switzerland: World Health Organization 1988.
- Moss B. Poxviridae: the viruses and their replication. In: Knipe DM, Howley PM, Eds. Fields' virology. Philadelphia: Lippincott Williams & Wilkins 2007; 2906.45
- Lane JM, Ruben FL, Neff JM, Millar JD. Complications of smallpox vaccination 1968: results of ten statewide surveys. J Infect Dis 1970; 122:303-9; PMID:4396189; http://dx.doi.org/10.1093/infdis/122.4.303.
- Lane JM, Goldstein J. Evaluation of 21st-century risks of smallpox vaccination and policy options. Ann Intern Med 2003; 138:488-93; PMID:12639083.
- Kemper AR, Davis MM, Freed GL. Expected adverse events in a mass smallpox vaccination campaign. Eff Clin Pract 2002; 5:84-90; PMID:11990216.

replication-competent and replication-defective VACVs has driven a number of vaccine and therapeutic candidates to clinical trials. Replication-competent VACVs are used for oncolytic therapy, and as live vaccines they elicit superior immune responses, but safety is a concern due to potential adverse events. Conversely, replication-defective VACVs are not as immunogenic as their replication-competent counterparts, but are extremely safe and offer the capacity to be administered multiple times with minimal interference from pre-existing immunity. A number of approaches have been used to enhance the safety of replication-competent VACV vectors while maintaining their immunogenicity, such as the deletion of viral genes and expression of cytokines. A new approach under development to generate next-generation smallpox vaccines that are efficacious and safer is the addition of safety mechanisms to second-generation VACV vectors that should allow the conditional replication of the virus and the production of the "take," the correlate of protection against smallpox (Hagen CJ, Titong A and Verardi PH, unpublished data). With these built-in safety systems, VACV replication can be controlled so that adverse events in vaccinees and contacts can be treated with antibiotics. These new technologies can also be applied for the development of VACV vectors for human vaccines and therapies with enhanced safety features.

A range of potential new uses is under development in areas such as tumor imaging and enhanced oncolytic and tumor selectivity. The fact that VACV has the capacity to hold at least 25 kb of heterologous DNA while retaining infectivity also enables the development of multi-pathogen, multi-epitope polyvalent vaccines. Hence, it seems inevitable that this "old" vaccine will lead to "newer" uses in the near and distant future.

Acknowledgments

The authors would like to thank Caitlin O'Connell for critical review of the manuscript. Work in our laboratory is currently supported by the US Department of Agriculture (USDA), the University of Connecticut Research Foundation (UCRF), and the University of Connecticut Office of Undergraduate Research (OUR).

- Stittelaar KJ, van Amerongen G, Kondova I, Kuiken T, van Lavieren RF, Pistoor FH, et al. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. J Virol 2005; 79:7845-51; PMID:15919938; http://dx.doi. org/10.1128/JVI.79.12.7845-51.2005.
- Greenberg RN, Kennedy JS, Clanton DJ, Plummer EA, Hague L, Cruz J, et al. Safety and immunogenicity of new cell-cultured smallpox vaccine compared with calf-lymph derived vaccine: a blind, single-centre, randomised controlled trial. Lancet 2005; 365:398-409; PMID: 15680454.
- Weltzin R, Liu J, Pugachev KV, Myers GA, Coughlin B, Blum PS, et al. Clonal vaccinia virus grown in cell culture as a new smallpox vaccine. Nat Med 2003; 9:1125-30; PMID:12925845; http://dx.doi. org/10.1038/nm916.
- Monath TP, Caldwell JR, Mundt W, Fusco J, Johnson CS, Buller M, et al. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)—a second-generation smallpox vaccine for biological defense. Int J Infect Dis 2004; 8:31-44; PMID:15491873.

- Frey SE, Newman FK, Kennedy JS, Ennis F, Abate G, Hoft DF, et al. Comparison of the safety and immunogenicity of ACAM1000, ACAM2000 and Dryvax in healthy vaccinia-naive adults. Vaccine 2009; 27:1637-44; PMID:19071184; http://dx.doi.org/10.1016/j.vaccine.2008.11.079.
- 12. Greenberg RN, Kennedy JS. ACAM2000: a newly licensed cell culture-based live vaccinia small-pox vaccine. Expert Opin Investig Drugs 2008; 17:555-64; PMID:18363519; http://dx.doi.org/10.1517/13543784.17.4.555.
- Mayr A, Stickl H, Müller HK, Danner K, Singer H. The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author's transl). Zentralbl Bakteriol B 1978; 167:375-90; PMID:219640.
- Drexler I, Heller K, Wahren B, Erfle V, Sutter G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 1998; 79:347-52; PMID:9472619.

- Hochstein-Mintzel V, Hänichen T, Huber HC, Stickl H. An attenuated strain of vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and variola (author's transl). Zentralbl Bakteriol Orig A 1975; 230:283-97: PMID:1146441.
- Vollmar J, Arndtz N, Eckl KM, Thomsen T, Petzold B, Mateo L, et al. Safety and immunogenicity of IMVAMUNE, a promising candidate as a third generation smallpox vaccine. Vaccine 2006; 24:2065-70; PMID:16337719; http://dx.doi.org/10.1016/j.vaccine.2005.11.022.
- von Krempelhuber A, Vollmar J, Pokorny R, Rapp P, Wulff N, Petzold B, et al. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE. Vaccine 2010; 28:1209-16; PMID:19944151; http://dx.doi.org/10.1016/j.vaccine.2009.11.030.
- Tartaglia J, Perkus ME, Taylor J, Norton EK, Audonnet JC, Cox WI, et al. NYVAC: a highly attenuated strain of vaccinia virus. Virology 1992; 188:217-32; PMID:1566575; http://dx.doi.org/10.1016/0042-6822(92)90752-B.
- Paoletti E, Tartaglia J, Taylor J. Safe and effective poxvirus vectors—NYVAC and ALVAC. Dev Biol Stand 1994; 82:65-9; PMID:7958484.
- Midgley CM, Putz MM, Weber JN, Smith GL. Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. J Gen Virol 2008; 89:2992-7; PMID:19008384; http:// dx.doi.org/10.1099/vir.0.2008/004440-0.
- Hashizume S, Yoshizawa H, Morita M, Suzuki K. Properties of attenuated mutant of vaccinia virus, LC16M8, derived from Lister strain. In: Quinnan GV, Ed. Vaccinia viruses as vectors for vaccine antigens Proceedings of the Workshop on Vaccinia Viruses as Vectors for Vaccine Antigens. New York NY: Elsevier 1985: 87-99.
- Saito T, Fujii T, Kanatani Y, Saijo M, Morikawa S, Yokote H, et al. Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. JAMA 2009; 301:1025-33; PMID:19278946; http:// dx.doi.org/10.1001/jama.2009.289.
- Kennedy JS, Gurwith M, Dekker CL, Frey SE, Edwards KM, Kenner J, et al. Safety and immunogenicity of LC16m8, an attenuated smallpox vaccine in vaccinia-naive adults. J Infect Dis 2011; 204:1395-402; PMID:21921208; http://dx.doi.org/10.1093/infdis/ jir527.
- Takahashi-Nishimaki F, Funahashi S, Miki K, Hashizume S, Sugimoto M. Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology 1991; 181:158-64; PMID:1994573; http://dx.doi.org/10.1016/0042-6822(91)90480-Y.
- Kenner J, Cameron F, Empig C, Jobes DV, Gurwith M. LC16m8: an attenuated smallpox vaccine. Vaccine 2006; 24:7009-22; PMID:17052815; http://dx.doi. org/10.1016/j.vaccine.2006.03.087.
- Johnson BF, Kanatani Y, Fujii T, Saito T, Yokote H, Smith GL. Serological responses in humans to the smallpox vaccine LC16m8. J Gen Virol 2011; 92:2405-10; PMID:21715598; http://dx.doi.org/10.1099/ vir.0.034207-0.
- Hooper JW, Custer DM, Thompson E. Four-genecombination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 2003; 306:181-95; PMID:12620810; http://dx.doi. org/10.1016/S0042-6822(02)00038-7.
- Sakhatskyy P, Wang S, Zhang C, Chou TH, Kishko M, Lu S. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens. Virology 2008; 371:98-107; PMID:17950773; http://dx.doi.org/10.1016/j.virol.2007.09.029.

- Pulford DJ, Gates A, Bridge SH, Robinson JH, Ulaeto D. Differential efficacy of vaccinia virus envelope proteins administered by DNA immunisation in protection of BALB/c mice from a lethal intranasal poxvirus challenge. Vaccine 2004; 22:3358-66; PMID:15308360; http://dx.doi.org/10.1016/j.vaccine.2004.02.034.
- Hirao LA, Draghia-Akli R, Prigge JT, Yang M, Satishchandran A, Wu L, et al. Multivalent smallpox DNA vaccine delivered by intradermal electroporation drives protective immunity in nonhuman primates against lethal monkeypox challenge. J Infect Dis 2011; 203:95-102; PMID:21148501; http://dx.doi. org/10.1093/infdis/jiq017.
- Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol 2004; 78:10230-7; PMID:15367588; http://dx.doi.org/10.1128/ JVI.78.19.10230-7.2004.
- Davies DH, McCausland MM, Valdez C, Huynh D, Hernandez JE, Mu Y, et al. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol 2005; 79:11724-33; PMID:16140750; http://dx.doi.org/10.1128/JVI.79.18.11724-33.2005.
- Buchman GW, Cohen ME, Xiao Y, Richardson-Harman N, Silvera P, DeTolla LJ, et al. A proteinbased smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine 2010; 28:6627-36; PMID:20659519; http://dx.doi. org/10.1016/j.vaccine.2010.07.030.
- Moise L, Buller RM, Schriewer J, Lee J, Frey SE, Weiner DB, et al. VennVax, a DNA-prime, peptideboost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone. Vaccine 2011; 29:501-11; PMID:21055490; http://dx.doi.org/10.1016/j.vaccine.2010.10.064.
- Moss B. Genetically engineered poxviruses for recombinant gene expression, vaccination and safety. Proc Natl Acad Sci USA 1996; 93:11341-8; PMID:8876137; http://dx.doi.org/10.1073/pnas.93.21.11341.
- Yilma T. Applications of recombinant vaccinia virus for veterinary vaccines. Dev Biol Stand 1994; 82:201-9; PMID:7958475.
- Wiktor TJ, Macfarlan RI, Reagan KJ, Dietzschold B, Curtis PJ, Wunner WH, et al. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc Natl Acad Sci USA 1984; 81:7194-8; PMID:6095272; http://dx.doi. org/10.1073/pnas.81.22.7194.
- Kieny MP, Lathe R, Drillien R, Spehner D, Skory S, Schmitt D, et al. Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature 1984; 312:163-6; PMID:6548799; http://dx.doi. org/10.1038/312163a0.
- Pastoret PP, Brochier B. The development and use of a vaccinia-rabies recombinant oral vaccine for the control of wildlife rabies; a link between Jenner and Pasteur. Epidemiol Infect 1996; 116:235-40; PMID:8666066; http://dx.doi.org/10.1017/S0950268800052535.
- Giavedoni L, Jones L, Mebus C, Yilma T. A vaccinia virus double recombinant expressing the F and H genes of rinderpest virus protects cattle against rinderpest and causes no pock lesions. Proc Natl Acad Sci USA 1991; 88:8011-5; PMID:1896447; http://dx.doi.org/10.1073/pnas.88.18.8011.
- Verardi PH, Aziz FH, Ahmad S, Jones LA, Beyene B, Ngotho RN, et al. Long-term sterilizing immunity to rinderpest in cattle vaccinated with a recombinant vaccinia virus expressing high levels of the fusion and hemagglutinin glycoproteins. J Virol 2002; 76:484-91; PMID:11752138; http://dx.doi.org/10.1128/ JVI.76.2.484-91.2002.

- Gudmundsdotter L, Nilsson C, Brave A, Hejdeman B, Earl P, Moss B, et al. Recombinant Modified Vaccinia Ankara (MVA) effectively boosts DNA-primed HIVspecific immune responses in humans despite preexisting vaccinia immunity. Vaccine 2009; 27:4468-74; PMID:19450644; http://dx.doi.org/10.1016/j.vaccine.2009.05.018.
- Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al.; MOPH-TAVEG Investigators. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009; 361:2209-20; PMID:19843557; http://dx.doi.org/10.1056/NEJMoa0908492.
- 44. Sheehy SH, Duncan CJ, Elias SC, Biswas S, Collins KA, O'Hara GA, et al. Phase Ia clinical evaluation of the safety and immunogenicity of the *Plasmodium falciparum* blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors. PLoS One 2012; 7:31208; PMID:22363582; http://dx.doi.org/10.1371/journal.pone.0031208.
- Sheehy SH, Duncan CJ, Elias SC, Collins KA, Ewer KJ, Spencer AJ, et al. Phase Ia clinical evaluation of the *Plasmodium falciparum* blood-stage antigen MSP1 in ChAd63 and MVA vaccine vectors. Mol Ther 2011; 19:2269-76; PMID:21862998; http://dx.doi.org/10.1038/mt.2011.176.
- O'Hara GA, Duncan CJ, Ewer KJ, Collins KA, Elias SC, Halstead FD, et al. Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J Infect Dis 2012; 205:772-81; PMID:22275401; http://dx.doi.org/10.1093/infdis/ iir850.
- Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Isaacs F, et al. Modified vaccinia Ankaraexpressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 2010; 40:279-90; PMID:20017188; http://dx.doi.org/10.1002/ eii.200939754.
- Youn JW, Hu YW, Tricoche N, Pfahler W, Shata MT, Dreux M, et al. Evidence for protection against chronic hepatitis C virus infection in chimpanzees by immunization with replicating recombinant vaccinia virus. J Virol 2008; 82:10896-905; PMID:18753204; http:// dx.doi.org/10.1128/JVI.01179-08.
- de Waal L, Wyatt LS, Yüksel S, van Amerongen G, Moss B, Niesters HG, et al. Vaccination of infant macaques with a recombinant modified vaccinia virus Ankara expressing the respiratory syncytial virus F and G genes does not predispose for immunopathology. Vaccine 2004; 22:923-6; PMID:15161069; http:// dx.doi.org/10.1016/j.vaccine.2003.10.010.
- Merkel TJ, Perera PY, Kelly VK, Verma A, Llewellyn ZN, Waldmann TA, et al. Development of a highly efficacious vaccinia-based dual vaccine against smallpox and anthrax, two important bioterror entities. Proc Natl Acad Sci USA 2010; 107:18091-6; PMID:20921397; http://dx.doi.org/10.1073/pnas.1013083107.
- Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, et al. Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 2004; 78:834-40; PMID:14694115; http://dx.doi.org/10.1128/JVI.78.2.834-40.2004.
- Gulley JL, Arlen PM, Madan RA, Tsang KY, Pazdur MP, Skarupa L, et al. Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 2010; 59:663-74; PMID:19890632; http://dx.doi.org/10.1007/s00262-009-0782-8.
- Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 2010; 28:1099-105; PMID:20100959; http://dx.doi. org/10.1200/JCO.2009.25.0597.

- National Library of Medicine (US). ClinicalTrials.gov [Internet]. Bethesda (MD) 2000 (accessed 2012 June 1).
- Rountree RB, Mandl SJ, Nachtwey JM, Dalpozzo K, Do L, Lombardo JR, et al. Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy. Cancer Res 2011; 71:5235-44; PMID:21670078; http://dx.doi.org/10.1158/0008-5472.CAN-10-4076.
- Mandl SJ, Rountree RB, Dalpozzo K, Do L, Lombardo JR, Schoonmaker PL, et al. Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells. Cancer Immunol Immunother 2012; 61:19-29; PMID:21822917; http://dx.doi. org/10.1007/s00262-011-1077-4.
- Harrop R, Drury N, Shingler W, Chikoti P, Redchenko I, Carroll MW, et al. Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses. Cancer Immunol Immunother 2008; 57:977-86; PMID:18060404; http://dx.doi.org/10.1007/s00262-007-0428-7.
- Kaufman HL, Taback B, Sherman W, Kim DW, Shingler WH, Moroziewicz D, et al. Phase II trial of Modified Vaccinia Ankara (MVA) virus expressing 5T4 and high dose Interleukin-2 (IL-2) in patients with metastatic renal cell carcinoma. J Transl Med 2009; 7:2; PMID:19128501; http://dx.doi.org/10.1186/1479-5876-7-2.
- Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P, Szczylik C, et al. Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 2010; 16:5539-47; PMID:20881001; http://dx.doi.org/10.1158/1078-0432.CCR-10-2082.
- Harrop R, Shingler W, Kelleher M, de Belin J, Treasure P. Cross-trial analysis of immunologic and clinical data resulting from phase I and II trials of MVA-5T4 (TroVax) in colorectal, renal and prostate cancer patients. J Immunother 2010; 33:999-1005; PMID:20948436; http://dx.doi.org/10.1097/ CII.0b013e31815dac7.
- Harrop R, Shingler WH, McDonald M, Treasure P, Amato RJ, Hawkins RE, et al. MVA-5T4-induced immune responses are an early marker of efficacy in renal cancer patients. Cancer Immunol Immunother 2011; 60:829-37; PMID:21387109; http://dx.doi. org/10.1007/s00262-011-0993-7.
- Odunsi K, Matsuzaki J, Karbach J, Neumann A, Mhawech-Fauceglia P, Miller A, et al. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci USA 2012; 109:5797-802; PMID:22454499; http://dx.doi. org/10.1073/pnas.1117208109.
- Dreicer R, Stadler WM, Ahmann FR, Whiteside T, Bizouarne N, Acres B, et al. MVA-MUC1-IL2 vaccine immunotherapy (TG4010) improves PSA doubling time in patients with prostate cancer with biochemical failure. Invest New Drugs 2009; 27:379-86; PMID:18931824; http://dx.doi.org/10.1007/s10637-008-9187-3.
- 64. Quoix E, Ramlau R, Westeel V, Papai Z, Madroszyk A, Riviere A, et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol 2011; 12:1125-33; PMID:22019520; http://dx.doi. org/10.1016/S1470-2045(11)70259-5.
- Mohebtash M, Tsang KY, Madan RA, Huen NY, Poole DJ, Jochems C, et al. A pilot study of MUC-1/CEA/ TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res 2011; 17:7164-73; PMID:22068656; http://dx.doi. org/10.1158/1078-0432.CCR-11-0649.
- Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 2009; 9:64-71;
 PMID:19104515; http://dx.doi.org/10.1038/nrc2545.

- McCart JA, Ward JM, Lee J, Hu Y, Alexander HR, Libutti SK, et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 2001; 61:8751-7; PMID:11751395.
- Puhlmann M, Brown CK, Gnant M, Huang J, Libutti SK, Alexander HR, et al. Vaccinia as a vector for tumordirected gene therapy: biodistribution of a thymidine kinase-deleted mutant. Cancer Gene Ther 2000; 7:66-73; PMID:10678358; http://dx.doi.org/10.1038/ sj.cgt.7700075.
- Liu TC, Hwang T, Park BH, Bell J, Kirn DH. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther 2008; 16:1637-42; PMID:18628758; http://dx.doi. org/10.1038/mt.2008.143.
- Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008; 9:533-42; PMID:18495536; http://dx.doi.org/10.1016/S1470-2045(08)70107-4.
- Hwang TH, Moon A, Burke J, Ribas A, Stephenson J, Breitbach CJ, et al. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol Ther 2011; 19:1913-22; PMID:21772252; http://dx.doi.org/10.1038/mt.2011.132.
- McCart JA, Mehta N, Scollard D, Reilly RM, Carrasquillo JA, Tang N, et al. Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2: molecular imaging after systemic delivery using 111In-pentetreotide. Mol Ther 2004; 10:553-61; PMID:15336655; http://dx.doi.org/10.1016/j. ymthe.2004.06.158.
- Chalikonda S, Kivlen MH, O'Malley ME, Eric Dong XD, McCart JA, Gorry MC, et al. Oncolytic virotherapy for ovarian carcinomatosis using a replicationselective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther 2008; 15:115-25; PMID:18084242; http://dx.doi.org/10.1038/ sj.cgt.7701110.
- Zhang Q, Yu YA, Wang E, Chen N, Danner RL, Munson PJ, et al. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res 2007; 67:10038-46; PMID:17942938; http://dx.doi. org/10.1158/0008-5472.CAN-07-0146.
- Gentschev I, Adelfinger M, Josupeit R, Rudolph S, Ehrig K, Donat U, et al. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma. PLoS One 2012; 7:37239; PMID:22615950; http://dx.doi.org/10.1371/journal.pone.0037239.
- Yu YA, Galanis C, Woo Y, Chen N, Zhang Q, Fong Y, et al. Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1 h68. Mol Cancer Ther 2009; 8:141-51; PMID:19139123; http://dx.doi. org/10.1158/1535-7163.MCT-08-0533.
- Yu YA, Timiryasova T, Zhang Q, Beltz R, Szalay AA.
 Optical imaging: bacteria, viruses and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals. Anal Bioanal Chem 2003; 377:964-72; PMID:12879198; http://dx.doi.org/10.1007/s00216-003-2065-0.
- Plotke F, Lazowski ES. Comparative Results of Smallpox Revaccination Using Regular and Dry Smallpox Vaccine (Dryvax). IMJ III Med J 1964; 125:140-1; PMID:14121126.
- Jones L, Giavedoni L, Saliki JT, Brown C, Mebus C, Yilma T. Protection of goats against peste des petits ruminants with a vaccinia virus double recombinant expressing the F and H genes of rinderpest virus. Vaccine 1993; 11:961-4; PMID:8212844; http:// dx.doi.org/10.1016/0264-410X(93)90386-C.

- Mackett M, Yilma T, Rose JK, Moss B. Vaccinia virus recombinants: expression of VSV genes and protective immunization of mice and cattle. Science 1985; 227:433-5; PMID:2981435; http://dx.doi. org/10.1126/science.2981435.
- Meulemans G, Letellier C, Gonze M, Carlier MC, Burny A. Newcastle disease virus F glycoprotein expressed from a recombinant vaccinia virus vector protects chickens against live-virus challenge. Avian Pathol 1988; 17:821-7; PMID:18766743; http:// dx.doi.org/10.1080/03079458808436504.
- Espion D, de Henau S, Letellier C, Wemers CD, Brasseur R, Young JF, et al. Expression at the cell surface of native fusion protein of the Newcastle disease virus (NDV) strain Italien from cloned cDNA. Arch Virol 1987; 95:79-95; PMID:3592986; http://dx.doi. org/10.1007/BF01311336.
- Carson C, Antoniou M, Ruiz-Argüello MB, Alcami A, Christodoulou V, Messaritakis I, et al. A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis. Vaccine 2009; 27:1080-6; PMID:19095029; http://dx.doi.org/10.1016/j.vaccine.2008.11.094.
- 84. Taylor J, Pincus S, Tartaglia J, Richardson C, Alkhatib G, Briedis D, et al. Vaccinia virus recombinants expressing either the measles virus fusion or hemagglutinin glycoprotein protect dogs against canine distemper virus challenge. J Virol 1991; 65:4263-74; PMID:1830113.
- Cross ML, Fleming SB, Cowan PE, Scobie S, Whelan E, Prada D, et al. Vaccinia virus as a vaccine delivery system for marsupial wildlife. Vaccine 2011; 29:4537-43; PMID:21570435; http://dx.doi.org/10.1016/j.vaccine.2011.04.093.
- Papin JF, Verardi PH, Jones LA, Monge-Navarro F, Brault AC, Holbrook MR, et al. Recombinant Rift Valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice. Proc Natl Acad Sci USA 2011; 108:14926-31; PMID:21873194; http://dx.doi.org/10.1073/ pnas.1112149108.
- Bakari M, Aboud S, Nilsson C, Francis J, Buma D, Moshiro C, et al. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine 2011; 29:8417-28; PMID:21864626; http://dx.doi.org/10.1016/j.vaccine.2011.08.001.
- Bart PA, Goodall R, Barber T, Harari A, Guimaraes-Walker A, Khonkarly M, et al.; EuroVacc Consortium. EV01: a phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine 2008; 26:3153-61; PMID:18502002; http://dx.doi.org/10.1016/j.vaccine.2008.03.083.
- McCormack S, Stöhr W, Barber T, Bart PA, Harari A, Moog C, et al. EV02: a Phase I trial to compare the safety and immunogenicity of HIV DNA-C prime-NYVAC-C boost to NYVAC-C alone. Vaccine 2008; 26:3162-74; PMID:18502003; http://dx.doi. org/10.1016/j.vaccine.2008.02.072.
- Harari A, Bart PA, Stöhr W, Tapia G, Garcia M, Medjitna-Rais E, et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional and long-lasting T cell responses. J Exp Med 2008; 205:63-77; PMID:18195071; http://dx.doi. org/10.1084/jem.20071331.
- García F, Bernaldo de Quirós JC, Gómez CE, Perdiguero B, Nájera JL, Jiménez V, et al. Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: A phase I clinical trial (RISVAC02). Vaccine 2011; 29:8309-16; PMID:21907749; http://dx.doi.org/10.1016/j.vaccine.2011.08.098.

- 92. Goepfert PA, Elizaga ML, Sato A, Qin L, Cardinali M, Hay CM, et al.; National Institute of Allergy and Infectious Diseases HIV Vaccine Trials Network. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis 2011; 203:610-9; PMID:21282192; http://dx.doi.org/10.1093/infdis/jiq105.
- Berthoud TK, Hamill M, Lillie PJ, Hwenda L, Collins KA, Ewer KJ, et al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin Infect Dis 2011; 52:1-7; PMID:21148512; http://dx.doi.org/10.1093/cid/cio015
- Cavenaugh JS, Awi D, Mendy M, Hill AV, Whittle H, McConkey SJ. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS One 2011; 6:14626; PMID:21347224; http:// dx.doi.org/10.1371/journal.pone.0014626.