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Abstract: In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption,
biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor
cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes
induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes
and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close
relationship between the pathways activated by these genes and the various metabolic options. The
metabolic adaptations observed in cancer cells not only promote their proliferation and invasion,
but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and
to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this
review we analyze the main metabolic differences between cancer and non-cancer cells and how
these can affect the various cell death pathways, effectively determining the susceptibility of cancer
cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the
near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic
characteristics are known.

Keywords: cancer cell metabolism; cell death; anticancer therapy; chemoresistance; glucose; glycolysis;
acidity; oxidative metabolism; OXPHOS; tumor microenvironment

1. Introduction

In cancer cells, profound metabolic changes are often observed compared to untrans-
formed cells that affect numerous functions ranging from the absorption of nutrients to
the biosynthesis of macromolecules, to the production of energy. In fact, all the main
metabolic pathways appear altered in tumor cells: glycolysis, tricarboxylic acid (TCA)
cycle, glutaminolysis, oxidative phosphorylation (OXPHOS), and pentose phosphate path-
way (PPP). Many oncogenes and tumor suppressor genes have a significant effect on cell
metabolism. Indeed, there seems to be a close relationship between the pathways activated
by these genes and the metabolic options necessary to meet the needs of the cancer cell:
uncontrolled proliferation, dissemination (invasiveness and metastasis), and acquisition of
resistance to both physiological and drug-induced cell death processes. These metabolic
peculiarities, and the underlying molecular pathways, could therefore represent specific
therapeutic targets for the treatment of some tumors whose metabolic characteristics are
known. This could represent a first step towards a personalized therapy designed on the
biological specificities of a particular tumor.

At the base of the development of a tumor there are genetic and epigenetic modifi-
cations that accumulate over time causing alteration of the proliferation giving the cell a
potential immortality. Although the genetic and epigenetic mutations observed in different
tumors may be different, they very often lead to the alteration of a small number of sig-
naling pathways. Among these, AKT/PI3K, MYC, AMPK, RAS-ERK, P53, mTORC, and
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Wnt/β-catenin appear to be those most involved in tumorigenesis. Interestingly, all these
influence cell metabolism [1].

2. Mitochondria and Cancer Cell Metabolism

Mitochondria regulate cell metabolism and energy production through the OXPHOS
process, which also represents the most important source of reactive oxygen species (ROS)
production, generating almost 90% of the total cellular ROS [2] (the main intracellular
sources of ROS are mentioned in Figure 1). ROS are molecules containing oxygen derived
from incomplete reduction of O2, and include superoxide (O2

•−), hydrogen peroxide
(H2O2), and hydroxyl radical (OH•).
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The OXPHOS process produces ATP from ADP and inorganic phosphate by transport
of electrons to a series of transmembrane protein complexes located in the mitochondrial
inner membrane [3]. The OXPHOS system comprises five enzymatic complexes: complex I
(NADH-ubiquinone oxidoreductase), complex II (succinate-ubiquinone oxidoreductase),
complex III (ubiquinone-cytochrome c oxidoreductase), complex IV (cytochrome c oxidase),
and complex V (ATP synthase). Altogether, the respiratory complexes form the electron
transport chain (ETC), which creates an electrochemical gradient to produce ATP. Respi-
ration, due to redox nature of its reactions, inevitably produces ROS as a by-product [4].
In fact, the loss of electrons along the respiratory chain represents the main cause of
mitochondrial ROS accumulation [5].

Complex I is often mutated in cancer where it represents a major source of ROS. In the
complex III of the ETC, it is mainly the Q-cycle that determines the production of O2

•−.
This occurs when complex III transfers electrons from complexes I and II (respectively) to
cytochrome c [6]. Interestingly, overexpression of complex III subunits has been observed
to induce tumorigenesis in a ROS-dependent manner in colorectal cancer [7], lung cancer,
and hepatocarcinoma [8].

Recent literature data highlight that mitochondrial metabolism can be considered a
target for anticancer therapy, with a particular focus on OXPHOS inhibition [9–11]. Lim
and coworkers identified three different metabolic pathways capable of guaranteeing the
survival of cancer cells: OXPHOS, glutamine, and glucose metabolic pathways. Therefore,
inhibiting only one of these pathways may not be the most appropriate anticancer strat-
egy [12]. In particular, in melanoma they demonstrated the existence of a subset of cells
that used mostly OXPHOS and, through the overexpression of peroxisome proliferator-
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activated receptor gamma coactivator 1-α (PGC1α), were resistant to oxidative stress.
Inhibition of PGC1α led to an increase in ROS production, HIF1α stabilization, and a
metabolic shift towards glycolysis. Subsequent inhibition of glycolysis with pharmaco-
logical treatments could induce a further metabolic switch towards the use of glutamine
as an energy source. Thus, the existence of three alternative metabolic options for cancer
cells underlines the importance of a combined therapeutic strategy [12]. Hepatocellular
carcinoma and ovarian, pancreatic, colon, and breast cancers emerged as tumors relying
on OXPHOS [12–16]. In particular, in hepatocellular carcinoma it has been demonstrated
that the growth and survival of the tumor itself are decreased by using antiparasitic drug
Atovaquone that causes oxidative stress and oxidative DNA damage.

The mitochondria ROS production must be constantly balanced to avoid damage
to proteins, mitochondrial DNA, and membrane lipids. For this purpose, mitochondria
have two main antioxidant systems: the superoxide dismutase, a manganese-requiring
mitochondrial enzyme (MnSOD), and the Thioredoxin (Trx) system. Mitochondrial redox
systems are strictly involved in cancer favoring cell growth and preventing apoptosis. In
accordance with this, in drug-resistant cancers Trx system was found upregulated and
represented a negative prognostic factor in several types of cancers [17]. Indeed, cancer cells
often shown high levels of ROS. In particular, it was shown that Trx reductase, influencing
cell proliferation, invasion, and migration, has an important role in colon and rectal cancer,
prostate cancer, hepatocarcinoma, osteosarcoma, as well as in the progression of lung
cancer [17]. An experimental study conducted by Li and co-workers on diffuse large B cell
lymphoma cell lines demonstrated that the overexpression of Trx was associated with cell
growth and survival, as well as with the development of chemoresistance [18]. Chronic
and uncontrolled oxidative stress is involved in the onset of numerous human pathologies,
including cancer (Figure 2). In general, in tumors the elevated ROS amount induces the
upregulation of the antioxidant pathways. In particular, ROS production is regulated
through nuclear factor (erythroid-derived 2)-like 2 (NRF2), the main factor responsible for
the cellular antioxidant response. As mentioned above, NRF2 have also a role in metabolic
reprogramming of cancer cells by regulating some enzymes involved in the PPP and
glutamine metabolism [19]. The PPP is a parallel pathway to glycolysis used to synthesize
nucleotides and to produce NADPH molecules necessary for the regeneration of GSH [20].
The amino acid glutamine, in addition to its role in protein synthesis, can be used as a
substrate for the TCA cycle becoming the main energy source in place of glucose for cancer
cells. Inhibition of glutamine metabolism by bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-
ylethyl sulfide (BPTES) has been observed to increase ROS production resulting in growth
inhibition of several cancers [21,22]. In accordance with this, glutaminase inhibitors have
been proposed as potential anticancer agents [23].

Given the essential role played by mitochondria in cancer, many drugs or natural
compounds perform their antitumor activity by targeting certain mitochondrial functions,
such as OXPHOS, and glutamine metabolism. Some of these drugs show a synergistic
action when combined together because of their ability to prevent the metabolic switch
from OXPHOS to glycolysis, able to support the energy needs to cancer cells to favor
their own survival following anticancer treatment. For example, the combined use of two
non-steroidal anti-inflammatory drugs, Diclofenac and Lumiracoxib, has been shown to
increase the action of the RAF inhibitor Vemurafenib in melanoma cells [24]. In particular,
Diclofenac and Lumiracoxib, decreasing lactate secretion and affecting oxidative phospho-
rylation, when combined with Vemurafenib increased the anti-glycolytic impact of the RAF
inhibitor and prevented the metabolic reprogramming of cancer cells to OXPHOS [24]. A
similar effect was observed in breast cancer cells when the treatment with a Blc-2 inhibitor,
Venetoclax or WEHI-539, was performed in combination with the glycolysis inhibitor
2-Deoxy-D-glucose (2DG).
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Among many functions, mitochondria also regulate apoptosis, by releasing pro-
apoptotic factors and controlling calcium homeostasis.

Since resistance to apoptosis is one of the hallmarks of cancer, in the last few years
many new compounds have been conceived to overcome apoptosis resistance [25]. Among
them, Raptinal is an unusually rapid inducer of caspase-dependent apoptosis in multiple
cancer cell lines and an in vivo cancer model [26] able to induce tumor growth inhibi-
tion and apoptosis via oxidative stress within hours of administration in hepatocellular
carcinoma [27].

Mitochondria constitute a network in continuous reorganization through the processes
of fusion/fission and their redistribution within the cell [28]. The balance between fission
and fusion determines the shape, size, and number of mitochondria, strongly impact on
energy metabolism. Alterations of this balance contribute in various ways to tumorigenesis
and tumor progression [29].

Mitochondrial dynamics profoundly influence also cell metabolism. Indeed, many
observations suggest that mitochondrial elongation correlates with high OXPHOS activity
and ATP production, consistent with the hypothesis that elongated mitochondrial networks
are more efficient in energy generation [30,31]. On the contrary, the fission and consequent
redistribution of mitochondria to the leading edge promotes tumor invasion by providing
ATP and metabolic intermediates necessary for the biosynthetic demand of the cancer cell.
Equally important is the transfer of functional mitochondria from healthy cells, especially
the stromal ones, to tumor cells via nanotubular structures, which contributes to the
metabolic plasticity of cancer thus promoting cell proliferation and survival in prohibitive
microenvironmental conditions [32,33]. In light of this, mitochondrial dynamics could
represent an innovative therapeutic target and/or a useful prognostic biomarker in cancer.

3. Glucose Metabolism Alteration in Cancer Cells

Glycolysis is the main metabolic pathway that allows mammalian cells to produce
ATP. Glucose is transported into cancer cells via different glucose transporters (GLUT),
in particular by GLUT1 [34], that are overexpressed in many types of tumor cells [35].
In the body, excess glucose is stored as glycogen, mostly in specialized organs like the
liver or muscle, but also in other peripheral tissues [36]. When glucose concentration
is reduced, glycogen can be mobilized, releasing glucose-1-phosphate (G-1P), which is
converted to glucose-6-phosphate (G-6P) and utilized by glycolysis [37]. In healthy cells,
after glucose uptake the enzyme hexokinase (HK) phosphorylates intracellular glucose
to form G-6P. In mammals, five HK isoenzymes (HK1-4 and HKDC1) have been char-
acterized of which only HK2 has two functional enzymatic pockets. HK1 is ubiquitous
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and represents the most abundant form in most tissues. HK2, although less expressed
than HK1, is the main isoenzyme in insulin-sensitive areas such as heart, skeletal mus-
cle, and adipose tissue, and in a wide range of tumors [38,39]. Subsequently, after the
isomerization of G-6P into fructose-6-phosphate (F-6P), phosphofructokinase (PFK) cat-
alyzes the phosphorylation of F-6P into F-1,6-2P that is converted to glyceraldehyde-3-
phosphate (GA-3P) by the enzyme aldolase. This latter enzyme is also responsible for
the production of dihydroxyacetone phosphate (DHAP) that, in turn, produces other
molecules of GA-3P [40]. The GA-3P is converted into 1,3-bisphosphoglycerate (GA-2P) by
glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and, subsequently, phosphoglycer-
ate mutase 1 (PGAM1) catalyzes the reversible conversion of 3-phosphoglycerate (3P-G)
and 2-phosphoglycerate (2P-G). The enolase converts 2P-G into phosphoenolpyruvate
(PEP), which is finally and irreversibly converted to pyruvate by the enzyme pyruvate
kinase (PK) getting ATP and NADH.

PK is one of the key enzymes in glycolysis. It encompasses four different subtypes
(PKM1, PKM2, PKL, and PKR), encoded by two sets of genes [41]. All have a tetrameric
form and pyruvate kinase activity, but only PKM2 has both a dimeric and a tetrameric
form. The expression of PKM1 and PKM2 is also regulated by the c-myc oncogene,
which promotes the expression of PKM2 [42]. Unlike PKM1, PKM2 has been reported
to promote the conversion of glucose to lactate [43]. According to this, PKM2 is mainly
expressed during embryonic development, is closely related to tissue regeneration, and
plays an important role in tumors. In its dimeric form it acts as a transcription factor
and participates in the epithelial–mesenchyme transition (EMT), and in the processes of
invasion and metastasis [44]. Accordingly, PKM2 is found overexpressed in different cancer
cell types [45,46]. It has also been hypothesized that the dimer/tetramer ratio of PKM2
determines whether glucose metabolism leads to the biosynthesis of nucleic acids, proteins,
and amino acids or to energy metabolism [47].

Finally, the pyruvate generated by PK is converted into acetyl-CoA, synthesizing
ATP and CO2 through OXPHOS. In the presence of limited amounts of oxygen, glucose
is transformed in lactate (anaerobic glycolysis). In fact, under hypoxic conditions, the
pyruvate produced by glycolysis is converted into lactate by the lactate dehydrogenase
(LDH) (Figure 3). Glycolysis can also occur in the presence of sufficient amount of oxygen
(Warburg effect, see below). In this case, we refer to aerobic glycolysis that generally
implicates the repression of respiration [48]. Anyway, all metabolic options are often active
in cancer cells where glucose uptake increases dramatically to meet their high-energy
demand [34].

Remarkably, tumor cells can activate both the Warburg effect, thus synthesizing
large amounts of lactate regardless of the availability of oxygen, and OXPHOS simulta-
neously [34,37]. Moreover, in malignant tumor cells several glycolytic enzymes can be
upregulated. For example, the PGAM1 [49], PKM2 [50], HK2 [51], and GAPDH [52] are
often upregulated in tumor cells, PFK results increased in various breast tumors [53], eno-
lase in pancreatic ductal adenocarcinoma [54], and aldolase in the lung’s squamous cell
carcinoma [55]. In summary, all these enzymes may be potential targets for the treatment
of malignant tumors. Additionally, LDH could be utilized as a therapeutic target. In fact,
LDH inhibition was observed to suppress the progression of lymphomas and pancreatic
cancer in vivo [56].
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Figure 3. Glucose metabolism in cancer cells. The cell membrane glucose transporters (GLUT 1/3) mediate the glucose
uptake, which is degraded to pyruvate by glycolysis. Under anaerobic and aerobic glycolysis (Warburg effect), pyruvate is
converted to lactate, thereby regenerating NAD+ to supply the glycolytic processes. Pyruvate, into mitochondria, then
undergoes oxidative phosphorylation by the tricarboxylic acid cycle (TCA), leading to the formation of ATP. Glycolytic
enzymes are upregulated in many cancer types (marked in red), leading to enhanced generation of glycolytic intermediate,
which functions as precursors for numerous metabolic pathways necessary for the biosynthesis of cellular components
(grey boxes). Legend: G-6P, glucose-6-phosphate; F-6P, fructose-6-phosphate; DHAP, dihydroxyacetone phosphate; GA-3P,
glyceraldehyde-3-phosphate; G-2P, 1,3-biphosphoglycerate; 2P-G, 2-biphosphate-glycerate; PEP, phosphoenolpyruvate;
ATP, adenosine triphosphate; NAD+, nicotinamide adenine dinucleotide (oxidized form); NADH, nicotinamide adenine
dinucleotide (reduced form); TCA, tricarboxylic acid; LDH, lactate dehydrogenase; PFK, phosphofructokinase; HK2,
Hexokinase2; GDPH, glyceraldehyde-3-phosphate-dehydrogenase; PKM2, pyruvate kinase M2; PGAM1, phosphoglycerate
mutase 1.
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4. Warburg Effect and Glucose Metabolism Reprogramming

Otto Warburg in 1925 observed that most cancer cells were characterized by an altered
glucose metabolism [57–59]. Multiple studies have reported that in non-cancer cells ATP
was usually generated via OXPHOS, which led to the actual production of 30–32 molecules
of ATP per molecule of oxidized glucose, therefore, less than theoretically expected of
36–38 molecules [59–61]. Normally, cells internalize glucose through glucose transporters,
and metabolize it to pyruvate in the cytosol by the glycolytic process. Under physiological
conditions, the pyruvate is oxidized in the mitochondrial matrix to acetyl coenzyme A
(CoA), which is used to generate with high efficiency ATP through OXPHOS [61]. In
conditions of poor oxygenation, normal cells shift versus the alternative, less efficient,
glycolytic pathway, the so-called Embden–Meyerhoff fermentative pathway. In this case,
one molecule of glucose is converted into 2 molecules of lactic acid and 2 H+ to produce only
2 molecules of ATP. Thus, in normal cells, the balance between OXPHOS and glycolysis is
determined by the amount of oxygen available [62].

Otto Warburg had observed that cancer cells preferentially used the less efficient
glycolytic (fermentative) pathway to produce energy even in the presence of adequate levels
of oxygen (aerobic glycolysis) [57]. Further findings reported that glycolysis, although
less efficient is more rapid than respiration in producing ATP [59,63]. In fact, it has been
reported that 24 molecules of ATP are produced through aerobic glycolysis compared
to 1 molecule of ATP produced by respiration in the same unit of time [64]. For several
years, the molecular and biological mechanisms of the Warburg effect remained unclear
and quite unexplored. With the advent of FdG-PET imaging technique the interest in
understanding the molecular mechanisms underlying metabolic reprogramming observed
in cancer cells received a renewed interest, and the Warburg effect has been studied
extensively. These studies provided insights into how the aerobic glycolysis emerges in
tumor cells, confirming that many cancers upregulate glycolysis, and take up much more
glucose than normal cells [65]. Although Warburg initially attributed the observed altered
glucose metabolism to inefficient mitochondrial respiration [66], further data reported
that most of the cancers have fully functioning mitochondria, and only few of them
present mitochondrial dysfunctions [67], supporting the hypothesis that cancer cells use
the aerobic glycolysis even in the presence of functional mitochondria. Crabtree and
colleagues first demonstrated that cancer cells exhibited variable levels of mitochondrial
respiration [61,68], which was under the regulation of glucose that works in a feedback loop
inhibiting respiration therefore suppressing the mitochondrial oxidation of pyruvate [59,68].
Further studies confirmed the observations of Crabtree, leading to the notion that even
if cancer cells can still exhibit respiration, glycolysis is coupled with lactate production
and uncoupled with oxidative metabolism of glucose. Therefore, the glucose is directed
versus the production of lactate and the biosynthesis of macromolecules in most of cancers.
Moreover, additional studies have reported that mutations in the mitochondrial DNA,
or a decrease in the number of functional mitochondria could contribute to the Warburg
effect, promoting tumor growth and progression, multidrug resistance, and metastasis
formation [69–72].

5. Tumor Microenvironment and Cancer Cell Metabolism

Besides genetic and epigenetic changes known for a long time to be involved in tumor
formation and development, a new aspect of carcinogenesis has been the focus of intense
studies in the last two decades from oncology. Indeed, the interest in studying the tumor
microenvironment (TME) and its potential role in driving the selection versus the cancerous
phenotype was growing [60,73]. From these studies, it emerged the awareness that TME
plays a fundamental role in the development of the tumor and in its progression towards a
malignant phenotype. Moreover, it has also been demonstrated that the interplay between
tumor cells and their surrounding microenvironment represents an important determinant
in tumor response to therapies (Figure 4 schematically shows the cross talk between tumor
cells and TME). The TME is characterized by cellular components represented by proliferat-
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ing tumor cells and tumor stromal cells (i.e., stromal fibroblasts, endothelial cells, immune
cells, and infiltrating inflammatory cells). It also presents non-cellular components of the
extracellular matrix such as collagen, fibronectin, hyaluronan, laminin, and ecc. [74,75].
Within the TME, tumor and non-tumor cells are kept in touch through secreted soluble
molecules, typically metabolites, cytokines, chemokines, microRNA, growth factors, inflam-
matory mediators, and extracellular matrix remodeling enzymes, as well as through the
recently emerging circulating tumor cells (CTCs), exosomes, cell-free DNA (cfDNA), and
apoptotic bodies [76,77]. The interactions between cellular and non-cellular components of
the TME, through the above mediators, activate several signaling pathways, which can act
by favoring or disadvantaging tumor progression, invasion, and drug resistance, as well
as contributing to cancer-associated angiogenesis [78,79]. Often the tumor environment
is characterized by hypoxia, lack of nutrients and acidity, non-permissive conditions for
non-tumor cells that drive clonal selection towards highly invasive and metastatic cell
phenotypes. In order to survive in this hostile microenvironment, and to sustain their
high proliferation rate, many solid cancers evolve versus the use of glycolysis to generate
ATP even in condition of adequate oxygen concentrations (Warburg effect) [60,65,80]. The
production of ATP through aerobic glycolysis is significantly lower than that produced
by OXPHOS and it is associated with a high production of lactate. To meet their energy
needs, the cancer cells therefore increase their glucose intake and proton extrusion, thus
contributing to the acidification of TME, which directly regulates tumor invasion and
metastasis [60,65], as well as drug resistance [81].

5.1. Hypoxia and Acidic pH of TME

Hypoxia is a well-characterized and common trait of the TME, which occurs early
during tumor development. It is caused by an inadequate oxygen supply at the tumor core
level as a consequence of an insufficient microvasculature. Cancer cells are usually highly
proliferative and need a huge amount of nutrients and oxygen in order to compensate their
rapid turnover. The high rate of proliferation, generating an increase in the tumor mass,
leads to a distancing of the tumor core from the blood vessels, which causes hypoxia and
consequent cell necrosis. Solid tumors are now believed to be heterogeneous in oxygenation,
presenting hypoxic regions and well oxygenated areas that mutually influence each other
from a metabolic point of view. Hypoxic areas usually are distant from blood vessels, and
consequently from oxygen. In order to survive in this hostile environment, hypoxic cancer
cells need to adapt to the low-oxygen conditions, which leads to the selection of phenotypes
more aggressive, resistant to apoptosis triggering signals, and to a variety of commonly
used chemotherapeutic agents and radiations [83]. A key actor of this adaptation is HIF
and its signaling pathways [84]. HIF is a heterodimeric transcription factor composed
of a constitutively expressed β-subunit and an O2-regulated α-subunit [85]. Mammals
present three HIF-α isoforms (HIF-1α, HIF-2α, and HIF-3α) and three HIF-β isoforms
(ARNT/HIF-1β, ARNT2, and ARNT3) each encoded by a different gene [86]. HIF-1α and
HIF-1β are expressed ubiquitously in human and mouse, whereas all the other isoforms
are tissue specific. HIF-1α normally has a very short lifespan. Indeed, in presence of
oxygen, it is hydroxylated and enters into the ubiquitin-proteasome-system where it is
degraded [87]. When oxygen is scarce, hydroxylation is inhibited and HIF-1α is stabilized,
translocates into the nucleus, and heterodimerizes with a HIF-1β subunit to form a HIF
complex. This complex binds to the hypoxia response element (HRE) in the promoter and
enhancer region of the target genes and is responsible for tumor cell survival, glycolysis
increase, angiogenesis, and invasion/metastasis. Growth factors, cytokines, and reactive
oxygen and nitrogen species are able to activate HIF-α [88].
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Due to their ability to directly activate transcription of target genes, an increased
expression of HIF-1α and HIF-2α was reported in a variety of human cancers and was
correlated with a switch versus a more aggressive phenotype [89]. Generally, both HIF-1α
and HIF-2α show a positive correlation with tumor progression, but with some exceptions.
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In a xenograft model of colorectal carcinoma HIF-1α knock down by a small interfering
RNA was reported to impair tumor growth, while knocking down HIF-2α led to an
increase [90]. In the same vein, HIF-1α overexpression was observed to slow down the
growth of renal carcinoma in xenografts, whilst an increased HIF-2α expression favored
the tumor growth [91]. Furthermore, either in head and neck cancer or in non-small-cell
lung patients the HIF-1α overexpression was associated with a reduction in the mortality
rate, while the reverse was reported for HIF-2α [92–94].

Interestingly, HIF-1α could regulate glycogen metabolism under hypoxic condition
and nutritional deficiencies promoting accumulation of glycogen [95,96]. For this reason,
inhibition of HIF-1α, or HIF-1α-mediated metabolism pathway, may represent a potential
treatment for cancer [97,98]. Indeed, it has been observed that many drugs, including
Aspirin [99], Dovitinib [100], Metformin [101], Cetuximab [102], and Tamoxifen [103] could
block tumor growth by inhibiting, directly or indirectly, the expression or activity of HIF-1α.

Together with the so-called “Warburg effect” and hypoxia, acidosis of the TME occurs
early during the metabolic switch of cancer cells towards anabolic processes. Several
studies have related tumor extracellular acidosis to invasiveness, metastatic behavior, and
resistance to cytotoxic agents [104–107], and therefore acidosis is nowadays considered a
hallmark of malignancy. The first evidence showing that most human cancers are acidic
goes back a long time basing on microelectrode measurements of tumor pH [108]. With the
advent of magnetic resonance spectroscopy (MSR), a technique able to measure the tumor
pH more precisely and accurately than microelectrodes, researchers demonstrated that the
pH of human tumors is neutral-alkaline (7.0–7.4) inside the cells, while the extracellular pH
of the same solid tumors is acidic (6.0–6.9). This indicates that the pH gradient of cancer
cells is acidic outside [109]. Hence, differently from normal cells presenting a pH gradient
that is alkaline outside, the pH gradient across the plasma membrane of many human
cancer cells is acid outside and then is reversed compared to that of normal cells.

Mounting data supported the hypothesis that the establishment of an acidic environ-
ment surrounding tumor cells occurs early during the selection against highly malignant
phenotypes because of the hostile conditions unsuitable for life of most cells. These studies
also highlighted that the acid TME is the consequence of the tumors switch versus a high
proliferation rate and an aberrant metabolic phenotype. These features, together with low
nutrient and oxygen levels typically present in the TME, favor the selection of cells able
to survive in these adverse conditions. This implies enormous glucose utilization and
amino acid metabolism, sugar fermentation, and release of lactate, which in turn induces
release of large amount of protons into the extracellular TME [110], contributing to the
acidification of TME [111]. Tumor extracellular acidosis is also induced by the production
of carbonic dioxide through mitochondrial respiration of cancer cells, leading to the release
of an additional amount of protons into the TME [112,113].

Therefore, in order to survive in these extremely toxic conditions and to evade acid-
mediated toxicity, cancer cells upregulate the expression and activity of several proton
extrusion mechanisms [114] able to release excesses protons and lactate into extracellular
environment, avoiding the acidification of the cytosol. Among proton flux regulators are
vacuolar H+-ATPases (V-ATPases) [114–116], Na+/H+ exchanger (NHE), monocarboxylate
transporters (MCTs), carbonic anhydrase IX/XII (CA-IX/XII) [117,118], and Na+/HCO3
co-transporters (NBCs) [119]. Literature data on different human cancer cell types corre-
lated the increased expression and activity of these proton exchangers with tumorigenesis,
metastasis, invasiveness, resistance to apoptosis, and multidrug resistance [120–123]. Thus,
a strategy aimed at inhibiting their expression and activity was considered by researchers,
an appealing approach in order to switch on cancer cell death and therefore to provide
new insights and alternative strategies for treating cancers. For this reason, several in-
hibitors with a great anticancer potential have been identified and developed and are under
exploitation for the setting up of novel and promising antitumor strategies. Among the
V-ATPase inhibitors, the anti acid compounds Proton Pumps Inhibitors (PPIs) were exten-
sively investigated in preclinical and clinical studies in a wide range of tumors. Literature
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data suggested their potential use either as adjuvants in chemotherapeutic treatments,
and as novel and alternative antitumor drugs, with less toxicity for tumor patients and
more specificity against the acidic environment of tumors [105,124–134]. Evidence about
NHE1 inhibitors reported antitumor and chemo-sensitizing effects in different human
tumors [135–138]. Evidence showed that inhibition of NHE1 using specific molecules
promoted intracytosolic acidification in cancer cells, strongly favoring reduction in cell
proliferation and activation of apoptosis in different types of cancer [139,140]. Differently
to the others, the amiloride derivative HMA triggers cancer cell apoptosis in a caspase-
independent manner, involving autophagy [141–143], or programmed necrosis in breast
cancers [144]. Similar results were found about MCT inhibitors [145,146]. Additional very
promising anticancer agents are pharmacological inhibitors targeting specifically CA-IX and
–XII [118,147–149]. Some of these drugs showed a greater action when combined together.

Studies conducted so far highlighted that tumor hypoxia, tumor extracellular acidity,
and tumor glycolytic metabolism are important determinants of resistance to classical
chemotherapeutic agents, of innate as well as acquired therapy-induced resistance. Lit-
erature data evidenced that the acidic TME impaired anticancer drugs distribution, by
inducing protonation of many chemotherapeutic drugs, leading to their neutralization
and inactivation. Thus, inactive drugs cannot pass through the plasma membrane or are
sequestered into intracellular acidic vesicles or endosomes. As a result, the drug intake, and
consequently its cytotoxic effect, is significantly reduced. Tumor cells became then resistant
to cytotoxic agents. Moreover, evidence underlines that HIF-1α can induce the expression
of the genes encoding for the drug efflux transporters, which contains into their promoters
hypoxia responsive elements [150]. In addition, studies performed in various tumor cell
lines observed that HIF-1α regulated the expression of the drug efflux transporters that ex-
trude different chemotherapeutic drugs from the cytosol to the extracellular compartments
favoring in turn a decrease of the drug intracellular concentration. HIF-1α can also play an
inhibitory role against apoptosis, the cell death usually occurring following treatment with
most chemotherapeutics.

5.2. Lactate Shuttle and the Reverse Warburg Effect

The Warburg effect is the prevailing theory explaining the metabolic reprogramming
observed in cancer cells and is considered a hallmark of cancer, but it does not provide a
complete explanation of the aspects underlying the tumor metabolism and the molecular
mechanisms that underlie it are not yet completely understood. Recent evidence high-
lighted that the majority of cancer cells contain mitochondria fully functioning and still able
to utilize OXPHOS, and that there is a metabolic intratumoral heterogeneity [11,151,152].
This means that different metabolic phenotypes coexist within the tumor mass, and then
some cancer cells produce energy through aerobic glycolysis while others predominantly
via mitochondrial OXPHOS [145,153]. Tumor heterogeneity depends on the tumor oxygena-
tion, which fluctuates from normoxia to hypoxia [154,155]. Therefore, within the tumor
mass there are areas well oxygenated, whereas others are hypoxic. This feature is strongly
dependent on the neovasculature induced by cancers [154,155]. Furthermore, a recent
theory was introduced to explain tumor heterogeneity regarding glucose metabolism.

In 2009, a renewed and modified version of the “Warburg effect” theory, called the
“Reverse Warburg effect” [155–158], emphasized the peculiar role played by the cells of
the tumor stroma in metabolically supporting cancer cells favoring their proliferation and
growth, and described the existence of a close interplay between cancer cells and stromal
cells, in particular cancer-associated fibroblasts (CAFs). Basing on this theory, hypoxic
cancer cells induce the nearby CAFs to follow aerobic glycolysis and then to produce
lactate that is released in the TME through MTC1–4 transporters. Lactate is then transferred
back to oxygenated tumor cells (or oxygenated CAFs) where it is utilized by OXPHOS to
produce further ATP and metabolites necessary for cancer cell survival [62,145,155,157,158].
The remaining lactate is stored in the extracellular TME contributing to acidification. The
tight metabolical interplay between tumor cells and CAFs would support the metabolite
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exchange and provide cancer cells not only of ATP, but also of other molecules necessary
for their proliferation and growth, and useful to limit cell death [62,153,159].

Therefore, the lactate produced by cancer cells contributes to their proliferation, to the
acquisition of a phenotype resistant both to drug-induced apoptosis [160] and to anoikis,
thus also favoring metastatic dissemination [161].

In this context, lactate cannot be considered a simple waste product of glycolysis, but
rather a messenger capable of determining an adaptive metabolic reprogramming that
contributes to tumor progression.

Key players of this metabolic cross talk are the lactate transporters MCT1 and
MCT4 [62,155,159]. In particular, MCT1 is involved in the intake of lactate in oxidative
active cancer cells, while MCT4 transports lactate out of glycolytic cells [145]. According
to this, it was reported the overexpression of MCT1 in oxygenated cells, and of MCT4 in
hypoxic cells [145,162]. Interestingly, in co-culture experiments, Whitaker and coworkers
demonstrated that MCT4 is selectively expressed by CAFs only when co-cultured with
breast cancer cells [156]. Moreover, studies aimed at inhibiting MCT1 reported a glycolytic
reprogramming of cells, whereas inhibition of MCT4 leads to increased intracellular levels
of lactate, in turn favoring cell death [59,145,155]. Findings also suggested that shuttling
of lactate would prevent the formation of an extremely acidic TME, probably even for
the cancer cells [163,164]. In addition, extracellular accumulation of lactate induced by
glycolytic hypoxic tumor cells was reported to stimulate angiogenesis and tumor growth
through a pathway mediated by IL-8 [59,155,165].

The metabolic cross talk between CAFs and cancer cells involves, among others,
Caveolin-1 (CAV1), HIF-1α, nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB), and TP53-induced glycolysis and apoptosis regulator (TIGAR). It has been ob-
served that the lack of CAV1 expression in CAFs determined a mitochondrial dysfunction,
orienting their metabolism towards glycolysis [157,158]. Interestingly, the transcription
factors HIF-1α and NF-κB were correlated with decrease of CAV1 in CAFs [166]. In this
regard, it was suggested that tumor cells by promoting oxidative stress in CAFs could
activate HIF-1α, which in turn promoted autophagy and glycolysis through the hypoxia-
mediated degradation of CAV1 and enhanced either glucose transporters or glycolytic
enzymes [166,167]. Additionally, activation of NF-κB in CAFs was reported to induce
similar effects [166]. As far as TIGAR is concerned, it plays a key role in supporting
the “reverse Warburg effect”. In fact, in breast carcinoma cells overexpressing TIGAR,
a glycolytic inhibitor under the control of p53, a decreased glycolysis, and a concomi-
tant increased OXPHOS were reported [159,168]. Interestingly, when breast carcinoma
cells overexpressing TIGAR were co-cultured with CAFs, these latter shifted versus a
glycolytic phenotype [159,168]. High levels of TIGAR were found in different types of
tumors [169–171] and mutated forms of p53 were observed to promote the expression of
TIGAR [172].

6. Cell Death and Metabolism in Cancer

According to the Nomenclature Committee on Cell Death, cell death can be distin-
guished in an accidental and in a regulated form, the latter triggered and controlled by
specific biochemical pathways [173]. The fine knowledge of the molecular mechanisms
involved in the different types of regulated cell death makes their pharmacological and
genetic regulation possible, at least potentially.

Cell death mechanisms are often compromised in cancer cells. Loss of sensitivity
to the cell death signals and immortality is one of the major characteristics of cancer
cells. The metabolic adaptations observed in cancer cells not only favor their proliferation
and invasion, but also their survival by inducing intrinsic and acquired resistance to
different antitumor agents [174,175]. Indeed, the literature extensively reported that the
resistance to the conventional cell death pathways represents an additional hallmark of
cancer. Among them, apoptosis is mainly responsible for cell death following treatment
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with most anticancer agents. Autophagy, and the more recently discovered ferroptosis and
necroptosis, also play a peculiar role.

6.1. Apoptosis

Apoptosis is a type of programmed cell death characterized by membrane shrink-
age, chromatin condensation, nuclear fragmentation, plasma membrane blebbing, and
release of small vesicles (apoptotic bodies) into microenvironment, which are engulfed
by phagocytes and neighboring cells. This process is mediated by a family of cysteine
aspartyl proteases, known as caspases that, once activated by proteolytic cleavage, activate
the effector caspases, leading to cell death execution [176–178].

Apoptosis can involve two different pathways: an intrinsic mitochondrial pathway,
activated following the alteration of cellular homeostasis, such as limiting levels of growth
factors, oxidative stress, and DNA damage, and an extrinsic receptor-mediated pathway,
which involves the activation of specific death receptors [178,179]. In particular, the ex-
trinsic pathway is triggered by ligand/receptor interaction between a tumor necrosis
factor (TNF) family member and the corresponding transmembrane death receptors. Once
binding occurs, adapter proteins are required to trigger the execution phase of apopto-
sis [180]. Both pathways converge at mitochondria inducing the permeabilization of the
outer mitochondrial membrane (MOMP) [181]. For more details, see Figure 5.

The most common mechanism used by cancer cells to escape apoptosis, thereby
gaining survival advantages, is represented by the upregulation of anti-apoptotic proteins,
such as Bcl-2, Bcl-XL [182,183]. This implies that a greater amount of the pro-apoptotic
proteins (i.e., Bax and/or Bak) are deactivated, conferring resistance to apoptosis [184].

Literature data reported that cancer cells harness altered metabolism to evade apop-
tosis. Indeed, it has been observed that under hypoxic conditions, HIF-1 induced the
upregulation of glucose uptake and glycolysis, leading to resistance to apoptosis [185–188].

Recent studies have suggested that silencing HK2, a glycolytic enzyme often upreg-
ulated in cancer cells, was associated with increased apoptosis in prostate cancer mod-
els [189]. In fact, HK2 would prevent the release of cytochrome c, therefore the occurrence
of apoptosis, inhibiting the insertion of Bax into the mitochondrial membrane and its
dimerization with Bak [190,191].

P53 is a tumor suppressor gene that, in conditions of stress, can induce the arrest of
cell growth in order to repair the cell damage, or trigger apoptosis if the damage is not
repairable [192]. This gene is found mutated in about 50% of human cancers and most
mutations compromise its activity [193]. Interestingly, p53 is modulated by changes in
glucose metabolism. Once cellular glucose levels are low, p53 becomes active and promotes
cell growth arrest [194]. P53 in turn blocks glycolysis, downregulating GLUT1 and GLUT4.
Therefore, p53 mutations were able to enhance the cellular levels of glucose. At the same
time, p53 can increase glycolysis induced by the TP53-Induced Glycolysis and TIGAR,
which stop the action of phosphofructokinase (PFK1) [184].

An additional key anti-apoptotic actor is the serine/threonine kinase, AKT, which is
mostly active in cancer cells, favoring their survival by promoting glycolysis and lactate
production [175,195,196]. It has been reported that AKT prevented apoptosis at different
levels. For instance, in the presence of glucose, AKT negatively regulates the induction of
PUMA [175,197,198] and suppresses the degradation of MCL-1, favoring its neo synthe-
sis [198,199]. Moreover, AKT was also able to induce the translocation of GLUT1 to the
plasma membrane [196], and the mitochondrial localization of HK2 [200,201], preventing
the release of cytochrome c [201,202].
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In recent years, many efforts have been made to identify new multi-targeting agents
and devise therapies capable of targeting cancer cells. Among these, polyphenols, particu-
larly Resveratrol, represent an excellent candidate as multi-targeted drugs to supplement
chemotherapy. Resveratrol influences several vital stages of tumors in a wide range of
cancer types. Indeed, it inhibits proliferation and migration and induces apoptosis by
modulating signal transduction cascades and glucose metabolism in various cancer types,
including breast, lung, colorectal, prostate, ovarian, leukemia, liver, and pancreatic can-
cers [203–206].

Moreover, targeting tumor metabolism or the TME of solid tumors are under ex-
ploitation in order to restore tumor sensitivity to apoptosis induced by anticancer drugs.
For example, approaches aimed at targeting tumor acidity through inhibition of proton
pumps were investigated. Studies reported that pharmacological inhibition of V-ATPase
with bafilomycins and concanamycins, demonstrated efficacy in inducing apoptosis in
human cancer cells and in inhibiting their growth [207–209]. Unfortunately, these drugs
were highly toxic for normal cells, limiting their potential application in clinical settings.
Other V-ATPase inhibitors that have been investigated and suggested as possible new
anticancer drugs were the anti-acid compounds, PPIs (Proton Pumps Inhibitors), currently
used to treat peptic diseases. Two peculiar PPIs properties rendered these compounds
very appealing, tumor selective and acidity targeting drugs: their activation in acidic envi-
ronment, for instance that of tumors, and the absence of systemic cytotoxicity for normal
cells [210]. Preclinical data together with clinical studies suggested that these compounds,
by modulating tumor acidity, can induce apoptosis in a caspase-dependent or independent
manner, restoring sensitivity to many chemotherapeutic drugs, and exerting per se a strong
cytotoxic activity against a wide range of tumor cell lines [105,130,131].

Natural compounds capable of targeting enzymes of the glycolytic pathway are also
under investigation. For instance, findings suggested that the natural compound lapachol
inhibited PKM2, inducing a blockade of glycolysis, decreasing ATP levels and sensitizing
melanoma cells to apoptosis [211]. In addition, in prostate cancers lapachol promotes
apoptosis by inducing increase in ROS production and in the transcription of caspase-3
and -9 [212]. Apoptosis induction by lapachol was also observed in tumors of different
histology [213,214].

Lectins, in particular Polygonatum cyrtonema lectins (PCL), were also able to trigger
apoptosis in prostate cancer cells targeting HK2, leading to decreased glucose consumption
and lactate production [215]. This ability of PCL passes through inhibition of the PI3K/Akt
pathway, probably induced by competition in EGFR binding [215]. In hepatocellular
carcinoma, triggering of apoptosis by compound K, a metabolite of the ginsenosides, was
induced by inhibition of glycolysis via blockade of AKT/mTOR/c-Myc pathway, HK2 and
PKM2 [216].

Literature data suggested that the tumor metabolic reprogramming sensitizes can-
cer cells to non-apoptotic forms of programmed cell death, i.e., autophagy, necroptosis,
ferroptosis. Thus, pioneering studies aimed at inducing or manipulating autophagy,
necroptosis, ferroptosis are under investigation for the final goal to eliminate apoptosis-
resistant cancer cells, which still survive following several rounds of chemotherapy. These
approaches might represent an alternative way to overcome tumor apoptotic resistance
and chemo-resistance of cancer cells, and might provide additional promising therapeutic
anticancer strategies.

6.2. Autophagy

Autophagy is a catabolic process, highly conserved in all eukaryotes, through which
cells remove and recycle into the double-membrane vesicles “autophagosomes” intracellu-
lar components, such as unused proteins, damaged organelles, and intracellular pathogens,
that are degraded by lysosomal proteases [217]. The molecular process underlying au-
tophagy, summarized in Figure 5, is complex, and is finely regulated by production of ATP
and by the mTOR and AMP kinase pathways, which are linked to energy metabolism [218].
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Autophagy mainly functions for the regulation of the turnover of cellular organelles,
but it can also contribute to cell death. A close relationship between apoptosis and au-
tophagy has been described, where autophagy controls apoptosis and vice versa. Induction
of apoptosis or initiation of autophagy is determined by Bcl-2 proteins that control the
balance of pro and anti-apoptotic signals and the first steps of autophagy. Autophagy
is also recognized as a cellular and mammalian survival mechanism activated during
stress, for example microbial infections or nutrient deprivation. Indeed, cellular stresses,
including amino acid deprivation and ER stress, or signals that inhibit mTOR pathway
can induce the transcriptional activation of autophagic genes or post-translational mod-
ifications, promoting autophagy [219]. Therefore, dysregulation of autophagy leads to
development of different diseases, including cancer.

The role of autophagy in cancers was the focus of intense research and is still under
investigation, due to the observed multifaceted and sometimes apparently opposite na-
ture of autophagy in cancer. Indeed, researchers described a tumor suppressive role of
autophagy at early stages of the tumor, while a tumor-promoting role was observed at later
stages, rendering it still debated whether autophagy can be considered a valid or limiting
therapeutic target. Autophagy was first described as a tumor-suppressive agent. Evidence
reported that mutations in oncogenes or tumor suppressor genes, by inducing their activa-
tion or inhibition, respectively, led to suppression of autophagy, and in turn to inhibition of
tumor growth. Moreover, partial or complete inhibition of autophagy through deletion
of the autophagic genes Beclin1, Atg5, and Atg7, promoted development of various neo-
plasia [220–222]. However, a great deal of data supported a pro-tumor role for autophagy.
Autophagy was associated with cancer cell migration, invasiveness, metastasis formation,
and resistance to chemo- and radiotherapy. For this reason, the autophagic process can be
considered a marker for tumor diagnosis as it is involved in tumor growth and metastatic
progression. Interestingly, extracellular hostile conditions, such as hypoxia, low nutrients
and growth factors, ROS, and lactate, typically present in the tumor microenvironment,
were able to induce activation of autophagy, promoting cancer cell survival and tumor
growth [223–226]. Thanks to the prominent role of autophagy in the regulation of mito-
chondria turnover, and to the primary role of mitochondria in energy production, studies
are emerging to evaluate autophagy contribution to the tumor metabolism. These studies
shed a light for a better understanding of the altered metabolic phenotype of tumors and
increase the knowledge on how the TME sustains growing tumors. Findings correlated the
metabolic reprogramming of tumor cells with autophagy activation. In fact, knock down
of respiratory chain and complex III or inhibition of mitochondrial OXPHOS, by inducing
mitochondrial dysfunctions, either slowed down the production of ATP, which led to accu-
mulation of AMP and activation of AMPK, or enhanced ATG genes transcription, in turn
promoting autophagy and tumor cell survival [227,228]. Moreover, a role for autophagy in
sustaining glycolysis and amino acid metabolism was reported in breast and pancreatic
cancers, hematological malignancies, and Ras-driven tumors [219,229–232]. In all these
tumors, autophagy was fundamental for a correct functioning of mitochondria. Indeed,
inhibition of autophagy impaired OXPHOS and enhanced mitochondrial dysfunctions.

Autophagy also participates in the modulation of the metabolic crosstalk between tu-
mor and non-tumor cells, to sustain tumor growth [233,234]. For instance, it was observed
that in oxidative cancer cells autophagy is induced by the oxidation of lactate, leading
to cancer cell survival and tumor growth [225]. Interestingly, a recent work highlighted
that autophagy had a role not only in the intrinsic metabolism of tumor cells, promot-
ing their growth, but also in that of non-tumor cells in a non-cell autonomous manner,
in order to further sustain and promote the growth and progression of tumor cells. In
more details, in pancreatic cancer, the metabolic support to cell growth was reported to be
strongly depending on autophagy induced in non-tumor pancreatic stellate cells [235]. The
authors observed that in conditions of hypoxic and nutrient poor supply, when pancreatic
cancers were co-cultured with pancreatic non-tumor stellate cells, they induced some-
how upregulation of autophagy in their non-tumor counterpart, leading to the secretion
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of the non-essential amino acid alanine, in support and sustain of their mitochondrial
metabolism [235,236]. Consequently, adjacent pancreatic tumor cells up-took more ala-
nine that fueled TCA cycle and was used for lipid neo-synthesis [235]. In the same vein,
inhibition of autophagy in pancreatic non-tumor stellate cells restrains expression of the
pro-migratory cytokine IL-6 and of the extracellular matrix proteins in pancreatic cancer,
limiting tumor migration and invasion [237]. Taking into account these considerations, ap-
proaches aimed at blocking autophagy in pancreatic stellate cells could represent promising
alternative treatments in pancreatic cancer.

Oxidative stress and ROS production in cancers can also activate autophagy through
different pathways, including inhibition of mTORC1 or NFkB [238,239]. Activation of
autophagy by ROS was associated with tumor progression versus malignancy. In this case,
autophagy played a role during extracellular matrix detachment in human breast ductal
carcinoma [240], and in chemo- and radio-resistance in bladder cancer cells and in lung
adenocarcinoma, respectively [241,242].

In accordance with this evidence, different autophagy inhibitors have been proposed
as potential anticancer agents, which showed different degrees of efficacy. One of the first
used in clinical trials was hydroxychloroquine (HCQ) and its derivatives and alternatives,
which target lysosome function [243–245]. Additional anti-autophagy molecules evaluated
were the inhibitors of the class III phosphatylinositol 3-kinase (Vps34) [246], inhibitors of
the autophagy initiating kinases ULK1 [247], and inhibitors of the cysteine ATG4B [248,249].
These inhibitors were also tested in combination with classical anti-tumor drugs. They
showed good efficacy in inhibiting autophagy, and in blocking tumor growth in vitro,
and in sensitizing to anti-tumor therapy [247,249–252]. However, they are still under
exploitation to test their selectivity and toxicity.

Autophagy can also become lethal, or facilitate other forms of cell death, including
apoptosis. Autophagic cell death is characterized by the presence of autophagosomes,
by a massive vacuolation of the cytoplasm, and is governed by the canonical autophagic
pathway [173]. In the case of resistance to apoptosis, frequent in many cancers, targeting
autophagic cell death can therefore represent an alternative therapeutic strategy [253].

The induction of lethal autophagy, indicated by some authors as abortive [254], has
been described for some natural and synthetic compounds, and for some drugs in different
types of cancers [254–257]. For example, salinomycin has been reported to cause autophagic
death in glioblastoma cells through a ROS-dependent mechanism [254]. The development
of autophagic death activators therefore represents a great potential for anti-neoplastic
chemotherapy advances.

6.3. Necroptosis

Necroptosis is a new form of programmed caspase-independent cell death, with fea-
tures very similar to necrosis [258,259]. Necroptosis is triggered through a series of stimuli,
including the ligands of the death receptors, toll-like receptors (TLRs), and interferon (IFN)
receptors, and is induced by inhibition of caspase-8 and expression of receptor-interacting
protein (RIP) kinase, in particular RIPK3 [260]. It can be inhibited either with Necrostatin-1
(Nec-1), by blocking the activity of the RIPK1 receptor, or with GSK872 which inhibits
RIPK3 [261,262].

The molecular mechanisms leading to necroptosis execution are complex and can be
summarized as above. Following the binding between the death ligand and tumor necrosis
factor receptor 1 (TNFR1), complex I is formed by recruitment of the TNFR-associated death
domain (TRADD), RIPK1, TRAF2. Within this complex, RIPK1 is polyubiquinated and
activates in turn the NFkB pathway, and cell survival prevails. If RIPK1 is deubiquinated,
the signal switches towards the activation of cell death pathways, and in particular versus
the activation of apoptosis or necroptosis. Switch between these two cell death modes
strongly depends on activation of caspase-8 within the complex II. Indeed, active caspase-8
inactivates RIPK1 and RIPK3, in favor of apoptosis execution. Pharmaceutical or genetic
inhibition of caspase-8 instead supports RIPK1 interaction with RIPK3 and their subsequent
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activation within the necrosome complex, directing cell death to necroptosis. Activation
of RIPK3 leads to a series of cascade signaling events culminating with the extracellular
release of cellular content, and subsequent activation of inflammatory response [260]. For
more details, see Figure 5.

Recent findings reported that necroptosis could have both a pro-tumoral and a tumor
suppressive role during the onset of cancer development, strongly depending on the type
of cancer, stage, and grade [261–263]. These roles of necroptosis are not the focus of this
review and will not be discussed herein. Like the other forms of cell death, necroptosis was
investigated in cancer therapy as well, in order to develop alternative approaches to fight
against apoptotic resistance.

As for apoptosis, autophagy, and ferroptosis, an interrelationship between necroptosis
and the metabolism has been observed in cancer cells. Little is still known about the molec-
ular mechanism at the basis of necroptosis modulation by tumor metabolism. Findings
reported that RIPK3 could activate enzymes in metabolic pathways, in particular glycogen
phosphorylase (PYGL) [264], and pyruvate dehydrogenase (PDH) [264]. This leads to an
increase in aerobic respiration. In addition, the activity of glutammolysis ammonia ligase
and glutamate dehydrogenase-1 are influenced by RIPK3 [264,265].

RIPK1/3 immunoprecipitation and 32P kinase experiments performed under hypoxic
and glucose free conditions in human colorectal cancers showed enhanced activation of
RIKP1/3, and production of mitochondrial superoxide, strongly favoring necroptosis [266].
Glucose addition to hypoxic cells inhibited necroptosis by inducing increase in GLUT-1
and GLUT-4 expression, intracellular ATP, pyruvate, and lactate levels [267]. By contrast,
treatment aimed at inhibiting GAPDH or mitochondrial pyruvate carriers confers resistance
to the necrotic pathway [266]. Interestingly, recent findings reported that tumor protection
from necrotic cell death under glucose starvation conditions involves the p53-regulated
long noncoding RNA, TRINGS. Indeed, TRINGS control necroptosis by inhibition of the
STRAP–GSK3β–NF-κB pathway [267].

Interestingly, hyperglycemia and an enhanced glucose uptake by cancer cells were
shown to regulate the interplay between apoptosis and necroptosis, in favor of necroptosis
activation. It has been reported that in presence of high concentration of glucose, human
primary T cells and monocytes shift versus RIP1-mediated necroptosis, instead of undergo
extrinsic apoptosis [268].

The action of drugs against the necroptotic pathway could be a new approach for can-
cer therapy, bypassing the apoptotic process [262]. Specifically, chemotherapeutic agents,
including members of the tumor necrosis factor receptor (TNFR) superfamily, pattern
recognition receptors (PRRs), T cell receptors (TCRs), or natural compounds can be used to
kill cancer cells by inducing or manipulating this caspase-independent mechanism [269].

6.4. Ferroptosis

Ferroptosis is a novel form of iron-dependent, non-apoptotic regulated cell death,
distinct from the other forms of programmed cell death mentioned above. It is characterized
by reduced mitochondrial size and higher mitochondrial membrane density, disruption
of outer mitochondrial membrane and a substantial reduction in mitochondrial cristae,
leading to the oxidative membrane damage [270–272]. It is induced when the metabolic
balance between intracellular levels of ROS and the antioxidant activity of glutathione-
dependent peroxidase 4 (GPX4) switches versus an exacerbate ROS and phospholipid
hydroperoxides production and accumulation [273].

Different stimuli can activate the ferroptotic pathway. Indeed, cystine depletion, or
inhibition of the amino acid antiporter system xc− by Erastin, or inactivation of GPX4
by RSL3, as well as the activation of the iron transporters transferrin and lactotransferrin.
Additionally, metabolic stresses, such as nutrient depletion, especially cystine, hypoxia, and
radiation can induce ferroptosis. Iron, together with glutamate and glutamine, as well as
the mevalonate play an essential role in the modulation of this type of cell death. Induction
of cytosolic ferritin degradation through autophagy, the so-called “ferritinophagy” process,
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also promotes ferroptosis [274]. On the contrary, inhibition of the ferroptotic pathway
occurs following treatment with ferrostatin-1, the iron chelator deferoxamine (DFO), or the
antioxidant N-acetyl-cysteine (NAC) [275].

Accumulating experimental evidence correlated ferroptosis with some metabolic path-
way. Indeed, mitochondrial respiration, lipid and amino acid metabolism, all inducing
overproduction of ROS, can promote ferroptosis. Moreover, an excessive autophagic induc-
tion, which favors an enhanced protein degradation, provides iron and lipid accumulation
which triggers lipid peroxidation, and in turn ferroptosis [276–279]. Iron by itself promotes
ferroptosis through the lipid peroxide-generating Fenton Reaction [280].

Usually, non-tumor cells can die through ferroptosis. Dysregulation of this process
was associated with various pathological conditions, including cancers [277]. In this regard,
literature data demonstrated a tumor suppressor efficacy for ferroptosis [281]. Ferroptosis
occurs in cancer cells by activation of the RAS signaling pathway, and through inactivation
of both the system xc− and GPX4, which in turn leads to accumulation of ROS and iron,
thus culminating in lipid peroxidation and cell death.

Several proteins and genes are involved in ferroptosis induction and execution. Two
key players in its modulation in cancer cells are the tumor suppressor p53 and iron.
Regarding p53, experimental studies showed that it can promote ferroptosis by inhibiting
the transcription of the SLC7A11 gene, leading to impairment of both cystine uptake and
GPX4 activity [282]. Studies in carcinoma cells reported that the decrease in GPX4 activity
was accompanied by an increase in the production of lipid ROS [281]. Moreover, repression
of SLC7A11 induced by p53 promoted ferroptosis through activation of lipoxygenases
activity [283]. P53 was also able to induce ferroptosis by inhibiting the transcription of
squalene and ubiquinone, two known anti-ferroptotic agents, leading to inhibition of the
mevalonate pathway [284].

Iron plays a peculiar role in several biological processes, due to its presence in the pros-
thetic group of enzymes and proteins, such as heme, and to its participation in enzymatic
reactions (heme synthesis). Part of the iron internalized by the cells is stored within ferritin,
whereas the cytoplasmic remaining free iron catalyzes free radical formation via Fenton
Reaction. This implies an iron-mediated enhanced ROS production, leading to oxidative
damage, dangerous for the cells. Evidence in the literature shows that iron represents an
essential element and a modulator of ferroptosis. Indeed, an iron overload by increasing
the intracellular iron pool strongly favors the ferroptotic death pathway [285]. On the
contrary, silencing or repression of the iron specific receptor (TFR1) significantly inhibits
ferroptosis [217,282]. Moreover, treatments aimed at inhibiting iron levels through the
use of the iron chelators, DFO, or the lipophilic antioxidants vitamin E and ferrostatin-1
blocked or hindered the ferroptotic process [286]. Therefore, all these studies suggested that
imbalances between intracellular free and redox iron in favor of iron overload, and induced
by changes in ferritin expression levels, are peculiar for activation of ferroptosis [287].

Considering the regulatory role of mitochondria in OXPHOS and iron metabolism,
these organelles have also been studied regarding ferroptosis. Experimental data demon-
strated their role in ferroptosis induction, especially in ferroptosis promoted by cystine de-
privation, and related the mitochondrial and iron metabolism to this type of cell death [287].
First, mitochondrial morphological changes characterize this form of cell death. Secondly,
evidence associated mitochondrial metabolism to increased cellular ROS production, as
well as mitochondrial damages occurring during ferroptosis and enhanced mitochondrial
ROS levels [282,287]. Moreover, several enzymes of the TCA cycle and of the ETC are
involved in ferroptosis [277,287]. Lastly, several proteins able to regulate the iron transport
across the mitochondrial membrane (i.e., mitoferrin 1 (Mfrn1) and mitoferrin 2 (Mfrn2)),
the voltage-dependent anion channels (VDACs), or the mitochondrial ferritin that regulate
mitochondrial iron accumulation were linked to ferroptosis [282,288,289]. All of this evi-
dence conveys to the hypothesis that ferroptosis modulation could represent a potential
novel approach in anti-cancer therapy, especially for those cancers resistant to chemo-
and/or radiotherapy [281]. Several molecules with a known pro-ferroptotic ability are
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under exploitation for their potential use in therapy, and still need further studies for their
optimization and validation for clinical application. Among them, RSL3, Erastin, Sorafenib,
Sulfasalazine, and known chemotherapeutic drugs, i.e., Cisplatin [290], Altretanine [291],
and Artesunate [292] showed efficacy in promoting ferroptosis. In hematological ma-
lignancies and in gastric cancers, ferroptosis induction by erastin seems to involve the
c-JUN N-terminal kinase (JNK), p38-MAPK, and the RAS-RAF-MEK pathways [293]. In
addition, studies reported that cisplatin could induce ferroptosis through depletion of
intracellular GSH [290]. Interestingly, the cytotoxic effect of cisplatin was enhanced both
in vitro and in vivo in combination treatments with RSL3 or erastin [294]. Based on this,
studies in cancers of different histotypes suggested that co-treatment with cisplatin and
erastin or RSL3 worked synergistically in stimulating ferroptosis, consequently enhancing
cisplatin cytotoxicity [290,294–296]. A similar trend was observed for paclitaxel, where
the combination of paclitaxel with RSL3 by promoting ferroptosis through suppression of
SLC7A11, demonstrated more efficacy in reversing chemoresistance than each treatment
alone [297]. Lastly, in vitro and in vivo studies found that treatments combining erastin
with radiotherapy might represent an additional strategy to increase sensitivity of cancer
cells to radiation as well [297–299].

7. Conclusions

The view of cancer as a metabolic disease has gradually been replaced over the years
by the view as a genetic disease and this has strongly influenced therapeutic approaches.
Recently, also thanks to the growing importance of metabolomics and systems biology,
there has been a renewed interest in the metabolism, not just energy, of cancer cells.

The remarkable metabolic adaptability of cancer cells can be understood as the abil-
ity to maintain a balance between energy production, biosynthesis of biological macro-
molecules, and conservation of the redox balance in non-permissive microenvironmental
conditions, first of all the hypoxic one, for the survival of non-cancerous cells. Recently,
substantial progress has been made in understanding the molecular events that regulate
the metabolic switching of cancer cells [82]. The large amount of information accumulated
so far clearly indicates the fundamental role played by HIF in this metabolic adaptation,
which represents the winning strategy of the tumor cell.

The process of metabolic adaptation could therefore constitute the Achilles heel of the
cancer cell, as long as it is dissected and understood from a biochemical and molecular
point of view.

The development of highly specific and selective metabolic inhibitors, together with
the deepening of knowledge of the mechanisms underlying the metabolic plasticity of
cancer cells, could lead to a profound change in the therapeutic approach against cancer in
the coming years. Provided, however, that we have clinical data describing the metabolic
profiles of human tumors to determine which metabolic alterations are prevalent in specific
tumor types.

Clarifying the mechanisms through which the metabolic plasticity of cancer cells
is achieved may therefore represent a further arrow in the arch of clinicians to design
personalized therapeutic pathways based on the peculiar metabolic characteristics of the
individual tumor with a view of precision medicine.
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Abbreviations

TCA tricarboxylic acid
OXPHOS oxidative phosphorylation
PPP pentose phosphate pathway
ROS reactive oxygen species
ATP adenosine triphosphate
ADP adenosine bisphosphate
ETC electron transport chain
NADH nicotinammina adenina dinucleotide
PGC1α peroxisome proliferator activated receptor gamma coactivator-1α
HIFA hypoxia inducible factor alpha
MnSOD manganese-requiring mitochondrial enzyme
Trx thioredoxin
TrxR thioredoxin reductase
Prx3 peroxidase 3
NRF2 nuclear factor erythroid- 2–related factor 2
GSH reduced glutathione
GSSG oxydited glutathione
BPTES bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-ylethyl sulfide
Bcl-2 B-cell lymphoma 2
2DG glycolysis inhibitor 2-Deoxy-D-glucose
GLUT glucose transporters
G1P glucose-1-phosphate
G6P glucose-6-phosphate
HK2 hexokinase 2
PFK phosphofructokinase
DHAP dihydroxyacetone phosphate
GAPDH glyceraldehyde-3-phosphate-dehydrogenase
PGAM1 phosphoglycerate mutase 1
PK pyruvate kinase
LDH lactate dehydrogenase
HIF-1α hypoxia-inducible factor 1α
CoA acetyl coenzyme A
TME tumor microenvironment
CTCs circulating tumor cells
cfDNA cell-free DNA
HRE hypoxia response element
MSR magnetic resonance spectroscopy
V-ATPase vacuolar H+-ATPase
NHE Na+/H+ exchanger
MCTs monocarboxylate transporters
CA-IX/XII carbonic anhydrase IX/XII
NBCs Na+/HCO3 co-transporters
PPIs Proton Pumps Inhibitors
CAFs cancer-associated fibroblasts
CAV1 Caveolin-1 NF-kB
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
TIGAR TP53 Induced Glycolysis and Apoptosis Regulator
TNF tumor necrosis factor
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MOMP outer mitochondrial membrane
AKT serine/threonine kinase
PUMA p53 upregulated modulator of apoptosis
MCL-1 Myeloid leukemia 1
HCQ hydroxychloroquine
Vps34 class III phosphatylinositol 3-kinase
ULK1 autophagy initiating kinases
TLRs toll-like receptors
IFN interferon
RIP receptor-interacting protein
Nec-1 Necrostatin-1
TNFR1 tumor necrosis factor receptor 1
TRADD TNFR-associated death domain
PYGL glycogen phosphorylase
PDH pyruvate dehydrogenase
PRRs pattern recognition receptors
TCRs T cell receptors
GPX4 glutathione-dependent peroxidase 4
DFO chelator deferoxamine
NAC the antioxidant N-acetyl-cysteine
PCL Polygonatum cyrtonema lectins
TFR1 iron specific receptor
Mfrn1 mitoferrin 1
Mfrn2 mitoferrin 2
VDACs voltage-dependent anion channels
ER endoplasmic reticulum
FADD Fas Associated Via Death Domain
Bcl-XL B-cell lymphoma-extra large
Bax BCL2 Associated X
Bad BCL2 Associated Agonist of Cell Death
tBid truncated BH3 Interacting Domain Death Agonist
PI3K Phosphoinositide 3-kinase
AKT serine/threonine kinase
MLKL Mixed lineage kinase domain-like protein
DAMPS Damage-associated molecular patterns
AMPK AMP-activated protein kinase
mTOR mammalian target of rapamycin
FLIP Cellular FLICE-like inhibitory protein
LC3 Microtubule-associated protein 1A/1B-light chain
DMT11 Divalent metal transporter-1
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