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SUMMARY

Assembly of Kaposi’s sarcoma-associated herpes-
virus (KSHV) begins at a bacteriophage-like portal
complex that nucleates formation of an icosahedral
capsid with capsid-associated tegument complexes
(CATCs) and facilitates translocation of an �150-kb
dsDNA genome, followed by acquisition of a pleo-
morphic tegument and envelope. Because of devia-
tion from icosahedral symmetry, KSHV portal and
tegument structures have largely been obscured
in previous studies. Using symmetry-relaxed cryo-
EM, we determined the in situ structure of the
KSHV portal and its interactions with surrounding
capsid proteins, CATCs, and the terminal end of
KSHV’s dsDNA genome. Our atomic models of the
portal and capsid/CATC, together with visualization
of CATCs’ variable occupancy and alternate orienta-
tion of CATC-interacting vertex triplexes, suggest a
mechanism whereby the portal orchestrates procap-
sid formation and asymmetric long-range determina-
tion of CATC attachment during DNA packaging
prior to pleomorphic tegumentation/envelopment.
Structure-based mutageneses confirm that a triplex
deep binding groove for CATCs is a hotspot that
holds promise for antiviral development.
INTRODUCTION

First discovered in 1994 associated with tumor lesions in AIDS

patients in Los Angeles (Chang et al., 1994), Kaposi’s sar-

coma-associated herpesvirus (KSHV) has since been shown to

cause endemic cancers in sub-Saharan Africa, the greater Med-

iterranean, and the Xinjiang region of China (Ganem, 2010; Giffin

and Damania, 2014). KSHV is a member of the herpesvirus sub-

family Gammaherpesvirinae, which also includes Epstein-Barr

virus (EBV), the first identified human oncovirus. Like all herpes-

viruses, assembly of an infectious KSHV virion starts at a bacte-
C

riophage-like portal complex that putatively nucleates the forma-

tion of a T = 16 icosahedral capsid, which, at maturation, is

composed of major capsid protein (MCP), small capsid protein

(SCP), ab2 heterotrimers of the Tri1 monomer and Tri2 dimer

and is decorated by capsid-associated tegument complexes

(CATCs) (Cardone et al., 2012). Upon establishment of an initial

procapsid, the portal facilitates the translocation of KSHV’s

�150-kb genome. This key process involves recruitment of an

ATP-driven terminase (Yang et al., 2007; Heming et al., 2017)

to the unique portal vertex to recognize, package, and cleave

concatemeric viral double-stranded (ds)DNA, which, in conjunc-

tion with CATC’s critical supporting roles (Heming et al., 2017),

give rise to viable genome-containing nucleocapsids (Adelman

et al., 2001; Beard et al., 2002). Unlike the comparatively high oc-

cupancies of capsid-associated tegument proteins in alphaher-

pesviruses (Dai and Zhou, 2018; Wang et al., 2018) and betaher-

pesviruses (Liu et al., 2018; Yu et al., 2017), KSHV CATC binding

sites are markedly partially and/or more flexibly occupied, lead-

ing to poorly resolved CATC structures in prior icosahedral re-

constructions of KSHV (Dai et al., 2014, 2018). The CATC none-

theless plays a critical role in the release of a pleomorphic virion

because the recruitment of outer tegument proteins and a glyco-

protein-sporting envelope leading to virion egress depend on in-

teractions of various viral proteins with constituents of the CATC

(Owen et al., 2015; Sathish et al., 2012).

In the absence of an in situ KSHV portal and CATC structures,

how a single portal protein (pORF43) orchestrates the rise of a

robust capsid and how order is maintained in the subsequently

complex and variable processes of tegumentation and envelop-

ment remains unknown. An invaluable body of pioneering work

has been accomplished so far on the prototypical herpesvirus

herpes simplex virus type 1 (HSV-1) portal, includingmicroscopy

studies confirming its localization at a capsid vertex (Cardone

et al., 2007), its dodecameric stoichiometry (Rochat et al.,

2011), and, more recently, the impressive identification and

reconstruction of the 5-fold vertex region surrounding the portal

(McElwee et al., 2018). Here we present the first atomic struc-

tures of a gammaherpesvirus portal vertex in KSHV, which

allowed us to use structure-guided mutageneses to identify a

viable drug target. Simultaneously, our method of symmetry

relaxation and sequential localized classification enabled us to
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dissect a heretofore puzzling schema of variable CATC occu-

pancy at capsid vertices, providing insights into portal-seeded

capsid assembly and how structural plasticity arises from a

well-defined and highly ordered capsid.

RESULTS

Resolving Symmetry Mismatches in the KSHV Capsid
To determine high-resolution structures of KSHV’s unique portal

vertex, we imaged frozen-hydrated KSHV virions, obtaining

44,328 virion particle images. Prior KSHV capsid reconstruc-

tions, although informative, have been calculated with icosahe-

dral symmetry applied, obscuring non-icosahedrally related

structures (Dai et al., 2018; Trus et al., 2001; Wu et al., 2000).

Here we developed a workflow (Figures S1 and S2) to determine

structures of the non-icosahedrally arranged components. This

sub-particle data processing procedure, employing sequential

localized classification with symmetry relaxation, allows step-

wise reconstruction of selected regions of a viral particle. Briefly,

two rounds of sub-particle classification were performed to relax

icosahedral and local symmetries. In the first round, 12 ‘‘sub-

particles’’ of capsid vertices were extracted from each virion im-

age using coordinates calculated from an initial icosahedral

reconstruction of the virion particle. We then performed 3D clas-

sification with 5-fold symmetry applied to sort out the unique

portal vertex sub-particle from the 11 penton vertex sub-parti-

cles for each virion image. Subsequent refinement yielded a

4.3-Å resolution reconstruction of the portal vertex with 5-fold

(C5) symmetry (first visualized in HSV-1; McElwee et al., 2018),

revealing high-resolution structures of the capsid components

surrounding the portal (Table 1; Figures S1, S2A, and S2D). A

second round of sub-particle classification further relaxed C5

symmetry at the portal vertex, and subsequent refinement with

C12 symmetry resulted in a 4.7-Å reconstruction, revealing

high-resolution features of the dodecameric portal (Table 1; Fig-

ures S1, S2A, and S2E). Using a specific orientation determined

in our C12 classification, we then calculated an asymmetric (C1)

reconstruction of the entire dsDNA-containing capsid at 7.6 Å

(Table 1; Figures 1A, S1, S2B, and S2G; Video S1) and a C1

reconstruction of the portal vertex at 5.2 Å (Table 1; Figures

1B, S1, S2A, and S2F). Our C1 structures reveal concentrically

packed layers of DNA with an inter-duplex distance of �25 Å,

quasi-5-fold-organized capsid and tegument densities, a

quasi-12-fold-symmetric portal dodecamer, and asymmetric

terminal DNA within a DNA translocation channel capped by a

distinctive density visible at lower thresholds (Figures 1A and

1B). This stepped implementation of symmetry expansion and

sub-particle classification thus proved effective in teasing apart

the multiple symmetry mismatches present in herpesvirus

capsids.

Structure of the DNA-Translocating Portal
Using our C12 portal reconstruction, we atomically modeled

KSHV’s 605-amino acid (aa) portal protein pORF43 (Table 1; Fig-

ure 1C; Video S2). Despite a lack of sequence homology, our

pORF43 model showed striking similarities with structures of

phage portal proteins in domain organization and topology (Leb-

edev et al., 2007; Lokareddy et al., 2017; Sun et al., 2015). We
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thus named the five domains of our pORF43 model in a fashion

analogous to phage portal proteins: wing (aa 9–45 and 126–245),

wall (aa 46–125 and 496–553), stem (aa 246–272 and 454–477),

clip (aa 273–453 [aa 281–412 unmodeled]), and b-hairpin (aa

478–495) (Figure 1D). The N-terminal eight residues (aa 1–8)

and C-terminal 52 residues (aa 554–605) were disordered and

also not modeled. Also similar to phages, 12 copies of pORF43

arrange in a vaguely flying saucer-like ring (Lebedev et al.,

2007; Lokareddy et al., 2017; Sun et al., 2015). In agreement

with previous tomographic (Cardone et al., 2007; Chang et al.,

2007) and intermediate-resolution (McElwee et al., 2018; Rochat

et al., 2011) visualizations of herpesvirus portals, we observe

pORF43 portal docking in the capsid through interactions be-

tween the portal’s wing domains and the surrounding MCP floor

and, additionally, between the base of the portal clip and the Tri1

subunit of periportal triplexes (Figure 1B). Clip, stem, b-hairpin,

and wall domains largely form the interior of the portal channel

(i.e., DNA translocation channel) through which DNA is threaded

into the capsid during genome packaging (Figures 1D and 1E).

Of the channel-lining domains, b-hairpin and clip domains

form the most constricted regions of the channel at �28 Å and

�32 Å in diameter, respectively (Figures 1D and 1E). Notably,

both regions contain characteristic b sheets and interact with

DNA in our mature virion state. Arranged radially, 12 b-hairpins

comprise an apertured disk perpendicular to the portal channel

axis (Figure 1E). Interestingly, residues that line the channel are

markedly positively charged above this aperture, likely facili-

tating interactions with negatively charged DNA (Figure 1F).

Twelve sets of three-stranded b sheets roughly parallel to the

channel axis form the base of the clip region (Figure 1G). Each

b sheet is the result of a 2+1 augmentation motif, where two par-

allel clip b strands from each pORF43 subunit are augmented in

anti-parallel fashion by a single clip b strand from its clockwise

neighbor (when viewing toward the capsid interior) (Figure 1G,

insets); this results in a ‘‘daisy-chained’’ ring structure, conceiv-

ably ideal for propagating and coordinating conformation

changes among subunits in the dodecameric complex during

dsDNA translocation.

In contrast to phage portals, a turret-like density arises from

our KSHV clip, extending distally toward the portal-capping den-

sity (Figures 1B and 1G). Although we were unable to model this

clip turret, we identified what appeared to be helical structures

comprising the turret walls (Figure 1G), consistent with

pORF43 secondary structure and disorder predictions, which

show strong helix propensity in this region (aa 281–412) (Fig-

ure S3A). During DNA packaging, the distal end of this turret is

the putative docking site of terminase (Yang et al., 2007; Heming

et al., 2017). The lower resolution of the clip turret is thus likely a

result of inherent plasticity in the structure to accommodate in-

teractions with various partners during different stages of viral

assembly (e.g., terminase during active DNA packaging and

the portal cap after packaging).

A Portal-Effected Global Distribution of CATC
Our C1 portal vertex reconstruction revealed tegument densities

sitting atop the periportal triplexes Ta and Tc (Figures 1B and

S2F). The morphology of these densities—a helix bundle sup-

ported by a triplex-bridging base—resemble that of CATCs



Table 1. Cryoelectron Microscopy (Cryo-EM) and Modeling Results

Cryo-EM Data Collection, Refinement, and Validation Statistics

C1 Virion

Capsid (EMDB:

EMD-20430)

C1 Portal

Vertex (EMDB:

EMD-20431)

C5 Portal

Vertex (EMDB:

EMD-20432,

PDB: 6PPB)

C12 Portal

(EMDB: EMD-

20437, PDB:

6PPI)

C1 Penton Vertex

Register, CATC-Absent

(EMDB: EMD-20433,

PDB: 6PPD)

C1 Penton Vertex

Register, CATC-Binding

(EMDB: EMD-20436,

PDB: 6PPH)

Data Collection and Processing

Magnification 14,000 14,000 14,000 14,000 14,000 14,000

Voltage (kV) 300 300 300 300 300 300

Electron

exposure (e�/Å2)

25 25 25 25 25 25

Defocus

range (mm)

�1 to �3 �1 to �3 �1 to �3 �1 to �3 �1 to �3 �1 to �3

Pixel size (Å) 2.06 1.03 1.03 1.03 1.03 1.03

Symmetry

imposed

C1 C1 C5 C12 C1 C1

Initial particle

images (no.)

44,328 44,328 44,328 44,328 44,328 44,328

Final particle

images (no.)

39,073 39,073 39,773 39,073 1,521,505

(sub-particles)

928,740

(sub-particles)

Map

resolution (Å)

7.6 5.2 4.3 4.7 3.7 3.8

FSC threshold 0.143 0.143 0.143 0.143 0.143 0.143

Estimated

resolution

range (Å)

7.0-8.5 4.0-6.0 3.5-5.5 3.5-5.5 3.5-4.8 3.5-4.8

Map sharpening

B factor (Å2)

0.0 180.5 177.4 200.0 177.4 180.4

Model refinement

Model-to-map fit, mask CC N/A N/A 0.787 0.798 0.765 0.769

Model Composition

Non-hydrogen atoms 62,671 39,504 68,769 73,502

Protein residues 7,953 4,956 8,728 9,326

Ligands N/A N/A N/A N/A

Mean Isotropic

B Factor (Å2)

Protein 50.49 204.94 40.81 33.40

Ligand N/A N/A N/A N/A

Root-Mean-

Square Deviations

Bond lengths (Å) 0.005 0.003 0.008 0.007

Bond angles (�) 0.923 0.680 1.043 1.014

Validation

MolProbity score 1.55 1.54 1.63 1.60

Clashscore 4.23 4.21 4.78 4.79

Rotamer outliers (%) 0.31% 0.00% 0.64% 0.49%

Ramachandran

Statistics

Outliers (%) 0.11% 0.00% 0.20% 0.17%

Allowed (%) 4.92% 4.89% 5.42% 4.85%

Favored (%) 94.97% 95.11% 94.38% 94.97%

The table shows cryo-EM data collection, reconstruction, and model validation results and values. See also Figures S1 and S2.
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Figure 1. In Situ Structure of the KSHV Portal and Its Interactions with Packaged DNA

(A) Clipped view of KSHV C1 capsid reconstruction, showing packaged dsDNA within the capsid and unique portal vertex.

(B) Enlarged view of the portal vertex region, showing terminal DNA held in the portal’s DNA translocation channel and DNA encircling the portal’s lower periphery.

(C) pORF43 model, shown as rainbow-colored ribbons (blue, N terminus / red, C terminus). Inset depictions are ribbon-and-stick in C12 mesh density.

(legend continued on next page)
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identified around penton vertices in previous icosahedral recon-

structions of KSHV (Dai et al., 2014) and of neurotropic HSV-1

(Dai and Zhou, 2018) and HSV-2 (Wang et al., 2018). However,

peripenton CATC densities in the KSHV icosahedral reconstruc-

tion were distinctively weaker than surrounding capsid proteins

and only discernible when low-pass-filtered to�6-Å, suggesting

low CATC occupancy and/or flexibility (Dai et al., 2014); in

contrast, the HSV-1 icosahedral reconstruction indicated full

CATC occupancy (Dai and Zhou, 2018). Interestingly, our C1

reconstruction of the KSHV portal vertex reveals the presence

of five CATC densities with a strength comparable with that of

underlying capsid elements, indicating full occupancy of the

five CATC registers surrounding the portal vertex. This preferred

association of CATC with the portal vertex over the remaining 11

(penton) vertices suggests an important role of CATC at the por-

tal vertex, to be discussed later.

Our C1 reconstruction of the genome-containing capsid also

indicates a curious binding pattern of CATCs to penton vertices

in a manner dictated by the portal vertex. When displayed at a

density threshold appropriate for capsid proteins, our C1 capsid

reconstruction shows two adjacent (i.e., ortho) CATCs bound to

each portal-proximal penton vertex, one CATC to each portal-

distal penton vertex, and no visible CATCs at the portal-opposite

penton vertex (Figure 2A). Incrementally decreasing the density

display threshold reveals additional CATCs of progressively

weaker density (indicating progressively lower occupancies at

those registers) manifesting at penton vertices in a ‘‘portal-out-

ward’’ manner (Figures 2B and S4). Importantly, within each pen-

ton vertex, CATCs appear to selectively bind registers on the

portal side of a hypothetical ‘‘equatorial’’ bisecting the penton

vertex, with a clear preference for the most portal-side register

(Figure S4). Adherence to this ‘‘portal-side equatorial rule’’ is

exemplified by the observation that portal-proximal penton

vertices (with two registers portal-side of the equatorial) max

out at two CATC copies as the density display threshold is

decreased, whereas portal-distal penton vertices (with three

portal-side registers) max out at three CATC copies. Portal-

opposite vertices can bind the CATC at any register (i.e., no

preferred register), up to five CATCs in total, because every reg-

ister is portal-side (Figures 2B and S4).

Given that CATC occupancy varies among vertices in a non-

random fashion, the existence of CATCs of varying densities in-

dicates that CATC occupancy varies even among capsids and is

thus not fully determined in our C1 reconstruction (i.e., the aver-

aging of capsids with differing occupancies/binding patterns

inherently obscures information on specific occupancy). Thus,

to accurately assess the specific occupancy of penton vertex

CATCs and to understand the structural basis of a CATC’s
(D) Two opposing pORF43 portal subunits, colored by domains assigned accord

2017; Sun et al., 2015), shown superimposed with Gaussian-filtered C1 portal ve

(E) Clip (top) and b-hairpin (bottom) slices define two narrow constrictions within

(F) Electrostatic surface potential rendering of the portal’s DNA translocation cha

(G) C12 density shaded by the corresponding pORF43 domain (Gaussian-filte

represent helix-like structures observed to extend from the clip in C1 reconstruc

subunits illustrate the daisy-chained 2+1 b sheet augmentation facilitated by the m

the middle ring of b strands (dotted black circles).

See also Figure S3 and Videos S1 and S2.
discriminatory association with portal and penton vertices, we

relaxed 5-fold symmetry for penton vertex sub-particles and per-

formed 3D focused classification of their CATC-binding registers

(Figure S1). Using a mask encompassing the region surrounding

one CATC, four resulting classes were obtained. Although three

classes clearly lacked CATC densities, one class contained a

CATC density of a quality comparable with surrounding capsid

protein densities (Figure S1). 37.9% of masked sub-particles

(i.e., 37.9% of penton vertex registers) were assigned to this

CATC-binding class, slightly higher than the �30% occupancy

estimated in our previous KSHV icosahedral study (Dai

et al., 2014).

We further distinguished between possible CATC binding oc-

cupancies and permutations at the five registers of a single pen-

ton vertex using geometry-based sub-particle classification. In

all, eight possible permutations of zero to five CATCs can bind

a penton vertex, all of which were observed and reconstructed

in our analyses (Figure 3A). In agreement with trends observed

in our C1 capsid reconstruction, penton vertices with two adja-

cent CATCs bound were most abundant (ortho-CATC-binding,

at 38.6% of penton vertex sub-particles), followed by penton

vertices with a single CATC bound (one-CATC-binding, at

21.9% of sub-particles). Five-CATC-binding penton vertices

were rarest, as expected, at 0.2% of sub-particles because,

barring deviations to the C1 capsid-observed consensus binding

pattern, these should be limited to the portal-opposite vertices of

highly bound capsids. Finally, we tallied the total number of

penton CATCs in each capsid from our classified penton vertex

sub-particles. The resulting histogram follows a sharp, slightly

left-skewed Gaussian distribution peaking at approximately 23

penton CATCs per capsid (Figure 3B). Intriguingly, additional

CATC binding falls off sharply after capsids have bound 30 pen-

ton CATCs, which happens to be the theoretical maximum of a

capsid with ‘‘full’’ penton vertex CATC binding in compliance

with the portal-side equatorial rule. In all, these results—the full

occupancy of portal CATC registers, the portal vertex-refer-

enced directional binding of CATC within penton vertices, and

the portal-dictated maximum of allowed binding registers—

strongly suggest that the nucleating portal effects long-range

(allosteric) structural influence on the penton vertices of each

capsid.

CATC Structures at Portal and Penton Vertices
Further 3D refinement of classes obtained from ourmasked clas-

sification of penton vertex sub-particles yielded CATC-binding

and CATC-absent reconstructions of penton vertex registers at

3.8 Å and 3.7 Å, respectively (Table 1; Figures S1, S2C, S2H,

and S2I). From the CATC binding reconstruction, we identified
ing to dsDNA phage portal structures (Lebedev et al., 2007; Lokareddy et al.,

rtex density.

the DNA translocation channel.

nnel.

red C1 density shown for lower-resolution clip turret). Mint green cylinders

tions as in (B) but disordered in the C12 density. Three consecutive pORF43

odeled clip’s three b strands (insets). Unmodeled turret densities extend from
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Figure 2. A Portal-Effected Distribution of CATC
(A) Global view of C1 capsid reconstruction showing consensus-patterned (i.e., averaged) occupancy of CATCs at penton vertices.

(B) Same as in (A) but with only CATC densities (Gaussian-filtered [2s], pORF19 heads removed for clarity) displayed at three progressively lower thresholds. The

left panel is at a threshold where capsid proteins are optimally displayed. Densities in the right panel are numbered from strongest to weakest.

See also Figure S4.
and modeled the constituents of CATC, which include two

copies of pORF19, two copies of pORF64, and one copy of

pORF32 (Table 1; Figures 4A, 4B, and S5A); this is in one-to-

one correspondence with pUL25, pUL36, and pUL17, respec-

tively, of HSV-1 CATC (Dai and Zhou, 2018).

Comparing reconstructions of the portal vertex and a CATC-

binding penton vertex reveals nearly identical structures of their

associated CATCs (Figures 4C and 4D). At both vertices,

pORF32 bridges the triplexes Ta and Tc and supports a four-

membered helix bundle composed of the N-terminal segments

of two pORF19 subunits (aa 62–104) and the very C-terminal

segments of two pORF64 subunits (aa 2,596–2,635) (Figures

4B–4D). Obvious differences aside—e.g., a portal in the portal

vertex, an SCP-decorated penton in the penton vertex, or

CATC occupancies—the two vertices also differ in the presence
1334 Cell 178, 1329–1343, September 5, 2019
of a disk-like portal cap at the distal ends of the portal vertex’s

CATC helix bundles (Figure 4C, magenta) versus a globular den-

sity cocked to the right of the penton vertex’s CATC helix bundle

(Figure 4D, magenta). Because this globular density’s size and

proximity to CATC (Figure 4E) are reminiscent of the flexibly teth-

ered head domain of pUL25 in HSV-1 (a homolog of KSHV

pORF19), we interpret this density as the head domain of one

of the pORF19 copies in the CATC. Indeed, the crystal structure

of an HSV-1 pUL25 head domain (PDB: 2F5U) (Bowman et al.,

2006) satisfactorily fits into the globular density (Figure 4F),

lending support to its assignment as pORF19. We then pro-

ceeded to construct a homology model of the pORF19 head

domain (aa 127–546) using PDB: 2F5U as a template (Figures

4E and 4F). From the homology model, we estimate that aa

457–468 map to a finger-like density that inserts between an



Figure 3. Geometry-Based Sub-particle Classification of Penton Vertices

(A) Penton vertex sub-particles were classified into eight classes of varying CATC stoichiometries and permutations and reconstructed individually. The resulting

eight reconstructions are shown, with the capsid colored radially and the CATC in gold.

(B) Histogram describing population-wide global penton CATC occupancies.

See also Figure S4.
adjacent penton MCP and SCP, serving as the sole interacting

residues between CATC and the penton protrusion (Figure 4E).

Of note, because the globular density accommodates only

one copy of pORF19/pUL25 head domain (whereas the corre-

sponding region in HSV-1 CATC accommodates two), we previ-

ously asserted—based on a 6-Å icosahedral reconstruction—

that the KSHV CATC had a different stoichiometry than the

HSV-1 CATC (Dai et al., 2014). But, as noted in a subsequent

study demonstrating differences in globular head domain

arrangement between KSHV and neurotropic alphaherpesvi-

ruses (Dai et al., 2014; Liu et al., 2017), and as our present

sub-particle reconstructions reveal, the KSHV CATC does, in
fact, bear the same stoichiometry/architecture as the HSV-1

CATC. These findings indicate that the second head domain of

pORF19 is present but perhaps flexibly tethered elsewhere.

Indeed, a second globular density gradually appears to the left

of the penton vertex’s CATC helix bundle at lower resolutions/

density thresholds (Figures 4D, green circle, S5B, and S5C).

In the KSHV portal vertex, secondary structures in the portal

cap beyond the CATC helix bundles are not resolved as in the

penton vertex’s globular density. Nonetheless, several lines of

evidence support interpretation of the portal cap as pORF19.

First, CATC helix bundles clearly connect with the portal cap at

lower resolutions/density thresholds (Figure 4C, black circles).
Cell 178, 1329–1343, September 5, 2019 1335



Figure 4. CATC Structures at Portal and Penton Vertices

(A) Sharpened CATC-binding penton vertex register density used to model CATC elements.

(B) Ribbon models of the CATC helix bundle in a coiled-coil arrangement of pORF64 and pORF19, two copies each.

(legend continued on next page)
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Second, the portal cap density is about the size of five pORF19

head domains and further exhibits five weaker globular densities

attached at its periphery (Figure 4C, green circle), analogous to

the globular density assigned to the second pORF19 head

domain at the penton vertex (Figures 4D, green circle, S5B,

and S5C). Third, functional data indicate that HSV-1 pUL25

(pORF19’s homolog), but not HSV-1 pUL36 (pORF64’s homo-

log), is critical for viral genome encapsidation, especially near

the termination of genome packaging (McNab et al., 1998; Oga-

sawara et al., 2001). Moreover, pUL25 plays an important role in

docking the incoming capsid at host cell nuclear pores and

gating the release of the viral genome (Huffman et al., 2017; Pas-

deloup et al., 2009). It is therefore plausible that pORF19 could

be intimately associated with the portal channel, and the portal

cap is certainly poised in a prime position to execute pORF19’s

roles in regulating the retention and release of the viral genome.

CATC Binding Related to Triplex Orientation
Despite similar architecture, KSHV and HSV-1 CATCs bind their

underlying triplexes in somewhat different fashions. In both vi-

ruses, the pORF32-equivalent CATC subunit (pUL17 in HSV-1)

functions as a structural framework facilitating capsid association

of the other four subunits that make up the CATC helix bundle.

Side-by-side comparison of pORF32 and pUL17 models reveals

similar core structures of separate N- and C-terminal b sheet-rich

domains positioned beneath a central a helix–rich arch (Figures

4G and 4H, orange). However, several prominent features visible

in pUL17 are missing in pORF32, accounting for pORF32’s 249

fewer residues: a ‘‘hump,’’ characterized by four short helices at

the top of the arch that constrain and orient CATC’s helix bundle

in HSV-1; an extended helix; and a short helix bundle at the ver-

tex-proximal end of pUL17 (Dai and Zhou, 2018). Notably,

pUL17’s short helix bundle makes direct contact with the under-

lying triplex Ta, almost solely mediating CATC-Ta binding in

HSV-1. In pORF32, nearly the entirety of this region is disordered

and/or invisible in both portal and penton vertex reconstructions

save for a 13-aa ‘‘anchoring loop’’ (AL; aa 220–232) (Figure 4G,

yellow). Although pORF32’s 93 unmodeled residues in this region

may potentially account for the critical Ta-interacting helix bundle,

a structure-based sequence alignment of pORF32 with pUL17

suggests that the Ta-binding short helix bundle in pUL17 is

missing, even in the pORF32 sequence (Figure S3B).

The importance of pORF32’s AL for Ta binding becomes

apparent in light of an alternate morphology of CATC-decorated

KSHV triplexes not observed at the CATC-decorated penton

vertices of HSV-1. A comparison of ourmodels of KSHV triplexes

with and without the CATC (Table 1; Figures 4I and 4J) reveals
(C and D) C1 reconstructions of the portal vertex (C) and penton vertex with one C

density within the Gaussian-filtered C1 map (gray), showing lower-resolution featu

cap putatively formed by pORF19 head domains are visible in the filtered map (C,

Putative head domains of the second pORF19 copy in each CATC are circled in

(E) Homologymodel of the pORF19 head domain docked into the C1 penton verte

(F) Superposition of the HSV-1 pUL25 head domain (PDB: 2F5U) with the docked

domain structure between HSV-1 and KSHV.

(G and H) Ribbon model of pORF32 colored according to the domains in HSV-1

(I and J) Schematics depicting Ta and Tc triplex orientations in the absence (I) and

Tri1 N-anchor retains a conserved orientation despite CATC-binding Ta’s 120� c
See also Figures S3 and S5 and Video S3.
that all Ta triplexes underlying CATCs experience an �120�

counterclockwise axial rotation relative to canonical undeco-

rated triplex Ta (cf. Figures 4I and 4J). Our models suggest

that this rotation may be due to the steric specificity of pORF32’s

Ta-binding AL. Specifically, a 120� counterclockwise rotation of

Ta exposes a deep groove running between the molecular

boundaries of Tri1 and the Tri2A/B dimer that facilitates docking

of pORF32’s AL and, thus, CATC. Strikingly, despite CATC-

decorated Ta’s large degree of apical (i.e., main body) rotation,

our structures show that Tri1’s N-anchor—the characteristic N

terminus of Tri1 subunits that penetrates the capsid floor—main-

tains a conserved orientation in the capsid interior at penton

vertices regardless of Ta’s apical orientation (and, by extension,

regardless of CATC decoration) (Figures 4I and 4J, respective in-

sets). (Periportal Ta triplexes, which are all CATC-decorated,

exhibit 120� counterclockwise apical rotation, but their Tri1

N-anchors are disordered and appear to adopt a unique

configuration.)

In the context of capsid assembly, our observations allow

several structure-based inferences. First, the presence of a uni-

form Tri1 N-anchor orientation (barring periportal triplexes) sup-

ports the notion that initial triplex attachment to the procapsid,

putatively through the Tri1 N-anchor, precedes the stage of

CATC binding (reviewed in Heming et al., 2017). Second, what-

ever the means by which the portal effects triplex orientation

and, thus, CATC binding (or perhaps vice versa) presumably oc-

curs at a stage of procapsid maturation before triplexes are fully

‘‘stapled’’ to the MCP floor by main-body interactions (Zhou

et al., 2014). This is predicated upon the necessity for triplex

Ta to have sufficient rotational freedom to permit adoption of a

CATC-bound orientation. Third, for reasons one and two,

CATC binding occupancy is highly unlikely to be predetermined

but, rather, determined with the simultaneous maturation of the

procapsid, although this is subject to influence by the portal,

as demonstrated previously.

Targeting CATC-Triplex Interaction Hotspots
At the vertex-proximal end of CATC, interactions with triplex Ta

occur exclusively through pORF32. An N-terminal helix (NH; aa

2–14) and two strands from pORF32’s N-terminal b-barrel

domain directly contact the apical surfaces of Ta’s Tri2A/B dimer

(Figures 5A–5C; Video S3). Additionally, the aforementioned AL

binds in Ta’s deep hydrophobic cleft between Tri1 and the

Tri2A/B dimer (Figures 5B–5D; Video S3). AL binding involves

three pORF32 hydrophobic residues—Val222, Leu224, and

Phe226 (Figure 5D)—as well as b sheet-like hydrogen bonding

between the AL and an adjacent Ta Tri1 strand (Figure 5E).
ATC occupancy (D), colored according to the key. Insets depict the colored C1

res and interactions. Connections between CATC helix bundles and the portal

inset) and circled in black. One head domain of pORF19 is clearly visible in (D).

green (C and D, insets).

x density reveals a finger-like motif (�aa 457–468) interacting with pentonMCP.

pORF19 head domain homologymodel demonstrates conservation of the head

pUL17 (H).

presence (J) of CATC at vertices. Insets (capsid interior view) show that the Ta

ounterclockwise apical rotation.

Cell 178, 1329–1343, September 5, 2019 1337



Figure 5. Key CATC-Triplex Interactions Defined by Structure-Guided Mutageneses

(A) Ribbon models of triplex-complexed CATC colored according to the key.

(B and C) Enlarged views illustrate how pORF320s anchoring loop (AL) and N-terminal helix (NH) interact with Ta (displayed as surface).

(legend continued on next page)

1338 Cell 178, 1329–1343, September 5, 2019



At the vertex-distal end of CATC, pORF32 sits atop, but does

not directly bind to, triplex Tc. Instead, CATC-Tc interactions rely

on the N-terminal tails of CATC’s two pORF19 subunits, which

extend distally from the helix bundle and descend beneath

pORF32 to contact Tc (Figures 5A and 5F). Contact with Tc oc-

curs mainly via a short helical motif (aa 20–24) from the N-termi-

nal tail of the ‘‘upper’’ (magenta) pORF19 subunit. An adjacent

helix belonging to Tc Tri1 (aa 264–275) orthogonal to the

pORF19 helical motif fits within the motif’s helical groove (Fig-

ure 5F), with Tri1’s Thr269 and Arg268 and pORF19’s Arg22

contributing hydrogen bonds to this intermolecular interaction

(Figure 5G). In contrast to upper pORF19, ‘‘lower’’ (green)

pORF19 exhibits no apparent direct contacts with Tc in our

visible structure. Nonetheless, lower pORF19 plays an important

role in lashing CATC’s constituents as a collective unit. Chiefly,

lower pORF19’s N-terminal tail contributes two b strands (aa

23–25 and 31–33) to form two sets of b sheet interactions—the

first with one b strand from pORF32 (aa 319–321) and upper

pORF19 (aa 30–32) each (Figure 5F, starred) and the second

with a b strand from pORF32 (aa 311–313) (Figure 5H, starred).

These two sets of b sheets fasten the vertex-distal end of

CATC in a quasi b-barrel.

The first 17 and 21 residues of upper and lower pORF19’s

N-terminal tails, respectively, are flexible and, thus, unmodeled

(Figure 5H). However, we speculate that some of these unmod-

eled residues may also bind Tc, augmenting previously

described CATC-Tc interactions at upper pORF19’s short heli-

cal motif. Particularly, strong unassigned densities roughly

three aa in length occupy the Tri1-Tri2A/B surface groove of

Tc (Figure 5I), analogous to pORF32’s AL occupying triplex

Ta’s groove (Figures 5B–5D). Given that the N-terminal tail of

upper pORF19 appears to extend away from Tc, and given

the proximity of lower pORF19’s Nth-most residue to Tc’s

groove, the unassigned densities likely belong to the unmod-

eled N-terminal residues of lower pORF19. If interactions here

are also similar to AL binding at Ta (i.e., in part involving b

sheet-like hydrogen bonds between adjacent backbones),

then pORF19 binding at this site may not necessarily be

sequence-specific, thus accounting for the unresolved side-

chain densities because of averaging.

To validate our structural interpretation of the roles of the

pORF32 NH and AL in CATC-Ta binding, we constructed three

pORF32 mutants with deletions in either the NH or AL or both,
(D) The AL (ribbon-and-stick superimposed with mesh density) binds a hydrop

hydrophobic).

(E) The AL forms b sheet-like hydrogen bonds (dotted lines) with an adjacent Tri1

(F and G) Consecutive enlarged views showing CATC-Tc interaction via upper pO

hydrogen bonds. Lower pORF19 facilitates two sets of b sheets (starred in F and

(H and I) The flexible N-terminal residues of upper and lower pORF19 could not be

traced (H, dashed lines) and observed (I, gray density).

(J–M) Structure-guided mutageneses of pORF32 (J and K) and pORF19 (L and

infectious virion production. Overexpressing pORF32mutants with deletions of N

reduced virion production normalized to the control (vector) (J). Likewise, overex

production (L). Expression of mutant pORF32 (K) and pORF19 (M) was verified byw

examined as an internal control.

(N–P) Mutageneses of triplex protein residues at the CATC-binding groove. Me

shown. The dashed line in (N) indicates the detection limit. Data are mean ± SEM

See also Figure S6 and Video S3.
named 32DNH, 32DAL, and 32DNH-DAL. We posited that these

‘‘loss-of-Ta-interaction’’ pORF32 mutants might serve as domi-

nant negatives if NH and/or AL are critical for CATC-Ta binding.

Essentially, pORF32 mutants expressed in KSHV-replicating

cells should compete against wild-type (WT) pORF32 (32WT)

for incorporation into CATC so that mutant-incorporated CATC

would be deficient in capsid association, inhibiting KSHV virion

formation. Indeed, expression of 32DNH and 32DAL reduced

virion production to 30.7% and 27.8% of that of the control,

respectively, whereas expression of 32DNH-DAL inhibited levels

to 12.1% (Figures 5J and 5K). Importantly, viral DNA replication

and viral RNA transcription were not significantly affected (Fig-

ures S6A and S6C). These results confirm that the pORF32 NH

and AL are both important for KSHV virion production, support-

ing our interpretation that these aa stretches mediate CATC-Ta

binding.

Similarly, to test our hypothesis that pORF19’s N-terminal tail

is important for CATC capsid association and, hence, function,

we generated two pORF19 mutants: 19DN28, which deletes

the first N-terminal 28 residues of pORF19 (i.e., all pORF19 res-

idues in contact with triplex Tc), and 19DN17, which deletes

pORF19’s first 17 residues (i.e., retains all pORF19 residues

visible in our structure but deletes the disordered, unmodeled

N-terminal tails). Compared with WT pORF19 (19WT), 19DN28

expression reduced virion production to 9.7% of that of the con-

trol without significantly affecting viral DNA replication or RNA

transcription (Figures 5L, 5M, S6B, and S6D), indicating that

pORF19 N-terminal interactions with Tc (Figures 5F–5I) are

important for viral efficacy. Remarkably, expression of 19DN17

also inhibited virion production to 30.6% of that of the control

(Figures 5L, 5M, S6B, and S6D), suggesting that pORF19’s first

17 residues of pORF19 are required for optimal pORF19-Tc

binding. These findings are therefore consistent with our specu-

lation that lower pORF19’s unmodeled N-terminal residues (aa

1–21) bind Tc’s hydrophobic groove, enhancing CATC-Tc

binding.

Finally, we mutated residues in the hydrophobic triplex

groove, creating six mutants: Tri1-I280R, Tri1-L278R/I280R/

L283E, Tri2-A216R, Tri2-L217R, Tri2-A216R/L217R, and Tri2-

V244R (Figure 5I). These mutants affect binding grooves indis-

criminately at both Ta and Tc triplexes (and, therefore, CATC

binding at both its vertex-proximal and vertex-distal ends). All

mutants yielded decreased virion production (Figure 5N),
hobic groove between the Tri1 and Tri2 dimer (cyan, hydrophilic / maroon,

strand (some side chains are hidden for clarity).

RF19, which interacts with Tc Tri1 via a helical motif (G). Dotted lines represent

H) at the CATC’s vertex-distal end.

modeled, although the disordered density from the two pORF19 copies can be

M), confirming the importance of their respective triplex-binding segments in

-terminal helix (DNH) and/or anchoring loop (DAL) in KSHV lytic-replicating cells

pressing pORF19 with truncated N-terminal 17 or 28 residues reduced virion

estern blotting with an anti-FLAG antibody. Expression of cellular GAPDHwas

asures of viral titer (N), genome replication (O), and RNA transcription (P) are

(n = 3 biologically independent samples).
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whereas neither viral DNA replication nor RNA transcription were

significantly affected (Figures 5O and 5P). Impressively, virion

production of mutant Tri2-A216R/L217R was under the detec-

tion limit (Figure 5N, UD).

DISCUSSION

Prospect of an Antiviral KSHV Inhibitor
The visualization of pORF32 and pORF19 peptide fragments

binding in the respective deep grooves of triplex Ta and Tc (Fig-

ures 5A–5I) and our demonstration of their importance in viral

replication (Figures 5J–5P) open exciting prospects for future

KSHV inhibitor design and drug development. Currently, most

available drugs countering herpesvirus infections are nucleic

acid analogs that target viral DNA synthesis. Unfortunately,

these often elicit negative side effects, including frequent induc-

tion of drug-resistant mutant viruses and varying kinds of toxicity

(Gilbert et al., 2002; Reusser, 1996; Walling et al., 2003). That the

DNA-packaging portal vertex is critically involved in the produc-

tion of virus progeny and that the five portal vertex CATC regis-

ters exhibit full CATC occupancy—which suggests that disrupt-

ing a single portal-associated CATC might abolish the assembly

of infectious virion—presents the possibility of a novel antiviral

target without homology with cellular proteins. Therefore, a

CATC-specific inhibitor would be very potent, and the deep

groove on triplexes can serve as a structurally informed target

for focused antiviral development.

CATC Binding Implications for Capsid Assembly and
Diversity
The portal is widely believed to serve as the nucleating nexus

of herpesvirus procapsid formation (Motwani et al., 2017;

Newcomb et al., 2005)—although capsid-like particles have

been observed in capsid protein-expressing insect cells and

cell-free systems in the absence of portal protein (Newcomb

et al., 1994; Perkins et al., 2008; Tatman et al., 1994)—by facil-

itating initial interactions with scaffold-tethered MCP subunits

and portal-adjacent triplexes (Deng et al., 2008; Zhou et al.,

1998). A metastable spherical procapsid then forms as fol-

lows. Tethering by the scaffolding protein brings together

additional MCP molecules. The scaffolding core ensures

proper curvature and size of the capsid in what is known as

the ‘‘rope’’ mechanism (Deng et al., 2008), and heterotrimeric

triplexes, with the N-terminal anchor of Tri1 (pORF62)

traversing the capsid shell, ‘‘plug’’ every 3-fold hole between

MCP capsomers. Our data showing that CATC-triplex Ta as-

sociation correlates with a 120� apical rotation of Ta (Figure 4I

and 4J)—but not the 3-fold-related 240�, eliminating the pos-

sibility of this being a stochastic event—indicate that the

determination of CATC binding (and, likely, binding of CATC it-

self or at least a subunit of CATC; Thurlow et al., 2006) occurs

not long after procapsid formation, when the triplex’s apical

orientation has yet to be fixed by procapsid maturation. Pro-

capsid maturation is concomitant with DNA packaging;

head-full is likely sensed through capsid elements and relayed

by the portal through the turret-like structure to the externally

located terminase for cleavage of the concatemeric genome

(Yang et al., 2007), and the spring-loaded dsDNA genome is
1340 Cell 178, 1329–1343, September 5, 2019
corked inside the capsid by the portal cap, putatively formed

by five portal-adjacent CATCs (Figure 1B).

That capsid structures are rigidly symmetric reflects the cap-

sid’s well-defined and conserved role in packaging and protect-

ing the viral genome, in marked contrast to both form and func-

tion of the largely pleomorphic tegument layer. Accordingly, all

three sub-families of herpesviruses have highly conserved

capsid proteins and structures but only partially conserved tegu-

ment and envelope proteins because these more often reflect

specific host cell adaptations. Among tegument proteins,

CATC is unique in possessing a structural role and, thus, being

relatively conserved, but even so, a surprising finding here is

that, unlike the full occupancy of CATC at capsid vertices in

neurotropic HSV-1 and HSV-2 (Dai et al., 2014; Dai and Zhou,

2018; Wang et al., 2018), CATC occupancy in KSHV at penton

vertices is only partial and varies even among KSHV capsids

(Figures 2 and 3). That KSHV CATC occupancy appears to be

dictated at least in part by the portal not only underscores the

portal’s aforementioned nucleation role but further spotlights

its allosteric effect in defining an emergent first level of variability

that, importantly, demarcates a departure from symmetry in

KSHV metastructure. A second constructive level of variability

is facilitated by pORF64, which accounts for two of the five sub-

units in CATC and is the largest tegument protein, with 2,635 res-

idues folded into multiple domains joined by presumably flexible

linkers (the vast majority of pORF64 is thus invisible in our struc-

ture). Some of these domains recruit other tegument proteins

and bind the endodomains of envelope glycoproteins (Rozen

et al., 2008; Sathish et al., 2012), introducing pleomorphic vari-

ability. Last, the majority of tegument proteins, including

pORF64, have been shown to be capable of being packaged

into non-infectious virus-like vesicles in the absence of capsids

(Gong et al., 2017), suggesting an alternate pathway of tegument

incorporation into virions independent of the capsid/CATC,

implicating yet another level of assembly-driven variability.

In light of the tegument’s primary role in manipulating host

cells to facilitate virus replication, the multiple layers of structural

variability at play in the tegument provide unique opportunities in

the context of herpesvirus adaptability. In much the same way

that more genetically fluid RNA viruses such as influenza viruses

(Harris et al., 2006; Vahey and Fletcher, 2019), filoviruses (Bharat

et al., 2011), and coronaviruses (Goldsmith et al., 2004) benefit

from heterogeneous compositions to rapidly respond to selec-

tive pressures, structural pleomorphism may provide a crucial

avenue of diversity in more genetically constrained dsDNA vi-

ruses (because of lower mutation rates) like KSHV, resulting in

an increase in evolutionary bandwidth. In essence, facing a rela-

tive lack of intraspecies genetic diversity (the tradeoff is more

viable progeny), adaptability regarding the ability to manipulate

hosts is, instead, implemented at a structural level. Our findings

regarding KSHV CATC occupancy offer a pertinent example:

given that HSV pUL36 (KSHV pORF64’s homolog) is involved

in axonic transport of alphaherpesvirus capsids (Dai and Zhou,

2018; Luxton et al., 2005), the absence of full CATC occupancy

in non-neurotropic KSHV perhaps reflects its lack of need for

long-range neuronal transport. The emergent transition from

rigidly symmetric structures to less-structured compartments

described here thus sheds light on a delicate balance of



conservation and adaptation that delineates the genetic arms

race between herpesvirus and host.
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Structure of C1 virion capsid This manuscript EMD-20430

Structure of C1 portal vertex This manuscript EMD-20431

Structure of C5 portal vertex This manuscript EMD-20432, PDB-6PPB

Structure of C12 portal This manuscript EMD-20437, PDB-6PPI

Structure of C1 penton vertex register, CATC-absent This manuscript EMD-20433, PDB-6PPD

Structure of C1 penton vertex register,

CATC-binding

This manuscript EMD-20436, PDB-6PPH

Experimental Models: Cell Lines
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iSLK-KSHV-BAC16 Jae U. Jung at USC N/A
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GCG TCG ACG GTA CCA GAT CTA CTT GTC GTC ATC

GTC TTT GTA GTC GCC ATA GCG GCC TCG AAT G-30

ORF19: 50-C CGT CAG ATC CGC TAG AGA TCT GCC

ACC ATG GAC TAC AAA GAC GAT GAC GAC AAG GGT

GGC GGA GGT TCT ATG CTG ACAT CAG AAA GGT C-30

and 50-CC GCG TCG ACG GTA CCA GAT CTA AAC GAC

CGC GAG GAC CAC-30

(Continued on next page)
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and 50-CGG GAA CCT TTT GCG AAG A-30
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Expression plasmids of pORF32 and its mutants This manuscript N/A

Expression plasmids of pORF19 and its mutants This manuscript N/A

Software and Algorithms

Relion2.1 Scheres, 2012 https://www3.mrc-lmb.cam.ac.uk/relion/

Sub-particle reconstruction scripts This manuscript https://github.com/procyontao/Herpesportal

UCSF Chimera 1.11.2 Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/
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pemsley/coot/;

Phenix 1.13 Adams et al., 2010 https://www.phenix-online.org/;
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Z. Hong

Zhou (Hong.Zhou@UCLA.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Viruses and cell lines
KSHV virions were isolated from iSLK-KSHV-BAC16 cells, received as a gift from Dr. Jae U. Jung of the University of Southern Cal-

ifornia. Dr. Jung’s group previously established the iSLK-KSHV-BAC16 cell line, which supports robust KSHV lytic replication and the

production of KSHV virions as previously described (Brulois et al., 2012; Dai et al., 2014, 2018). iSLK-KSHV-BAC16 cells were

cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum, 1% penicillin streptomycin,

1 mg/mL puromycin, 250 mg/mL G418, and 1,200 mg/mL hygromycin B. To induce KSHV lytic replication and thus KSHV virion pro-

duction, cells were treated with 1 mg/mL doxycycline plus 1 mM sodium butyrate (NaB) for three days, after which tissue culture su-

pernatant was collected. KSHV virions were pelleted by ultracentrifugation at 80,000 g for 1 hour, then resuspended in phosphate

buffered saline (PBS) and further purified in 15%–50% (w/v) sucrose density gradient sedimented at 100,000 g for 1 hour. In addition

to cryoEM studies, these KSHV virions were also used to infect human 293T cells at a MOI of 3. 293T cells infected with wild-type

KSHV virions (termed 293T-KSHV) or transfected with triplex mutant KSHV BACs were selected and maintained in DMEM supple-

mented with 10% fetal bovine serum, 1% penicillin-streptomycin, and 100 mg/mL hygromycin B (Dai et al., 2018). These 293T cells

harboring KSHV wild-type or triplex protein mutants were used for all functional analyses as described below in METHOD DETAILS.

METHOD DETAILS

CryoEM and icosahedral reconstruction
Aliquots of 2.5 mL purified virion sample were applied onto Quantifoil R2/1 Cu grids, manually blotted with filter paper and plunge-

frozen in liquid ethane. Super-resolutionmovies of purified wild-type KSHV intact virions were recorded on aGatan K2 direct electron

detection camera in counting mode with a pixel size of 1.03-Å/pixel at the specimen scale. The 26 frames in each movie were sub-

jected to drift correction using motioncorr (Li et al., 2013) and averaged to produce one micrograph. Defocus for each micrograph

was determined by CTFFind3 (Mindell and Grigorieff, 2003), and a total of 44,328 viral particles were picked manually. Because the

size of boxed particles (1,440 3 1,440 pixels) was so large that the cumulative dataset required an unrealistic amount of computer
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memory for computation, boxed particles were normalized and binned four times prior to implementing standard icosahedral recon-

struction procedures in Relion (Scheres, 2012). Using a Gaussian ball as the initial reference, auto-refinement for icosahedral recon-

struction was performed imposing I3 symmetry, generating an icosahedral map with one of the twelve 5-fold axes aligned on the

z axis.

Sub-particle extraction from icosahedron vertices and local focus value calculation
As illustrated in Figure S1, we extracted twelve sub-particles corresponding to the twelve capsid vertices for each KSHV virion

based on the icosahedral orientation described above. To do so, we first expanded the icosahedral symmetry of the particles using

relion_particle_symmetry_expand, generating 60 icosahedrally-related orientations for each particle. Each orientation has three Euler

angles denoted as parameters within theRelion star files: rot (_rlnAngleRot), tilt (_rlnAngleTilt), and psi (_rlnAnglePsi). We then defined

the orientation for each of the twelve vertices from the 60 icosahedrally-related orientations as follows. First, we noted that because

our icosahedral reconstruction was performed using I3 symmetry, there are 5 redundant orientations relative to each vertex that differ

only in their rot angles (i.e., the in-plane rotation angle about the z axis). For this reason, we classified the 60 orientations into twelve

groups each, with five orientations per group that differ only in their rot angles. We then randomly chose one of the five orientations in

each group as the orientation of that vertex, thereby defining the orientations for all twelve vertices of each capsid.

Next, we determined the location of each vertex sub-particle on the viral particle image. The two-dimensional Cartesian positions

(x, y) of each sub-particle on their respective particle image were calculated using the following formula:�
x = cosðpsiÞsinðtiltÞd +C�Ox
y = � sinðpsiÞsinðtiltÞd +C�Oy

(1)
where d is the distance from the center of the reconstructed cap
sid to the vertex in pixels and C is the center of the 2D projection

image (in our case, the projection center is at [720, 720], so C = 720 pixels). Because icosahedral reconstruction was performed

with four times-binned particles, Ox and Oy are four times the offset distance (_rlnOriginX and _rlnOriginY in Relion) of each particle

image relative to the projection center of the icosahedral reconstruction. Finally, sub-particles (384 3 384 pixels) containing only

vertices, henceforth termed ‘‘vertex sub-particles,’’ were extracted from original unbinned particle images based on their calculated

positions using relion_preprocess without further normalization.

Our sub-particle reconstruction method also enabled a more accurate determination of the defocus for each sub-particle, thus

alleviating the well-documented depth-of-focus problem (DeRosier, 2000; Zhang and Zhou, 2011). The defocus value of each vertex

sub-particle was calculated based on its location with the following formula:

Dz = Dz0 � cosðtiltÞd (2)
where Dz0 is the original defocus and Dz is the new defocus for e
ach vertex.

Classification and refinement of vertex sub-particles with 5-fold symmetry
To identify the unique portal vertex from among the 12 icosahedral vertices for each virus, we classified all vertex sub-particles with

5-fold symmetry (Figure S1). No rotational orientation search was allowed during classification (using the –skip_rotate parameter in

Relion), though the center for each vertex sub-particle was refined with a ± 3 pixel offset search. The initial reference for classification

was a 30-Å reconstruction of the vertex sub-particles using relion_reconstruct. Although the portal vertex lacks true 5-fold symmetry,

this classification with 5-fold symmetry imposed successfully distinguished between penton and portal vertices. Through 50 itera-

tions of 3D classification, four classes were ultimately generated, with one class in particular exhibiting markedly different structures

(i.e., a blurry central channel with a rod-like density) (Figure S1). Additionally, this class contained 7.9%, or approximately 1/12th of the

vertex sub-particles, consistent with the expectation that one out of twelve capsid vertices in each particle is a portal vertex. We thus

considered this class the portal vertex class. In rare instances, two or more vertices from a capsid were classified into the portal ver-

tex class, likely due to the low quality of these individual particles and/or errors in classification. These redundant sub-particles were

removed as follows: if two or more vertices from the same virus particle were assigned to the portal vertex class, only the vertex sub-

particle with the highest _rlnMaxValueProbDistribution score was retained. Upon removing all redundant particles, 39,773 vertex

sub-particles remained and were deemed sub-particles of the portal vertex, henceforth referred to as ‘‘portal vertex sub-particles.’’

3D auto-refinement with 5-fold symmetry imposed was then performed on these portal vertex sub-particles with only a local search

for orientation determination. Using relion_postprocess, the final resolution of this C5 reconstruction was calculated with two inde-

pendently refined maps from halves of the dataset with gold-standard FSC at the 0.143 criterion (Rosenthal and Henderson, 2003),

and determined to be 4.3-Å (Figures S2A and S2D). This reconstruction of the portal vertex contains a well-resolved 5-fold–arranged

capsid and tegument, but a smeared portal dodecamer density due to symmetry mismatch.

Reconstructing the portal dodecamer with 12-fold symmetry
From the portal vertex sub-particles, we further extracted sub-particles containing only the portal dodecamer in order to reconstruct

the 12-fold symmetric portal. The positions of portal dodecamers on portal vertex sub-particles were determined using the above

formula (1). The Euler angles (rot, tilt, and psi), Ox, and Oy are the orientation parameters of the portal vertex sub-particles; d is
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the distance from the center of the dodecamer to the center of the portal vertex sub-particle reconstruction (–100 pixels); and C is

the center of the 2D projection image of the portal vertex sub-particle (192 pixels). The sub-particles of portal dodecamers (192x192

pixels), henceforth referred to as ‘‘dodecamer sub-particles’’ were then extracted with relion_preprocess using these parameters.

To reconstruct the portal dodecamer, we expanded the 5-fold symmetry of the dodecamer sub-particles using relion_particle_-

symmetry_expand, generating five unique orientations for each dodecamer sub-particle. We then applied 3D classification with

12-fold symmetry imposed and without rotational orientation search, which, after 100 iterations, yielded five classes of similar

structures with a rotational difference of approximately 72� between classes. Ideally, each of the five expanded orientations of a

dodecamer sub-particle should be assigned to exactly one of the five classes, such that each class should contain 20% of the

symmetry-expanded sub-particles. After removing redundant particles as previously described—only particles with the highest

_rlnMaxValueProbDistribution score was retained—the five classes contained 39,073, 37,753, 36,797, 37,270, 38,031 particles,

respectively. As the five reconstructed classes were of the same quality upon visual inspection, we chose the class with the most

abundant particles for 3D refinement with 12-fold symmetry imposed and limited to local orientation search. As with the previous

reconstruction, the resolution of this C12 portal dodecamer reconstruction was calculated with relion_postprocess using gold-stan-

dard FSC at the 0.143 criterion (Rosenthal and Henderson, 2003), and determined to be�4.7-Å. However, both a visual assessment

of the portal’s density and local resolution estimate derived from ResMap (Kucukelbir et al., 2014) indicate the majority of the portal

itself has a resolution of�4.0-Å (Figures S2A and S2E), thereby permitting ab initiomodeling. The lower resolution estimate obtained

fromFSC calculation likely results from the unresolved, flexible regions of the portal and/or the surrounding DNAand protein densities

that deviate from 12-fold symmetry, which are present in the map and therefore factored into the estimation.

Asymmetric reconstruction of the portal vertex and virion
Since each portal orientation determined from the previous round of portal dodecamer classification was selected from one of the

five expanded orientations of each portal vertex sub-particle, these orientations can be used for 3D refinement of the portal

vertex and whole virion without symmetry. The asymmetric auto-refinement for both portal vertex sub-particles and virion particles

was thus performed with a local search for orientations determined from the classification of the portal dodecamer. Due to the

large computational requirement for refinement of the whole virion, we performed this refinement using two times-binned

particles. The resolution of the portal vertex and whole virion C1 reconstructions was determined by relion_postprocess to be

5.2-Å and 7.6-Å, respectively (Figures S2A, S2B, S2F, and S2G), according to gold-standard FSC at the 0.143 criterion (Rosenthal

and Henderson, 2003).

Focused classification of symmetry-relaxed penton vertex sub-particles
Our classification of vertex sub-particles identified not only the portal vertex class, but also generated three classes of penton vertex

(Figure S1). The sub-particles of these three classes were combined and deemed ‘‘penton vertex sub-particles.’’

Due to the 5-fold symmetry surrounding capsid vertices, CATC can bind to any of five registers at the penton vertex. To determine

the structures of both CATC-bound and CATC-absent registers, we expanded the 5-fold symmetry of penton vertex sub-particles by

relion_particle_symmetry_expand, producing 2,450,245 symmetry-expanded sub-particles of penton vertex. To create a mask for

focused classification of CATC, one CATC-containing region with its corresponding triplex Ta was manually traced using volume_

tracer in Chimera (Pettersen et al., 2004), after which a mask encompassing the traced region was created by relion_mask_create

in Relion. Focused classification of the masked region was then performed on symmetry-expanded penton vertex sub-particles

with neither angular nor offset search (using the –skip_align parameter in Relion). Since classification was performed on such a small

area relative to the whole reconstruction, we specified a tau factor of 10 during classification (Scheres, 2016). After 90 iterations, four

classes were generated, among which only one class had apparent CATC density corresponding to 37.9% of symmetry-expanded

masked regions, consistent with the occupancy calculated from a previous study (Dai et al., 2014). We therefore considered this a

CATC-binding class. The other three classes, though of slightly differing map quality, clearly lacked CATC density while sharing the

same triplex Ta orientation. We therefore regarded these three classes as CATC-absent classes.

Refinement of the CATC-binding and CATC-absent structures without symmetry
We next performed separate 3D auto-refinements without symmetry on both penton vertex sub-particles in the CATC-binding

class and in the CATC-absent classes. Orientations for sub-particles were determined by local search around each sub-particle’s

predetermined orientation from the mask refinement. A 30-Å reconstruction of penton vertex obtained through relion_reconstruct

was used as the initial reference for refinements. The final resolutions of the CATC-binding and CATC-absent reconstructions

determined by relion_postprocess were 3.8-Å and 3.7-Å, respectively, according to gold-standard FSC at the 0.143 criterion

(Rosenthal and Henderson, 2003; Figure S2C). Of note, because focused classification was performed with respect to the masked

area, only structural features within the masked area (which encompasses one CATC and an associated triplex Ta) of the

refined structure are genuine, while the other registers of CATC and triplex Ta are of mixed occupancy and/or conformations (Fig-

ure S1) (these will be fully separated in the following procedure). Local resolution estimation by ResMap (Kucukelbir et al., 2014)

indicates the masked area of both CATC-binding and CATC-absent reconstructions reached a resolution of �3.5-Å (Figures S2H

and S2I).
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Geometry-based classification and reconstruction of penton vertices
To distinguish all possible CATC-binding occupancies and binding permutations at the five registers of a penton vertex, we per-

formed occupancy and geometry-based classification. To reiterate, capsid vertices can theoretically be bound by any number of

CATCs from zero up to five. Moreover, in cases of two CATCs bound to a penton vertex, the two CATCs can either occupy registers

adjacent to each other or registers with a gap (i.e., an empty register) in between. We named these two binding patterns ‘‘ortho-

CATC–binding’’ and ‘‘meta-CATC–binding,’’ respectively. In instances of three CATCs bound to a penton vertex, the two vacant reg-

isters can either be adjacent or have a gap (i.e., an occupied register) between them, analogous to the case of two vertex-bound

CATCs. We thus named these two permutations ‘‘ortho-CATC–absent’’ and ‘‘meta-CATC–absent,’’ respectively. Altogether, eight

classes of penton vertices are possible. These are: zero-, one-, four-, and five-CATC–binding vertices; ortho- and meta-CATC–bind-

ing vertices (two CATCs bound); and ortho- and meta-CATC–absent vertices (three CATCs bound).

We then classified all penton vertex sub-particles into the eight classes as follows. We first noted that focused classification with

expanded symmetry enabled us to determine whether the masked area of a penton vertex sub-particle (for each register) fell into a

CATC-binding or CATC-absent class. We then counted the number of orientations (out of five symmetry-expanded orientations per

sub-particle) assigned to the CATC-binding class for each penton vertex sub-particle. This counted number of orientations, ranging

from zero to five, reflects the number of CATCs bound to that particular vertex in that viral particle. If two CATCs were determined to

bind that vertex, the angle between the two CATC-binding orientations was calculated. If the calculated angle was �72�, this partic-
ular penton vertex was ortho-CATC–binding; otherwise, it was deemed a meta-CATC–binding vertex. An analogous calculation for

CATC-absent registers was also performed when three CATCs were found to bind a vertex. We thus classified each penton vertex

sub-particle into one of the eight possible classes.

Classified penton vertex sub-particles were then used for subsequent auto-refinement. Given that five expanded orientations for

each vertex were already each assigned to either a CATC-binding or CATC-absent class (due to masked classification of the CATC-

binding region), orientations for vertex sub-particles were determined as follows. The orientations for zero- and five-CATC–binding

vertex sub-particles were randomly selected from their five orientations in the CATC-absent andCATC-binding classes, respectively.

Orientations of one-CATC–binding and four-CATC–binding vertices were chosen as their single orientation in the CATC-binding and

CATC-absent classes, respectively. Where each vertex bound two CATCs, orientations were chosen as one of the two orientations in

the CATC-binding class, such that the second (i.e., non-chosen) orientation was a 72� and 144� counterclockwise rotation from the

chosen orientation, for ortho- and meta-CATC-binding vertices, respectively. Similarly, the orientations for ortho- and meta-CATC–

absent classes were chosen such that the non-chosen CATC-absent orientation was a 72� and 144� counterclockwise rotation from

the assigned orientation, respectively. For all auto-refinements, sub-particle orientations were determined by local angular and offset

searches about these selected orientations, and initial references were 30-Å reconstructions of the sub-particles generated by re-

lion_reconstruct. 5-fold symmetry was imposed during refinements of zero- and five-CATC–binding vertices, while refinements of

all other binding occupancies were carried out without symmetry. The resolutions of the resulting eight reconstructions determined

by relion_postprocess according to gold-standard FSC at the 0.143 criterion were 5.8-Å, 4.7-Å, 6.9-Å, and 9.0-Å for zero-, one-, four-,

and five-CATC–binding vertices, respectively; 4.1-Å and 5.3-Å for ortho- and meta-CATC–binding vertices, respectively; and 4.7-Å

and 5.0-Å for ortho- and meta-CATC–absent vertices, respectively.

As the orientation information of all CATC-binding and CATC-absent registers and vertex sub-particles were conserved in their

respective header files in our workflow, we were able to trace each register and vertex back to their original particle image. This

enabled us to conduct a survey of the global number of CATCs in each capsid and generate a histogram tallying this data (Figure 3B).

Atomic and homology modeling
Atomic models were built ab initio following established protocol for model building from cryoEM density maps as described in great

detail recently (Yu et al., 2018). Briefly, we assigned amino acid residues by correlating predicted secondary structures from Phyre2

(Kelley et al., 2015) and visible side-chain features in the mainchain density. Initial Ca backbone traces were generated using the bat-

on_build utility in COOT (Emsley et al., 2010), and full-atom registered mainchains were manually refined using regularize_zone to

improve both geometry and fit in our cryoEM density. Subsequent iterations of real space refinement in Phenix (Adams et al.,

2010) and manual refinement in COOT were then applied to optimize the atomic models.

To build the homology model of pORF19 globular head domain (aa 127-546), we first generated an initial model utilizing an exten-

sion ofModeler (Webb and Sali, 2017) inChimera (Pettersen et al., 2004), using the HSV-1 pUL25 head domain X-ray crystal structure

(PDB: 2F5U) as a template. The generatedmodel was then rigidly fitted into the density map of a CATC-binding penton vertex, manu-

ally adjusted in COOT, then refined with Phenix real space refinement to improve fit and geometry.

Construction of pORF32/pORF19 plasmids
To generate a C-terminal FLAG-tagged expression plasmid of pORF32 (32WT), we PCR-amplified its coding region using primers 50-
AC CGT CAG ATC CGC TAG AGA TCT GCC ACC ATG GAT GCG CAT GCT ATC AAC-30 and 50-CC GCG TCG ACG GTA CCA GAT

CTA CTT GTC GTC ATC GTC TTT GTA GTC GCC ATA GCG GCC TCG AAT G-30, and further cloned the PCR product into Red-

TrackCMV vector using an NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolabs). The pORF19 coding region was

PCR-amplified using primers 50-C CGT CAG ATC CGC TAG AGA TCT GCC ACC ATG GAC TAC AAA GAC GAT GAC GAC AAG

GGT GGC GGA GGT TCT ATG CTG ACAT CAG AAA GGT C-30 and 50-CC GCG TCG ACG GTA CCA GAT CTA AAC GAC CGC
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GAG GAC CAC-30, and also cloned into RedTrackCMV vector to generate an N-terminal FLAG-tagged expression plasmid (19WT).

pORF32 mutants and pORF19 mutants were generated by PCR-based deletion mutagenesis from 32WT and 19WT, respectively.

Sequences of the PCR-amplified fragments and their correct insertion in the plasmid were verified by sequencing.

Titration of infectious KSHV virions
The concentration of infectious KSHV virions was determined as previously described (Gong et al., 2016). Briefly, 293T-KSHV cells

were transfected with tegument protein expression plasmids or the empty vector as control. At 16 h post-transfection, cells were

treated with 0.5 mM NaB plus 25 ng/mL 12-O-Tetradecanoylphorbol-13-acetate (TPA) to induce KSHV lytic replication. Three

days later, supernatants were collected, centrifuged at 10,000 g for 10 min at 4�C to remove cellular debris, serially diluted in

DMEM with 10% FBS, and then used to infect 293T cells in 96-well plates by spinoculation (3,000 g for 1 h at 30�C). Two days

post-infection, GFP-positive cell clusters containing two or more cells were counted under a fluorescence microscope to determine

the titer of KSHV virion. Infectious units (IU) are expressed as the number of GFP-positive cell clusters in each well at a specific dilu-

tion of the viral stock.

Measuring viral DNA replication and RNA transcription by real-time PCR
Total DNAwas isolated from 293T-KSHV cells induced with NaB plus TPA, and viral genome copy numbers were determined by real-

time PCR using primers for the essential viral gene ORF59. Total RNA was extracted from cells with Purelink RNA Mini Kit (Thermo

Fisher Scientific), treated with DNase I, then reverse-transcribed using SuperScript III Reverse Transcriptase (Thermo Fisher Scien-

tific) and random hexamers. Real-time PCR was then performed with the following primers to detect the corresponding DNA or RNA

transcripts. Host house-keeping gene GAPDH: 50-TGC ACC ACC AAC TGC TTA GC-30 and 50-GGC ATG GAC TGT GGT CAT GAG-

30; KSHV immediate early geneRTA: 50-CAC AAA AATGGCGCAAGATGA-30 and 50-TGG TAGAGT TGGGCCTTC AGT T-30; KSHV
early geneORF59: 50-TTG GCA CTC CAA CGA AAT ATT AGA A-30 and 50-CGG GAA CCT TTT GCG AAG A-30; KSHV late gene K8.1:

50-GTA ACC GTG TGC CAT TTT CTG-30 and 50-TCC CAG CAA TAA ACC CAC AG-30.

Western blotting and antibodies
Cells were lysed in 1X western blotting loading buffer, resolved by SDS-PAGE gel electrophoresis, and transferred onto PVDF mem-

brane. Proteins were detected with antibodies against FLAG-epitope (Sigma-Aldrich) or GAPDH (Abcam). HRP-conjugated second-

ary antibodies (Cell Signaling Technology) were used for detection with SuperSignal West Femto Maximum Sensitivity Substrate

(Thermo Fisher Scientific).

Construction of Tri1 and Tri2 KSHV mutants
KSHV-BAC16 plasmid wasmodified according to a previously describedmethod (Brulois et al., 2012; Gong et al., 2016). Briefly, DNA

fragments of KSHV ORF62 (Tri1) and ORF26 (Tri2) with defined mutations were used to replace the wild-type sequence in KSHV-

BAC16 plasmid by homologous recombination. Restriction patterns of mutated KSHV BAC plasmids were verified by comparison

to that of wild-type KSHV-BAC16 plasmid to ensure overall genome integrity. Fragments containing mutations were PCR-amplified

fromBAC plasmids and sequenced to confirm that all mutations were correct. Mutant BAC plasmids were transfected into 293T cells

individually, followed by selection with 100 mg/mL hygromycin B for one month to generate cell lines latently infected by a specific

KSHV mutant virus. As described above, KSHV lytic replication was induced by treatment of cells with 0.5 mM NaB plus 25 ng/mL

TPA. Three days later, supernatants were collected for determining titers of infectious KSHV virions, while cells were harvested for

measuring viral DNA replication and RNA transcription as described above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical comparisons between groups were made using Student’s t test calculated in Microsoft Excel. Data and error bars dis-

played for measured relative virion production, viral titer, genome replication levels, and RNA transcription levels (shown in Figures

5J, 5L, 5N–5P, and S6A–S6D) are presented as mean ± SEM (n = 3 biologically independent samples).

DATA AND CODE AVAILABILITY

Six cryoEMmaps generated during this study have been deposited in the Electron Microscopy Data Bank (EMDB) and are available

under accession numbers EMD-20430 (C1 virion capsid reconstruction), EMD-20431 (C1 portal vertex reconstruction), EMD-20432

(C5 portal vertex reconstruction), EMD-20437 (C12 portal reconstruction), EMD-20433 (C1 penton vertex register, CATC-absent

reconstruction), and EMD-20436 (C1 penton vertex register, CATC-binding reconstruction). Atomic models corresponding to

EMD-20432, EMD-20437, EMD-20433, and EMD-20436 have been deposited in the Protein Data Bank (PDB) and are available under

accession numbers PDB-6PPB, PDB-6PPI, PDB-6PPD, and PDB-6PPH, respectively. Sub-particle reconstruction scripts used in

our workflow have been deposited on GitHub and can be accessed here: https://github.com/procyontao/Herpesportal.
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Supplemental Figures

Figure S1. Sequential Localized Classification and Sub-particle Reconstruction, Related to Table 1 and STAR Methods

Flowchart illustrates the application of sequential localized classification and reconstruction to resolve symmetry-mismatched structures of portal and penton

vertices.



Figure S2. Resolution Assessment of Reconstructions, Related to Table 1 and STAR Methods

(A-C) Gold-standard FSC curves of all cryoEM reconstructions. Based on the 0.143 criterion, the resolutions of our C1 portal vertex, C5 portal vertex, and C12

portal reconstructions are 5.2-Å, 4.3-Å, and 4.7-Å, respectively. The resolution of our C1 capsid reconstruction is 7.6-Å, and the resolution of our penton vertex

reconstructions with and without CATC are 3.8-Å and 3.7-Å, respectively. (D-I) Density maps colored by local resolution estimated from ResMap (Kucukelbir

et al., 2014). Note that despite an FSC estimated resolution of 4.7-Å, the vast majority of our C12map reached a resolution of 4.0-Å or better, thus enabling atomic

model building.



Figure S3. Bioinformatics Predictions and Analyses, Related to Figures 1 and 4

(A) Secondary structure and disorder prediction for pORF43 obtained fromPhyre2 (Kelley et al., 2015), annotated by pORF43 atomicmodel domains for reference

as per key. (B) Structure-based pairwise alignment of HSV-1 pUL17 and KSHV pORF32, performed using MatchMaker in Chimera (Pettersen et al., 2004).



Figure S4. Density Strength as an Indicator of CATC Binding Occupancy, Related to Figures 2 and 3

Chart displays capsid vertices at progressively lower density display thresholds. CATCs appear to bind only portal-side registers of each penton vertex. Red

arrows indicate the direction of the portal vertex with respect to each penton vertex location. Dashed red lines indicate each respective penton vertex’s equatorial

(where applicable in relation to the portal-side equatorial rule).



Figure S5. High- and Low-Resolution Density Features of the CATC, Related to Figure 4

(A) Densities of B-factor–sharpened and unsharpened maps of penton CATC. Density of the loop between the N-terminal helix regions of magenta ‘‘upper’’

pORF19 is only visible in the unsharpened map. Boxed regions correspond to colored inset boxes illustrating residue features (ribbon-and-stick) in density

(mesh). (B) C1 reconstruction of penton vertex with one CATC bound, colored as per key. Dotted black circle denotes density putatively assigned to the second

pORF19 head domain (density shown at a lower threshold than that of surrounding features). Inset displays the C1 reconstruction in (A) fitted within the same

reconstruction Gaussian-filtered at 3.0s to showcase connectivity between the weaker (green) putative pORF19 head domain and CATC helix bundle. (C) CATC

density shown with both pORF19 head domains (at lower thresholds). Note that a helical density feature can be observed in the putative (green) pORF19 head

domain density.



Figure S6. Overexpressing pORF32/pORF19 Mutants Does Not Significantly Affect KSHV DNA Replication or Gene Expression, Related to
Figure 5

(A-B) Viral genome replication in cells overexpressing wild-type or mutant forms of pORF32 (A) or pORF19 (B). 293T-KSHV cells were transfected with corre-

sponding expression plasmids or empty vector as control, and then induced with NaB and TPA to facilitate KSHV lytic replication. Total DNA was extracted from

cells, and genome replication was determined by qPCR. (C-D) Viral RNA transcription in cells transfected with wild-type or mutant forms of pORF32 (C) or

pORF19 (D). Total RNAwas extracted from the same cells as (A-B). Viral RNA transcripts were quantified by RT-qPCR and presented as x-fold changes over RNA

level of empty vector transfected cells. Data is mean ± SEM (n = 3 biologically independent samples).


