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Machine learning (ML) is perhaps the most useful tool for the interpretation of large
genomic datasets. However, the performance of a single machine learning method in
genomic selection (GS) is currently unsatisfactory. To improve the genomic predictions,
we constructed a stacking ensemble learning framework (SELF), integrating three
machine learning methods, to predict genomic estimated breeding values (GEBVs). The
present study evaluated the prediction ability of SELF by analyzing three real datasets,
with different genetic architecture; comparing the prediction accuracy of SELF, base
learners, genomic best linear unbiased prediction (GBLUP) and BayesB. For each trait,
SELF performed better than base learners, which included support vector regression
(SVR), kernel ridge regression (KRR) and elastic net (ENET). The prediction accuracy
of SELF was, on average, 7.70% higher than GBLUP in three datasets. Except for the
milk fat percentage (MFP) traits, of the German Holstein dairy cattle dataset, SELF was
more robust than BayesB in all remaining traits. Therefore, we believed that SEFL has
the potential to be promoted to estimate GEBVs in other animals and plants.

Keywords: ensemble learning, stacking, genomic prediction, machine learning, prediction accuracy

INTRODUCTION

Genomic selection (GS) was first introduced by Meuwissen et al. (2001), by using whole-genome
markers’ information to predict the genomic estimated breeding values (GEBVs). The first
application of GS was on dairy cattle, to improve the selection of better performing genotypes and
accelerate the genetic gain by shortening the breeding cycles (Hayes et al., 2009a; Crossa et al., 2017;
Tong et al., 2020). After more than 10 years of development, GS has been wildly used in livestock
and plant breeding programs with high prediction accuracy (Hayes et al., 2009a; Heffner et al.,
2009). Moreover, GS has been applied to improve the prediction of complex disease phenotypes
using genotype data (De Los Campos et al., 2010; Menden et al., 2013). However, a critical concern
in genomic prediction is the prediction accuracy calculated by the Pearson’s correlation between
the estimated breeding values and the corrected phenotypes. Therefore, the exploration of more
robust genomic prediction methods is a well-identified searched by breeders. In recent years, there
was an increasing interest in applying machine learning (ML) to genomic prediction. Machine
learning is a computer program which can optimize a performance criterion using training data,
making predictions or decisions without being explicitly programmed (Alpaydin, 2020). The
excellent predictive ability for complex problems leads ML to be employed in industries requiring
high accuracy, e.g., email filtering, face recognition, natural language processing or stock market
forecasting. ML has been used in GS and might have the best performance at the interpretation
of large-scale genomic data (De Los Campos et al., 2010). González-Camacho et al. (2018)
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suggested that ML was a valuable alternative to well-known
parametric methods for genomic selection. Montesinos-López
et al. (2018) also found that the predictions of the multi-trait
deep learning model were very competitive with the Bayesian
multi-trait and multi-environment model. In another study,
Jubair and Domaratzki (2019) estimated GEBVs of Iranian
wheat landraces by ensemble learning, obtaining better results
with those than with single machine learning. It is possible to
clearly identify a trend from the literature that more breeders
are applying machine learning methods to estimate GEBVs in
genomic prediction.

Currently, the machine learning methods applied in animal
and plant breeding tend to mainly include: support vector
regression (SVR), random forest (RF), kernel ridge regression
(KRR), multi-layer prediction (MLP) and convolutional neural
network (CNN) (Gianola et al., 2011; Libbrecht and Noble, 2015;
González-Camacho et al., 2018; Zou et al., 2019). Those machine
learning methods possess the ability to predict GEBVs by building
a complex non-linear model, considering the interaction effects
and epistatic effects (Gianola et al., 2011). Nevertheless, the
prediction accuracy of those single machine learning methods did
not improve much when compared to the traditional genomic
prediction methods [GBLUP, ridge regression BLUP (rrBLUP),
BayesB, etc.]. Ogutu et al. (2011) compared the prediction
accuracy of RF, boosting and support vector machine (SVM) with
rrBLUP in a simulated dataset, in which rrBLUP outperformed
the three machine learning methods. When comparing the
prediction performance of multi-layer prediction and the SVM
with the Bayesian threshold genomic best linear unbiased
prediction (TGBLUP), the reliability of two machine learning
methods was comparable to, and in some cases, outperformed
that of TGBLUP (Montesinos-López et al., 2019). Albeit that
the achievement of ML in GS has not been fantastic, breeders
are confident on this promising tool. Moreover, even currently
associated with certain limitations, it outstands from the other
common available methods in the performance.

One of the available solutions to further improve the
prediction accuracy of ML in GS is to simultaneously integrate
several machine learning methods in genomic prediction.
Ensemble learning is an ML paradigm where multiple learners
are trained to solve the same problem, therefore, the obtained
robustness is higher when compared to that using single
learner (Thomas, 1997; Polikar, 2006). Stacking, boosting and
bagging were the most common integration strategies used
on ensemble learning, among which stacking has a powerful
prediction capability for complex problems. In other research
areas, stacking has been applied to date prediction, protein-
protein interaction prediction, credit scoring, cancer detection,
etc. (Wang et al., 2011; Wang Y. et al., 2019; Sun and Trevor,
2018; Yi et al., 2020). However, the application of stacking in GS
has rarely been reported.

Therefore, the objective of this study was to improve genomic
predictions by using a stacking ensemble learning framework
(SELF). In the experiment, SVR, KRR, and ENET were selected
as the base learner, and the ordinary least squares (OLS) linear
regression was chosen as the meta learner to construct the
SELF model. Subsequently, we evaluated the SELF model using

two animal datasets (Chinese Simmental beef cattle dataset
and German Holstein dairy cattle dataset) and a plant dataset
(Loblolly pine dataset). To assess the performance of SELF, we
compared the prediction accuracy of SELF with the base learners,
GBLUP and BayesB. Finally, the 20-fold cross-validation was
employed to mitigate the impact of the accidental error.

MATERIALS AND METHODS

Dataset
Chinese Simmental Beef Cattle Dataset
The Chinese Simmental beef cattle population included 1,217
individuals; born between 2008 and 2014 in Ulgai, Xilingolia
of China, and were slaughtered at 16 to18 months. After
slaughtering, the carcass trait was assessed according to
the institutional meat purchase specifications for fresh beef
guidelines. At the present study, three important economic traits
were selected for latter analysis: live weight (LW), carcass weight
(CW), and eye muscle area (EMA). The statistics description
for each trait included an estimation of component variance,
which is presented in Table 1. The entire Chinese Simmental
beef cattle population was genotyped by Illumina R© BovineHD
BeadChip (770K). The quality control criteria of genotype data
were as follows: minor allele frequency (MAF) > 0.05, call
rate (CR) > 0.95 and P-value > 10−5 from Hardy-Weinberg
equilibrium (HWE). In addition, the fix effects were used to
correct the phenotypes of each trait. Among them, age and sex
were regarded as a contemporary group; the fattening time and
initial weight were regarded as covariates.

German Holstein Dairy Cattle Dataset
The dataset of German Holstein dairy cattle consisted of 5,024
bulls with genotypes and phenotypes (Zhang et al., 2015). The
genotype data were generated with the Illumina R© Bovine SNP50
BeadChip [42,551 single nucleotide polymorphisms (SNPs)]. All
of the SNPs met the following standards: HWE P-value > 10−4,
CR > 0.95 and MAF > 0.01 (Yin et al., 2020). Because the dataset
used at the present study was not original, all the phenotype data
had been standardized (mean = 0, standard deviation = 1). More
details about the original dataset can be found at Zhang et al.
(2015). For the German Holstein dairy cattle dataset, the statistics
description was based on Zhang et al. (2015) and can be found in
Table 1. The phenotypes were described by three traits: milk yield
(MY), milk fat percentage (MFP) and somatic cell score (SCS).
These three traits may represent three genetic architectures of
complex traits composed of: (1) one major gene and a large
number of small effect loci (MFP), (2) few moderate effect loci
and many small effect loci (MY), and (3) many loci with small
effects (SCS), respectively (Zhang et al., 2015; Yin et al., 2020).

Loblolly Pine Dataset
The Loblolly pine dataset comprised 951 individuals from
61 families, having 17 traits systemically recorded from each
individual (Resende et al., 2012). For the original dataset, all
the individuals were genotyped with an Illumina R© Iminium
assay (7216 SNPs) (Zhang et al., 2015). After quality control,
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TABLE 1 | Descriptive statistics of the phenotype data used in the genomic prediction.

Dataset Trait Na h2 Mean SD

Beef cattle LW 1216 0.53 505.26 70.76

CW 1216 0.44 271.36 45.65

EMA 1117 0.57 85.21 13.32

Dairy cattle MY 5024 0.95 370.79 641.60

MFP 5024 0.94 −0.06 0.28

SCS 5024 0.88 102.32 11.73

Loblolly pine HT 861 0.31 20.30 73.31

CWAL 861 0.27 2.44 27.32

TS 910 0.37 0.10 1.22

Na, number of the animal with phenotypes; h2, heritability; SD, standard deviation. LW, live weight; CW, carcass weight; EMA, eye muscle area; MY, milk yield; MFP, milk
fat percentage; SCS, somatic cell score; HT, total stem height; CWAL, crown width along the planting beds; TS, tree stiffness.

the genotypes contained 4,853 polymorphic SNPs, which were
the same as used by Resende et al. (2012) and Zhang et al.
(2015). The phenotypes that were used were a subset of the
original phenotype data. Within the traits selected, i.e., growth
traits (total stem height, HT), development traits (crown width
along the planting beds, CWAL) and wood quality traits (tree
stiffness, TS), only one trait was chosen to implement prediction
models, respectively. The statistics description for the Loblolly
pine dataset is shown in Table 1.

Stacking
Stacking is a form of meta-learning which can yield impressive
results by designing novel deep learning architectures (Kyriakides
and Margaritis, 2019). The core idea of stacking is using the
base learners to generate metadata for the inputs and then
utilize another learner, generally called the meta-learner, to
process metadata. Base learners are usually called level 0 learners,
the meta learners are called level 1 learners and the meta
learners stacked on the based learners are the so-called stacking
(Kyriakides and Margaritis, 2019). In genomic prediction, the
SELF is performed in two steps: firstly, a series of single machine
learning methods are trained to generate metadata using markers’
information; secondly, a meta learner are trained to predict
GEBVs using metadata. The data flow of SELF for genomic
prediction is shown in Figure 1.

The base learners employed to construct SELF at present
study, involved SVR, KRR and ENET. SVR and KRR construct
a non-linear model to predict GEBVs and ENET estimate the
GEBVs by building a linear regression. It is important to highlight
that the meta learner should be a relatively simple ML algorithm
to (1) avoid overfitting and (2) possess the ability to handle
correlated inputs with no assumptions about the independence
of features. These two factors will be important because the
inputs of meta-learner will be highly correlated (Kyriakides and
Margaritis, 2019). Taking into account the above requirements,
the OLS linear regression was chosen as the meta-learner in
the SELF. During the SELF model training, the genotypes were
not taken as the direct inputs, instead, it were replaced by the
genomic relationship matrix derived from genotypes (Gianola
et al., 2011). Although this might reduce the prediction accuracy
of a single machine learning method, it would significantly reduce

FIGURE 1 | The data flow of stacking ensemble learning framework for
genomic prediction, from original data to the base learners, creating metadata
for the meta-learner. G, genotypes derived genomic relationship matrix; SVR,
support vector regression; KRR, kernel ridge regression; ENET, elastic net;
OLS, ordinary least squares linear regression.

the time and the memory required for computation. In theory,
the calculation time of SELF will be equivalent to five times of that
by a single machine learning method, as five-fold cross-validation
was used to generate metadata. It is important to highlight that
if the same steps of previous studies were used to apply the
genotypes as the inputs, the computation time of SELF would be
unacceptable. Finally, SELF was run in Python (V3.7) with the
help of sklearn (V0.22) package. The genomic relationship matrix
G was calculated as described by VanRaden (2008):

G =
MM

′∑m
l=1 2pjqj

where M is a n × m matrix (n is the number of individuals, m is
the number of markers) and elements of column j in M are 0−
2pj, 1− 2pj and 2− 2pj for genotypes A1A1, A1A2 and A2A2; qj is
allele frequency A1 at locus j, pj is allele frequency A2 at locus jth.
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Support Vector Regression
Support vector machine (SVM) is grounded in statistical learning
theory. SVR is an application of SVM for regression. SVR utilizes
a linear or non-linear kernel function to map the original space
to a higher dimensional feature space (Müller and Guido, 2016;
Li, 2019). Therefore we built a linear prediction model on feature
space. The SVR problem was formalized as:

min
w,b

1
2
w2
+ C

m∑
i=1

Lε

(
f (xi)− yi

)
where C is the regularization constant, Lε is the ε-insensitive loss:

Lε =

{
0 if z <ε

|z| − ε, otherwise

where k
(
xi, xj

)
= φ (xi)T φ

(
xj
)

z = f (xi) − yi. Through a series
of optimization processes, the SVR can be written as:

f (x) =
m∑
i=1

(
_
α i −αi

)
k(x, xi)+ b

where k
(
xi, xj

)
= φ (xi)T φ

(
xj
)

is the kernel function. In this
study, the Gaussian kernel was used to map original data and
the most suitable parameters of C and ε for each trait were
determined by grid search. The function SVR in sklearn package
(V 0.22) was used to implement SVR methods.

Kernel Ridge Regression
The difference between KRR and ridge regression is that KRR
exploits the kernel trick to define a higher dimensional feature
space and then builds the ridge regression model in feature space
(Douak et al., 2013; He et al., 2014; Exterkate et al., 2016). For
KRR, the final prediction function can be written as the following:

f (x) = k
′

(K + λI)−1 y

where K is the so-called gram matrix with entriesKij = φ(xi) ·
φ(xj), k is a vector with entries ki = φ(x) · φ(xi = k(x, xi)
withi = 1, 2, 3, . . . , n, n is the number of training samples; I is
the identity matrix, λis the ridge parameter. In this study, the
kernel was used to transform input data that was selected by the
grid search method.

Elastic Net
Elastic net is a linear regression model trained with both `1
and `2-norm regularization of the coefficients. This combination
leads to the ENET, presenting similar advantages when compared
to Lasso and ridge regression simultaneously. Thus, ENET can
learn a sparse model where few of the weights are non-zero and
maintaining the regularization properties (Pedregosa et al., 2011).
The progress of training the ENET model can be seen as an
optimization process for:

for this study, X cis a matrix of the training section of G
matrix, ω is the vector of weights, α and ρ are the parameters that
determined by grid search.

Genomic Best Linear Unbiased
Prediction
The basic GBLUP method was built by the following equation
(VanRaden, 2008; Hayes et al., 2009b):

y = 1µ+ Zg + e

where y is the vector of the correct phenotype, µ is the overall
mean, 1 is a vector of ones, Z is a design matrix that allocates
records to breeding values, g is a vector of genomic breeding
values, e is a vector of residuals. Random residuals were assumed
that e ∼ N(0, Iσ2

e ) where σ2
e is the residual variance, I is

an identity matrix. g assumed that g ∼ N(0,Gσ2
g) where σ2

g
is the additive genetic variance, and G is the marker-based
genomic relationship matrix. To implement GBLUP, we used the
mixed.solve function of rrBLUP package in the R V3.5.

BayesB
BayesB assumed a priori that many markers have no effects,
while some have an effect attributed to gamma or exponential
distribution (Meuwissen et al., 2009). The formula of BayesB can
be written as the following:

y =
p∑

j=1

mjαj + e

where y is a vector of phenotypes; mjis the jth maker; αjis the
effect of the jth maker andαj ∼ N(0, σ2

αj
). The variance of αj is

assigned an informative before showing the presence (with the
probability of 1− π) and absence (with the probability of π) of
the marker j. The π was determined by the experience before
building the BayesB model.

Cross-Validation
The prediction accuracy of the machine learning methods,
GBLUP and BayesB was evaluated with K-fold cross-validation
(CV). Each dataset under study was randomly divided into
twenty folds by the 20-fold cross-validation. Each fold would be
the testing set and the remaining nineteen folds were grouped
into the training set. The training set was used to teach the
SELF model how to predict the GEBVs of individuals in the
testing set. The accuracy obtained and shown in the result section
was the mean of prediction accuracy of each testing set which
was measured as the Pearson correlation between the corrected
phenotypes (y) and predicted GEBV (ypre) using the formula

r =
cov(y, ypre)√

var
(
y
)
∗ var(ypre)

RESULTS

Comparison Between the Prediction
Accuracy of Base Learners, GBLUP and
BayesB
Firstly, we described the prediction accuracy of base learners,
GBLUP and BayesB for three datasets, as shown in Table 2.
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TABLE 2 | Prediction accuracy of SVR, KRR, ENET, GBLUP, and BayesB for the three datasets.

Dataset Trait SVR KRR ENET GBLUP BayesB

Beef cattle LW 0.274 ± 0.022 0.283 ± 0.019 0.276 ± 0.018 0.256 ± 0.017 0.265 ± 0.016

CW 0.307 ± 0.016 0.315 ± 0.015 0.315 ± 0.017 0.292 ± 0.014 0.282 ± 0.012

EMA 0.280 ± 0.025 0.281 ± 0.022 0.285 ± 0.024 0.292 ± 0.015 0.281 ± 0.015

Dairy cattle MY 0.764 ± 0.013 0.781 ± 0.009 0.762 ± 0.014 0.768 ± 0.006 0.767 ± 0.005

MFP 0.796 ± 0.012 0.828 ± 0.006 0.797 ± 0.012 0.832 ± 0.003 0.855 ± 0.003

SCS 0.706 ± 0.010 0.751 ± 0.008 0.722 ± 0.019 0.752 ± 0.006 0.731 ± 0.003

Loblolly pine HT 0.340 ± 0.027 0.352 ± 0.011 0.366 ± 0.014 0.349 ± 0.012 0.365 ± 0.009

CWAL 0.352 ± 0.022 0.359 ± 0.018 0.369 ± 0.022 0.384 ± 0.014 0.400 ± 0.011

TS 0.397 ± 0.017 0.407 ± 0.016 0.398 ± 0.015 0.366 ± 0.012 0.418 ± 0.013

The accuracy was calculated by the Pearson’s correlation. LW, live weight; CW, carcass weight; EMA, eye muscle area; MY, milk yield; MFP, milk fat percentage; SCS,
somatic cell score; HT, total stem height; CWAL, crown width along the planting beds; TS, tree stiffness. SVR, support vector regression; KRR, kernel ridge regression;
ENET, elastic net; GBLUP, genomic best linear unbiased prediction. The bold values mean the highest prediction accuracy for each trait.

BayesB and KRR outperformed other methods in three
traits, showing the best predictive power. The prediction
accuracy of GBLUP and ENET was higher than that of
other methods in two traits. The prediction performance
of SVR was the worst, and the prediction accuracy of
SVR was always lower than that of the other methods.
For base learners, the prediction accuracy of KRR was the
highest. The prediction accuracy gap between these methods
was not significant, however, the ability to estimate the
GEBVs was comparable.

Comparison Between the Prediction
Accuracy of SELF and Base Learners
Figure 2 shows the comparison between the prediction
accuracy of the base learners and SELF for nine traits. The
red one represents the prediction accuracy of SELF. SELF
performed better than all the other base learners for each
trait. Particularly for CWAL, HT, and EMA, the prediction
accuracy of SELF was improved by 9.97, 7.36, and 6.40%,
respectively, when compared to the highest prediction accuracy
of base learners. Among the three base learners, the prediction
ability of KRR was comparable to SELF in German Holstein
dairy cattle dataset.

Comparison Between the Prediction
Accuracy of SELF, GBLUP and BayesB
Figure 3 demonstrates the prediction accuracy of GBLUP,
BayesB and SELF for the three datasets. For the Chinese
Simmental beef cattle dataset, the prediction accuracy of
SELF was higher than GBLUP and BayesB, showing an
average improvement of 11.68% from SELF to GBLUP.
For the German Holstein daily cattle, except for the trait
of MFP, SELF performed better than BayesB and GBLUP.
For the Loblolly pine dataset, SELF predicted GEBVs more
accurately than GBLUP and BayesB, showing an improvement
of 14.18% for TS, when compared with GBLUP. Comparing
the prediction accuracy between SELF and GBLUP, the
average prediction accuracy of SELF was increased by
7.70% in nine traits.

DISCUSSION

The previous large number of studies had tried to apply single
machine learning methods into genomic prediction (Long et al.,
2011; Jubair and Domaratzki, 2019; Montesinos-López et al.,
2019; Lenz et al., 2020). However, the single machine learning
methods applicatied in most of the previous studies, only
performed well on certain traits (Long et al., 2011; Ogutu et al.,
2011; González-Camacho et al., 2018; Montesinos-López et al.,
2019). Therefore, the present study proposed a new strategy
to utilize machine learning methods in genomic prediction by
using a stacking ensemble learning framework integrating three
machine learning methods to predict GEBVs simultaneously.
To examine the prediction ability of SELF, we compared the
prediction accuracy of SELF with GBLUP and BayesB in
animal and plant datasets with a variety of genetic architecture.
Considering the computation time and that overfitting was
employed, the genotypes derived relationship matrix as the inputs
rather than using the genotypes directly (Gianola et al., 2011).

The Prediction Accuracy of Base
Learners, GBLUP, and BayesB
Using GBLUP and BayesB to predict GEBV for the three
dataset had been reported early which provided a reference
for verifying our results. Therefore, this study compared the
prediction accuracy of GBLUP and BayesB with the prediction
accuracy obtained from Wang X. et al. (2019), Zhang et al.
(2015), and Resende et al. (2012). Wang X. et al. (2019) compared
GBLUP with BayesB in the Chinese Simmental beef cattle dataset.
Zhang et al. (2015) and Resende et al. (2012) compared the
prediction accuracy of different methods on the German Holstein
dairy cattle dataset and the Loblolly pine dataset, respectively.
Overall, the results were consistent. Since the method was
slightly different from that was used in the previous studies, the
accuracy differed in individual traits. Although, the application
of a single machine learning method to estimate GEBVs on the
three datasets has not been reported, the vast majority of studies
has compared the prediction accuracy of the single machine
learning method with GBLUP or Bayesian family methods on
other populations. Therefore, it provided a practical reference
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FIGURE 2 | Comparison of the prediction accuracy among: SVR (blue violet), KRR (dodger blue), ENET (dark orange) and SELF for nine traits. (A) live weight; (B)
carcass weight; (C) eye muscle area; (D) milk yield; (E) milk fat percentage; (F) somatic cell score; (G) total stem height; (H) crown width along the planting beds; (I)
tree stiffness.

FIGURE 3 | Comparison of the prediction accuracy among: SELF (red), GBLUP (dodger blue) and BayesB (dark orange) for three datasets. (A) Chinese Simmental
beef cattle dataset; (B) German Holstein dairy cattle dataset; (C) Loblolly pine dataset. LW, live weight; CW, carcass weight; EMA, eye muscle area; MY, milk yield;
MFP, milk fat percentage; SCS, somatic cell score; HT, total stem height; CWAL, crown width along the planting beds; TS, tree stiffness. GBLUP, genomic best linear
unbiased prediction; SELF, a stacking ensemble learning framework.

when evaluating the performance of single machine learning
methods. The results of Ghafouri-Kesbi et al. (2017) and Long
et al. (2011) indicated that GBLUP presented better prediction
accuracy when compared to SVR and RF. Furthermore, in
most cases, the performance of SVR with Gaussian kernel
was comparable to that of Bayesian Lasso (Long et al., 2011;
Ghafouri-Kesbi et al., 2017). Similar to previously reported
studies, the results from the present study also confirmed that

single machine learning did not perform significantly better than
GBLUP and Bayes methods.

Excellent Predictive Performance of
SELF
Compared to GBLUP, the average prediction accuracy of SELF
was increased by 7.70% for the nine traits, which is significant
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FIGURE 4 | Example of how an integrated model using a stacked ensemble
with linear and non-linear regression can significantly outperform either a
single linear or non-linear model.

for animal and plant breeding. Particularly for the beef cattle
with a longer generation intervals, such considerable prediction
accuracy improvement will greatly accelerate the genetic gain.
Actually, it is very difficult to build a SELF model to predict a
specific problem with higher accuracy, since the composition of
SELF model is so flexible. Therefore, the present study referred
to previous studies that using machine learning methods to
estimated GEBVs, and combined with our experience to select
the candidate base learner. Besides, a single-layer framework
or multi-layer framework also should be premeditated carefully
when constructing frameworks. Considering the overfitting
always accompanied by the machine learning methods in GS
and the calculating time of SELF, we determined a single layer
stacking framework. Before constructing the model of SELF, RF,
SVR, KRR, and ENET were chosen as the candidates for base
learners, in which RF and SVR had been performed to predict
GEBV in previous studies (Long et al., 2011; Ogutu et al., 2011;
González-Recio et al., 2014; Libbrecht and Noble, 2015; Ghafouri-
Kesbi et al., 2017). Although the utilization of KRR in genomic
prediction had been rarely reported, it was frequently utilized to
classification and regression task for other research areas (Douak
et al., 2013; Avron et al., 2017; Chang et al., 2017; Naik et al., 2018).
In addition, ENET was chosen to achieve more diversification of
SELF model due to the reason that SVR, RF, and KRR predicted
GEBV by building a non-linear model and ENET was a liner
model (Wang Y. et al., 2019). Subsequently to the prediction of
GEBVs using four base learners, we decided to exclude RF from
the SELF, because RF greatly increased the computation time of
SELF. Consequently, the final SELF model was constructed by
SVR, KRR and ENET, in which the base learners were used to
build different types of models to estimate the GEBVs. Generally,
it was reasonable to employ different learning algorithms to
explore the relationship between the feature and the target
variable (Kyriakides and Margaritis, 2019). For the regression
example (Figure 4), we used a stacked ensemble with linear

and non-linear regression, showing the possibility to significantly
outperform either a single linear or non-linear model. Even
though we directly utilized the best prediction of the linear
and non-linear models as the outputs of the integrated model
without stacking, the performance of the integrated model was
greatly improved. Therefore, the constructed SELF could learn
more characteristics in different aspects of the input data, and it
performed better than either of the base learners.

Besides, the form of input data in this study might be another
momentous reason contributed to the higher prediction accuracy
of SELF model. The majority of published studies directly
employed genotypes as the inputs of machine learning methods.
Nevertheless, the number of markers was considerably larger
than the number of individuals. In this case, if we used genotypes
with no transformed, the number of variables in the prediction
model would be an astronomical figure compared to group size.
Despite that single machine learning methods were able to solve
the problem of “big P and small N,” stronger overfitting was
inevitable, which also decreased the prediction accuracy of the
SELF. The application of genomic relationship matrix as the input
data was completely different, as the genomic relationship matrix
was a n × n matrix, whose size is determined by the group
sizen. Therefore, the number of variables in the prediction model
would be consistent with the number of individuals. Although
it might reduce the prediction accuracy of the base learners, it
simultaneously and dramatically reduces the risk of overfitting,
which potentially improves the prediction accuracy of the SELF.

CONCLUSION

The present study proposes a stacking ensemble learning
framework integrating SVR, KRR, and ENET to predict GEBVs.
The excellent performance of SELF in a variety of genetic
architecture datasets indicates that SELF possesses a significant
potential to improve genomic predictions in other animal and
plant populations.
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