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Abstract 17 

Background: With the rapid accumulation of microbiome-wide association studies, a great amount of 18 

microbiome data are available to study the microbiome’s role in human disease and advance the 19 

microbiome’s potential use for disease prediction. However, the unique features of microbiome data hinder 20 

its utility for disease prediction.  21 

Methods: Motivated from the polygenic risk score framework, we propose a microbial risk score (MRS) 22 

framework to aggregate the complicated microbial profile into a summarized risk score that can be used to 23 

measure and predict disease susceptibility. Specifically, the MRS algorithm involves two steps: 1) 24 

identifying a sub-community consisting of the signature microbial taxa associated with disease, and 2) 25 

integrating the identified microbial taxa into a continuous score. The first step is carried out using the 26 

existing sophisticated microbial association tests and pruning and thresholding method in the discovery 27 

samples. The second step constructs a community-based MRS by calculating alpha diversity on the 28 

identified sub-community in the validation samples. Moreover, we propose a multi-omics data integration 29 

method by jointly modeling the proposed MRS and other risk scores constructed from other omics data in 30 

disease prediction.  31 

Results: Through three comprehensive real data analyses using the NYU Langone Health COVID-19 32 

cohort, the gut microbiome health index (GMHI) multi-study cohort, and a large type 1 diabetes cohort 33 

separately, we exhibit and evaluate the utility of the proposed MRS framework for disease prediction and 34 

multi-omics data integration. In addition, the disease-specific MRSs for colorectal adenoma, colorectal 35 

cancer, Crohn’s disease, and rheumatoid arthritis based on the relative abundances of 5, 6, 12, and 6 36 

microbial taxa respectively are created and validated using the GMHI multi-study cohort. Especially, 37 

Crohn’s disease MRS achieves AUCs of 0.88 ([0.85-0.91]) and 0.86 ([0.78-0.95]) in the discovery and 38 

validation cohorts, respectively. 39 
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Conclusions: The proposed MRS framework sheds light on the utility of the microbiome data for disease 40 

prediction and multi-omics integration, and provides great potential in understanding the microbiome’s role 41 

in disease diagnosis and prognosis.  42 

Keywords: Alpha diversity; Disease prediction; Microbiome-wide association studies; Microbial risk score; 43 

Multi-omics data integration; Sub-community 44 

 45 

Background 46 

Recent microbiome-wide association studies (MWASs) have uncovered that microbiome plays a crucial 47 

role in human health and disease [1-4], with linkage of microbiota dysbiosis to a variety of complex diseases, 48 

including diabetes, cardiovascular and mental disease, and cancer [5-12]. These studies provide great 49 

opportunities to study microbiome’s role in disease prediction, which, however, is challenging because of 50 

its unique data structure. 51 

Rapid advances in high-throughput sequencing technologies identify diverse microorganisms in a single 52 

sample by targeted sequencing of their unique 16S rRNA gene, or shotgun sequencing of the collective 53 

genomes of all microbes. For 16S rRNA sequencing data, QIIME 2 [13] is commonly used to assign the 54 

sequencing reads to amplicon sequence variants or clustered operational taxonomic units based on the 55 

similarity of sequences. For shotgun sequencing data, MetaPhlAn [14] or StrainPhlAn [15] can be used to 56 

map the sequencing reads to species/strains against a reduced set of clade-specific marker sequences. Either 57 

method produces the count or relative abundance table which typically contain hundreds to thousands of 58 

taxonomic or functional features, i.e. microbiome data are high-dimensional, especially compared to the 59 

available number of samples in most existing studies. In addition, these feature tables are usually sparse 60 

with excessive zero counts, compositional with a sum constrained to a constant, and heterogeneous with a 61 

phylogenetic tree structure to reveal the evolutionary relationship among the taxa. How to deal with these 62 
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unique characteristics of microbiome data and effectively utilize them in predicting disease risk is 63 

challenging and needs comprehensive explorations and validations. 64 

Polygenic risk score (PRS), a continuous score of an individual's genetic liability to a complex disease or 65 

phenotype, has become more routine and powerful in current genomic research [16, 17]. PRS aggregates 66 

the results from genome-wide association studies (GWASs) and is defined as the sum of risk alleles linked 67 

to a phenotype of interest weighted by the corresponding effect sizes. The construction of PRS involves 68 

two key steps: determining the risk alleles and their effect sizes based on discovery samples or published 69 

GWASs, and calculating the PRS for each subject in the target population. The PRS framework motivates 70 

us to construct a similar microbial risk score (MRS) to summarize the disease-specific microbial profile in 71 

the increasing large-scale population-based microbiome studies [11, 18, 19] and to investigate its potential 72 

in disease prediction. However, microbiome’s unique community features make MWASs differ from 73 

GWASs. First, the microbiota is a complex ecosystem, whose dynamics are driven by the interactions 74 

among microbes and between microbes and their host. The link between this complex ecosystem and  75 

disease process often involves interwoven mechanisms [20]. Further, the microbiota is composed of various 76 

sub-communities related to different traits [21, 22], and its influence on disease development may act at the 77 

community rather than the single-microbe level [23]. Thus, it is less informative or efficient to simply define 78 

MRS as the weighted sum of the relative abundances of the associated microbes. Instead, we propose a 79 

community-based MRS by calculating alpha diversity on a sub-community with member taxa identified as 80 

being associated with the study trait. Alpha diversity is the diversity in a single ecosystem or sample with 81 

respect to its richness, evenness, or both characteristics [24, 25]. Several indices, including Observed, 82 

Simpson, Shannon, and Faith's phylogenetic diversity (PD), have been extensively used to characterize 83 

microbial community. With the NYU Langone Health (NYULH) COVID-19 cohort [26] and the gut 84 

microbiome health index (GMHI) multi-study cohort [27], we propose and validate a few MRSs on 85 

COVID-19, colorectal adenoma (CA), colorectal cancer (CC), Crohn’s disease (CD), and rheumatoid 86 

arthritis (RA) to exhibit the utility of the proposed MRS framework. 87 
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With the recent advances in the next-generation sequencing and mass spectrometry, there is a growing need 88 

for the ability to merge biological features to study an ecosystem as a whole. Aspects such as the 89 

metagenome, metatranscriptome, host genome, host gene expression, and metabolome each provides a 90 

snapshot of one level of regulation in a system.  The proposed MRS framework provides a simple and 91 

interpretable approach to integrate the microbial profiles with other biological omics data and elucidate the 92 

microbial interactions with other omics datasets in the disease prediction. We use the NYULH COVID-19 93 

cohort, which characterized the lung microbiome in a large prospective cohort of critically ill patients with 94 

SARS-CoV-2 infection who required invasive mechanical ventilation, to illustrate, evaluate, and validate 95 

the proposed MRS and its integrations with other omics data in the prediction for COVID-19 mortality. In 96 

addition, we elucidate the join effect of MRS and PRS on T1D risk stratification using the Environmental 97 

Determinants of Diabetes in the Young (TEDDY) study (https://teddy.epi.usf.edu/) [28-30]. 98 

Methods 99 

MRS framework 100 

MRS workflow. We propose a microbial risk score framework to convert the high-dimensional 101 

microbiome data into a summarized risk score that can measure and predict disease susceptibility. As 102 

illustrated in Figure 1, with the ready-for-downstream-analysis microbial data, the microbial risk score 103 

algorithm involves two key steps: 1) to identify a sub-community consisting of the signature microbial taxa 104 

associated with disease, and 2) to integrate the identified microbial taxa into a continuous score.  105 

Microbial signature identification. We propose to employ the existing sophisticated microbial association 106 

tests [1, 3, 4, 31-33] to identify microbial taxa associated with disease using the discovery samples. Great 107 

amount of abundance-based methods examining the difference of microbial abundance directly, which is 108 

also called differential abundance (DA) analysis [31-39] have been proposed recently. Based on the results 109 

in two recent benchmarking works [32, 33], ANCOM-BC (Analysis of compositions of microbiomes with 110 

bias correction) [31] is one of the top-performing methods and has been widely used in microbiome research. 111 
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ANCOM-BC [31] models the observed abundances using an offset-based log-linear model, in which the 112 

offset term is sample-specific to account for sampling fraction. We use it as the default microbial association 113 

test to identify the candidate taxa in the first step of our microbial risk score algorithm. Considering 114 

developing novel differential abundance test is still an active area of research, in the Discussion section, we 115 

discuss the performance of the proposed MRS framework with other DA tests. 116 

In addition to the above-mentioned statistical methods, a variety of machine learning (ML) techniques have 117 

been applied in microbiome studies for microbial feature selection, biomarker identification, disease 118 

prediction and classification, as recently reviewed [40]. As an example, Gou et al. [41] defined an MRS 119 

with the microbiome features selected by the Light Gradient Boosting Machine method [42] and examined 120 

its association with type 2 diabetes (T2D) as well as T2D-related traits. Despite the visible contributions of 121 

characterizing the microbial profiles and uncovering the relationship between microbiome and disease, the 122 

applications of ML methods including traditional methods and deep learning techniques in the microbiome 123 

studies share several drawbacks [40]. One is that most ML methods input all available microbial features 124 

into the model to determine the final output solely based on algorithms, without considering the inherent 125 

structure of microbiome data, such as compositionality and zero inflation. Another unavoidable drawback 126 

of ML methods is the model instability in the relatively small-scale biomedical human studies [43]. Because 127 

the nature of ML algorithms is to learn the pattern by training the data, they usually require a large sample 128 

size to reach stable results, especially for the algorithms involving various parameters or various layers that 129 

need to be trained via cross-validation (CV). Given these common pitfalls and relatively small sample size 130 

in biomedical studies due to the high cost of patients’ in-person visit, sample collection and sequencing, 131 

ML’s application in microbiome research may provide inexplicable results and even lead to the loss of 132 

statistical power.  With the NYULH COVID-19 cohort example, we illustrate the inefficient utility of ML 133 

methods in analyzing the microbiome data compared to the proposed MRS method. The details are reported 134 

in the Results section. 135 
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Sub-community determination. Pruning and thresholding (P+T) method is a heuristic approach 136 

commonly used in PRS studies for identification of genetic variants based on an empirically determined p-137 

value threshold [44]. We propose to use P+T method to determine the final candidate microbial taxa in 138 

discovery cohort. Specifically, we calculated a series of MRSs proposed below using the nested sets of 139 

microbial taxa with the increasingly relaxed significance thresholds. We set the final threshold at the value 140 

that produced the largest area under the receiver operating characteristic (ROC) curve (AUC). All the taxa 141 

whose p-values are less than the final threshold form a disease or trait specific sub-community. If there is 142 

only one dataset available, CV will be used to determine the sub-community along with P+T method. More 143 

details are provided in the Results section.  144 

MRS calculation. We propose an MRS, denoted by MRS𝛼, which is defined as the alpha diversity of the 145 

sub-community consisting of the identified candidate taxa. Alpha diversity is the diversity in a single 146 

ecosystem or sample with respect to its richness, evenness, or both characteristics [24, 25]. The core concept 147 

of alpha diversity index in biology is to find the effective number of elements of a system to measure its 148 

complexity or diversity [45].  Note that multiple alpha diversity indices are available. Some measure species 149 

richness such as observed index, Chao1, and ACE. PD is a phylogenetic metric which is defined as the sum 150 

of the lengths of all those branches on the tree that span the members of the set. Simpson index is a 151 

dominance index as it gives more weight to the common or dominant species and does not account for 152 

species richness. While Shannon index is an information statistic index (entropy) which accounts for both 153 

species richness and its evenness in a community or sample, and it has a unique ability to weigh taxa by 154 

their frequency, without disproportionately favoring either rare or common elements. As the most popular 155 

and accepted index for diversity [46], we adopt Shannon index in the proposed MRS𝛼. Other indices are 156 

also investigated in the Discussion section and included in the MRS framework (MRS R package).  157 

Suppose there are 𝑛 samples (each sample represents one ecosystem or microbial community) and 𝑄 taxa. 158 

Let 𝑀𝑖𝑗 be the relative abundance of the 𝑗th taxon in the 𝑖th sample with the constraint ∑ 𝑀𝑖𝑗
𝑄
𝑖𝑗=1 = 1, 𝑖 =159 
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1, … , 𝑛 , and 𝑗 = 1, … , 𝑄 . Assume 𝑝 (<𝑄) taxa are identified as a sub-community to construct MRSs. 160 

Without loss of generality, we assume that the first p taxa are the identified candidate taxa. 161 

For the 𝑖th sample, its MRS𝛼 is calculated as MRS𝛼
𝑖 = ∑ �̃�𝑖𝑗

𝑝
𝑗=1 ln(�̃�𝑖𝑗) , where �̃�𝑖𝑗 is relative abundance 162 

of the 𝑗th identified candidate taxon within the sub-community for the 𝑖th sample (�̃�𝑖𝑗 =
𝑀𝑖𝑗

𝛴
𝑗=1
𝑝

𝑀𝑖𝑗
). 163 

MRS𝛼 is constructed based on the Shannon index [24, 25] without the negative sign, so that the smaller is 164 

MRS𝛼, the healthier is the microbial community [47]. As a comparison, we also derive a standard MRS as 165 

an analogy to PRS, denoted by MRS𝑆. It is a (weighted) sum of relative abundances of the identified 166 

candidate taxa as MRS𝑆
𝑖 = ∑ 𝑤𝑗

𝑝
𝑗=1 𝑀𝑖𝑗, where 𝑤𝑗 is the weight for the 𝑗th taxon. We propose two sets of 167 

weights: all weights are equal to 1 (denoted by MRS𝑢𝑛𝑤𝑆
𝑖 ); and the weights are the effect sizes estimated 168 

from the training or discovery samples by certain microbial association method (denoted by MRS𝑤𝑆
𝑖 ). 169 

Noticeably, MRS𝛼 integrates 𝑝 identified taxa as a community by measuring its diversity. While, MRS𝑆 170 

focuses on the additive effect of the identified taxa and doesn’t account for the microbial community 171 

feature. 172 

Validation. The proposed MRSs need to be validated either by external validation or internal validation. 173 

Since the GMHI multi-study cohort [27] has independent discovery and validation cohorts, the MRSs are 174 

created using the discovery cohort and validated using the validation cohort. For the NYULH COVID-19 175 

[26] and TEDDY studies [28-30], due to the lack of independent additional samples, we employ CV to 176 

perform independent internal validation. 177 

Risk score-based multi-omics data integration 178 

Note that the proposed MRS summarizes a complex microbial profile into a quantifiable score, which 179 

provides a fast and flexible way to integrate microbiome data with other omics data to better predict disease 180 

risk. Both the NYULH COVID-19 and TEDDY studies contain not only microbial profile data, but also 181 

other omics data. We propose to jointly model MRS and other risk scores built on other omics data to 182 
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further improve the performance of disease prediction. In the COVID study, on one hand, the enrichment 183 

of SARS-CoV-2 and some oral commensals in the lower-airway microbiota are associated with poor 184 

outcome, and on the other hand, host lower-airway immune phenotypes reveal a failure of adaptive and 185 

innate immune response to SARS-CoV-2 among deceased subjects. Jointly modeling these omics profiles 186 

can improve the predictive accuracy of mortality. For the TEDDY study, since that genotype data in the 187 

regions containing autoimmunity and inflammatory response genes are available, one can build a PRS for 188 

each subject using the existing PRS algorithms [48-50]. By combining the PRS and the proposed MRS, we 189 

can jointly model the association of genetic and environmental risk in T1D prediction. 190 

Prediction performance evaluation  191 

With the constructed risk scores from various omics data, one can employ a logistic regression model for 192 

the prediction of disease status(binary outcome), or a Cox proportional-hazards model [51] for the 193 

prediction of disease onset (survival outcome). Predication performance can be evaluated by AUC for 194 

binary outcome or by hazard ratio (HR) for survival outcome. The additive model can be used to integrate 195 

multiple risk scores in these two regression models. The interaction terms between scores can be explored 196 

further for risk stratification [52], as illustrated in the TEDDY study in Result section. 197 

NYULH COVID-19 cohort 198 

The NYULH COVID-19 cohort [26] includes a subset of 142 patients with COVID-19, at the NYULH 199 

Manhattan campus from March 3 to June 18, 2020, who required invasive mechanical ventilation and 200 

underwent bronchoscopy for airway clearance and/or tracheostomy. Among all patients, 108 (76%) 201 

survived hospitalization and 34 (24%) died. The study has collected and processed lower-airway samples 202 

and performed: a) metagenomic sequencing for bacterial, fungal and DNA viral genomes; and b) 203 

metatranscriptome assays for viral, bacterial, fungal, and human transcriptomes and the RNA virome. In 204 

addition, comprehensive demographic, longitudinal clinical, and treatment data are available. 205 
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GMHI multi-study cohort 206 

An integrated dataset of 4,347 human stool metagenomics samples (cross-sectional) from 34 published 207 

studies (discovery cohort) and an independent dataset of 679 samples from 9 additional studies (validation 208 

cohort) are publicly available [27]. Both cohorts consist of healthy subjects and patients with various 209 

diseases. Using these two cohorts, Gupta et al. [27] introduced and validated the gut microbiome health 210 

index (GMHI) to quantify the likelihood of disease presence based on subject’s gut microbiome data. In 211 

both cohorts, they pooled samples from different disease conditions together into one nonhealthy group, 212 

and the proposed GMHI exclusively identifies the difference of microbiome profile between healthy and 213 

non-healthy samples. After the pre-processing and quality control, there are 2,636 healthy and 1,711 214 

nonhealthy samples in the discovery cohort and 118 healthy and 561 nonhealthy samples in the validation 215 

cohort respectively. Among nonhealthy samples, discovery and validation cohorts both have samples from 216 

patients with CA, CC, CD, and RA. Sample sizes are shown in Table S1. For microbiome data, there are 217 

313 species and 576 species in the discovery and validation cohorts respectively available for analysis. 218 

More details are described in Gupta et al. [27]. 219 

TEDDY cohort 220 

TEDDY is a large-scale prospective study designed to identify the genetic and environmental triggers that 221 

cause childhood T1D [28-30].  Children with high genetic risk for islet autoimmunity or T1D were enrolled 222 

and multiple biomarkers were assessed longitudinally for prediction of T1D development. A total of 12,005 223 

fecal samples from 903 children, collected from 3 to 46 months of age, were characterized by 16S rRNA 224 

sequencing. Of this cohort, 114 children were ascertained to T1D by year 5 [29]. The findings in the 225 

previous TEDDY publications [53, 54] focus exclusively on the microbiome profiles, and suggest that the 226 

gut microbiome data may have the potential to predict the progression of T1D. In addition to microbiome 227 

data and metadata, the TEDDY cohort also includes genomic, longitudinal metabolomic, and host 228 

transcriptomic data which together provide opportunity to explore the integrated information from multiple 229 

aspects on the pathogenesis of T1D through the multi-omics analysis. 230 
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Results 231 

Evaluation and validation of MRS framework 232 

NYULH COVID-19 cohort. With the same quality control, sequencing process, and filtering criteria 233 

described in Sulaiman et al. [26], we analyzed data from 118 patients (28 Deceased and 118 Alive) who 234 

had all metagenome, metatranscriptome, and host transcriptome samples. We included 374 taxa in 235 

metagenome, 1,149 taxa in metatranscriptome, and 14,697 genes in host transcriptome data for our 236 

analyses. We used the binary outcome (Deceased vs. Alive) to illustrate the predictive performance of 237 

MRS here.  238 

Figure 2 presents the optimal p-value thresholds (0.42, 0.38, and 0.02) used to identify the associated taxa 239 

in MRSs (MRS𝛼, MRS𝑤𝑆, and MRS𝑢𝑛𝑤𝑆, respectively) using the metagenomic data. The optimal thresholds 240 

were determined by P+T method as described in the sub-section “Sub-community determination” using the 241 

leave-one-out CV. With the optimal p-value cutoffs, the community-based MRS𝛼 has the best performance 242 

in predicting deceased/alive status (AUC=0.74), compared to two summation-based standard MRSs: 243 

MRS𝑤𝑆 (AUC=0.72) and MRS𝑢𝑛𝑤𝑆 (AUC=0.70). This reflects that analyzing the microbial profile as a 244 

community can characterize more microbial information and work better than analyzing microbes 245 

individually. Additionally, MRS𝑤𝑆 performs better than MRS𝑢𝑛𝑤𝑆, as expected, since MRS𝑤𝑆 incorporates 246 

the strength of the association effects of taxa on the outcome, as well as the microbial relative abundances, 247 

while MRS𝑢𝑛𝑤𝑆 is just the summation of the microbial relative abundances from the selected taxa. 248 

Figure S1 shows prediction performance for various ML algorithms which have been commonly applied in 249 

microbiome research [40]. The leave-one-out CV was used for the predictions and the predicted probability 250 

for deceased/alive status was used for ROC analysis. All ML algorithms have lower AUCs than the 251 

proposed MRS𝛼. Among these ML algorithms, the ML algorithms based on regularization (Figure S1A) all 252 

perform better with higher AUCs, compared to the ML algorithms that have various tuning parameters or 253 

layers (Figure S1B). Elastic-net logistic regression and penalized discriminant analysis (regression-based) 254 
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algorithms have the best prediction performance. On the other hand, ML algorithms were also applied to 255 

select the candidate taxa used for the construction of MRS𝛼 based on the variable importance. The top K 256 

features were determined based on leave-one-out CV. Take the elastic-net logistic regression which has the 257 

best prediction above for example, the top 30 taxa were ultimately selected to construct MRS𝛼 with the 258 

AUC being the largest based on CV, and its AUC for deceased/alive status prediction is 0.66, which is 11% 259 

lower than the AUC of the above MRS𝛼. The efficiency of ML algorithms is evidently limited due to the 260 

small sample size and not being able to take care of the unique features of microbiome data, such as 261 

compositionality and zero inflation. 262 

In addition, we checked the prediction performance of the alpha diversity indices on the whole microbial 263 

community in terms of AUC. Table S2 reports the AUC values for six common alpha diversity indices in 264 

predicting alive and deceased status. All alpha diversity indices have similar prediction performance, with 265 

AUC being 0.50 to 0.53, which are much poorer than the proposed MRS𝛼. Comparisons between MRS𝛼 266 

and alpha diversity indices underline the significance of identification of the associated taxa in the microbial 267 

risk score framework, which condenses the signal by excluding the non-associated taxa and provides full 268 

potential for the proposed MRS to measure and predict disease susceptibility. 269 

GMHI multi-study cohort. With the discovery and validation cohorts [27], we evaluated and validated 270 

the proposed MRS𝛼 in terms of predictive performance. Specifically, for CA, CC, CD, and RA diseases, 271 

respectively, we performed ANCOM-BC to identify candidate species that were differentially abundant 272 

between samples from healthy subjects and patients with this disease in the discovery cohort, constructed 273 

disease-specific MRS𝛼 based on the identified species, and performed the independent validation of 274 

disease-specific MRS𝛼 using samples from healthy subjects and patients with the disease in the validation 275 

cohort. 276 

Figure 3A presents that AUC values and 95% confidence intervals for MRS𝛼s to predict healthy and 4 277 

different diseases in discovery and validation cohorts, respectively. Overall, MRS𝛼s achieve great 278 
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predictive performance in both discovery (AUCs: 0.60-0.88) and validation (AUCs: 0.68-0.86) cohorts. 279 

Notably three MRS𝛼s (healthy vs. CA, healthy vs. CC, and healthy vs. RA) have higher AUCs in 280 

validation cohort, compared to discovery cohort. Among these four disease-specific MRS𝛼s, MRS𝛼 281 

specific for CD disease has the best predictive performance (AUC=0.88 in discovery and AUC=0.86 in 282 

validation). In addition, different MRS𝛼s are constructed by different identified taxa. 5, 6, 12, and 6 taxa 283 

are used for constructions of MRS𝛼s for CA, CC, CD, and RA, respectively (Figure 3B; Table S3). 284 

Several taxa contribute multiple MRS𝛼s, for example, species Bifidobacterium angulatum is involved for 285 

constructions of MRS𝛼s for CA, CC, and RA (Table S3). On the other hand, 21 taxa are disease-specific 286 

and exclusively used in one MRS𝛼 (Table S3). They are differentially abundant in Healthy, CA, CC, CD, 287 

and RA samples (Tables S4 and S5). This demonstrates that the proposed MRS framework powerfully 288 

improves disease prediction by incorporating the disease-specific microbial profile. This feature makes 289 

the proposed MRS framework more crucial in practice, as most research studies aim to identify the 290 

microbial taxa specifically playing a role in a certain disease, rather than the generalized disease-291 

associated microbial taxa.  292 

Similar to disease-specific MRS, we also assessed the MRS framework that distinguishes two disease 293 

groups, as well as healthy and nonhealthy conditions defined as in the original study [27] in the discovery 294 

and validation cohorts, respectively. Figure S2 presents the AUC values and 95% confidence intervals for 295 

MRS𝛼s to classify any two diseases of CA, CC, CD, and RA, and healthy and nonhealthy conditions in 296 

discovery and validation cohorts, respectively. Table S3 correspondingly reports which taxa are involved 297 

for these MRS𝛼 calculations, respectively. Again, the MRS framework achieves notable performance. For 298 

example, discovery cohort has AUCs of 0.91 and 0.89, meanwhile, validation cohort has AUCs of 0.84 299 

and 0.84, to distinguish CD from RA and CC, respectively. Validation cohort has a relatively lower AUC 300 

for classifying CA and RA, due to the small sample size. In terms of healthy vs. nonhealthy prediction, 301 

MRS𝛼 achieves consistently competitive performance but with much fewer species, whose AUCs are 0.7 302 

and 0.71 in discovery and validation cohorts, respectively, compared to GMHI whose AUCs are 0.7 and 303 
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0.74 in discovery and validation cohorts, respectively. And the identified 6 species for MRS𝛼 construction 304 

is a subset of 50 microbial species used in GMHI [27].  305 

Results of risk score-based multi-omics data integration 306 

NYULH COVID-19 cohort. In addition to metagenome data, the NYULH COVID-19 cohort has 307 

metatranscriptome and host transcriptome data. In the following, we present how to integrate metagenomic, 308 

metatranscriptomic, and host transcriptomic datasets using the proposed MRS𝛼  and the evaluation of 309 

different methods.  For the metatranscriptomic data, we employed the same MRS algorithm as we described 310 

in the Methods section, in terms of determining the p-value cutoff, identifying candidate taxa, and 311 

constructing the microbial risk score, to construct its MRS𝛼. In order to differentiate various MRS𝛼s, we 312 

denoted the MRS𝛼 using the metagenomic and metatranscriptomic data by DNA_MRS𝛼 and RNA_MRS𝛼, 313 

respectively in the rest of manuscript. For the transcriptomic data, we employed DESeq2 [36] to evaluate 314 

the association effects of genes on the deceased/alive status, determined the p-value cutoff based on the 315 

P+T method, and identified the candidate genes by AUC evaluation. Then we defined the weighted sum of 316 

log-transformed counts of the selected candidate genes for each sample as the risk score (denoted as Host), 317 

with the weight being 1 if the corresponding logarithmic fold change estimate from DESeq2 was positive, 318 

otherwise -1. Computational details are reported in Section S1. Figure 4A shows that the risk scores based 319 

on metagenomic, metatranscriptomic, and host transcriptomic data separately have the AUC values of 0.74, 320 

0.69, and 0.63, respectively, in terms of predicting deceased/alive status. Furthermore, the combinations of 321 

risk scores from different datasets can obviously improve the predictive performance (Figure 4B) of 322 

mortality. The combinations of any two datasets have comparable AUC values and perform similarly. As 323 

expected, the integration of all three datasets (DNA_MRS𝛼 + RNA_MRS𝛼 + Host) has the highest AUC of 324 

0.85, which yields at least a 15% increase in AUC compared to DNA_MRS𝛼, RNA_MRS𝛼, or Host alone. 325 

In Figure 5, comparing the risk scores between the alive and deceased groups, the deceased group always 326 

has a significantly higher average risk score than the alive group, no matter the score was constructed based 327 

on a single omics dataset or the integration of different omics datasets (p-values<0.05).  328 
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Figure 6 presents the 2D or 3D scatterplots of risk scores from metagenomics, metatranscriptomic, and host 329 

transcriptomic data. The subjects were first classified into “High risk” and “Low risk” groups by each risk 330 

score’s mean. We next checked how well these risk classifications can be used to predict disease status by 331 

reporting the classification metrics [55]: sensitivity, specificity, accuracy, and F1 score in Table 1. 332 

Specifically, the predicted values for the subjects labeled as “High risk” by two risk scores (in Figures 6A-333 

C) or by all three risk scores (in Figure 6D) datasets are “Deceased”, and the predicted values for the 334 

subjects labeled as “Low risk” by two risk scores (in Figures 6A-C) or by all three risk scores (in Figure 335 

6D) datasets are  “Alive”. From Table 1, we can see that among the combinations of two risk scores for 336 

classification, the combination of metagenomic and host transcriptomic risk scores has the highest 337 

sensitivity, accuracy and F1 score, but is still inferior to the combination of all three omics risk scores, 338 

which identifies the mortality status with 86% sensitivity, 91% specificity, 88% accuracy, and an F1 score 339 

of 0.89. In this real study, from different angles, including the AUC in Figure 4, the scatterplots of risk 340 

scores in Figure 7, and the test results in Table 1, we show that combining risk scores from metagenomics, 341 

metatranscriptomic, and host transcriptomic data increases the predictive accuracy for COVID-19 mortality.  342 

Table S6 reports the included features in the metagenomic, metatranscriptomic, and host transcriptomic 343 

risk scores separately. The feature importance was determined by the selection proportion among all CV 344 

iterations. For the host transcriptomic data, the fold change between deceased and alive was used to 345 

determine the feature importance when the selection proportions were the same. Here we take the top 50 346 

features in each data as an illustration to investigate the correlation networks among these three datasets. 347 

Figures 7, S3, and S4 show the paired correlation heatmaps among the selected metagenomic, 348 

metatranscriptomic, and host transcriptomic features in the alive and deceased groups, respectively. Notably, 349 

the alive and deceased groups have different correlation patterns among these top 50 features from any two 350 

datasets. Specifically, the metagenomics features tend to have stronger correlations with the host 351 

transcriptomic and metatranscriptomic features in the deceased group, compared to the alive group; and the 352 
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metatranscriptomic features tend to have more negative correlations with the host transcriptome in the alive 353 

group. 354 

Note that the results reported in this section are different from those in Sulaiman et al. [26] in which the 355 

main goal was to reveal the scientific findings and the Cox proportional-hazards model [51] was employed 356 

to identify the candidate taxa and genes associated with the time to death. In this paper, we formally 357 

introduce the MRS concept and propose it as a general method with the detailed instruction on how to 358 

construct MRS. As a validation of the proposed method, the results presented above based on the binary 359 

outcome (Deceased vs. Alive) agree with the previous scientific conclusions [26]. Table 2 reports the hazard 360 

ratios of all risk scores constructed in this paper and their combinations on the time to death based on the 361 

Cox proportional-hazards model. All risk scores are significantly associated with the time to death. As we 362 

found in [26], metatranscriptomic data alone, or combined with the other two datasets, always has a higher 363 

hazard of death, because it involves SARS-CoV-2 viral, which is a key risk factor on the COVID-19 364 

mortality. 365 

Overall, these results highlight that the proposed community-based MRS𝛼, can characterize and summarize 366 

the microbial profiles effectively and provide a flexible way to integrate microbiome data with other omics 367 

data. Integrations of risk scores from different omics data further improves the predictive performance on 368 

the alive/deceased status in the NYULH COVID-19 study. 369 

TEDDY study. Although the TEDDY cohort includes both genome and microbiome data, the previous 370 

microbiome research on TEDDY study [53, 54] focused exclusively on the microbiome profiles and only 371 

identified very few microbial signatures associated with T1D. Given the fact that T1D is a multifactorial 372 

disease caused by both genetic and environmental factors and the children enrolled in the TEDDY study 373 

all have high genetic risk for T1D development (they have at least one of nine HLA DR-DQ genotypes 374 

associated with high risk for T1D) [29], we here propose a new angle to employ the proposed MRS along 375 

with the existing PRS for T1D to investigate the combined effect of  microbial  profile and host genetic 376 

profile on T1D risk prediction. Specifically, we analyzed 551 TEDDY subjects who have both 377 
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microbiome data and genotype data; 75 of them developed T1D. Using the available genotype data and 378 

the PRS algorithm which has the robust and superior prediction performance on T1D [48, 49], we built 379 

the PRS for subjects. We used the microbial samples that were collected at the time point most close to 380 

month 30 when microbiome profile got stable and the largest sample size was available, to build MRS𝛼 to 381 

predict T1D status independently. The practice of MRS calculations are the same as those used in the 382 

NYULH COVID-19 study.  383 

Figure 8A compares the AUCs for predicting T1D based on the individual risk scores and the combination 384 

of PRS and MRS𝛼, and Figures 8B-D show the Kaplan–Meier survival curve comparisons between high 385 

and low risk group identified by PRS, MRS𝛼 and PRS + MRS𝛼 respectively. Specifically, subjects whose 386 

risk scores are above the third quartile are defined as high risk, others as low risk. Although the predictive 387 

models considered in Figure 8A have only modest predictive ability in the TEDDY cohort (AUC range: 388 

[0.58, 0.63]), we found that integrating PRS and MRS𝛼 scores is more useful in stratifying the subjects into 389 

high and low risk groups for T1D development (Figure 8D) than the PRS (Figure 8B) or MRS𝛼 (Figure 8C) 390 

alone, which indicates that the potential genetic-microbial interaction effect on the T1D progression. These 391 

results exhibit the utility of modeling multi-omics risk scores to identify the high risk populations who can 392 

benefit from more targeted interventions.   393 

Discussion 394 

With the recent proliferation of large-scale microbial association studies, we propose a two-step novel 395 

microbial risk score framework to aggregate the high-dimensional microbiome profile into a summarized 396 

risk score and apply it in disease prediction. Specifically, we first identify the associated taxa based on the 397 

recommended microbial association tests by two recent benchmarking works [32, 33] and P+T method, and 398 

then construct a community-based MRS𝛼, because that the microbiome is a complex ecosystem composed 399 

of numerous sub-communities, and its influence on the disease development acts at the community instead 400 

of the single-microbe level and is disease-dependent. The application in the NYULH COVID-19 cohort 401 
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demonstrates the superior performance of MRS𝛼 in the disease prediction, compared to the standard MRS𝑆, 402 

which is constructed similarly as PRS, ML-based prediction algorithms, and six alpha diversity measures 403 

on the whole microbiome community. The evaluation of MRS𝛼 using the GMHI integrated dataset which 404 

consists of independent discovery and validation cohorts reveals the notable reproducibility of MRS𝛼 in 405 

terms of disease prediction. 406 

Combining omics datasets that provide biological information from different layers is vital to 407 

comprehensively study phenotypes and accurately predict diseases. However, complex data structures, for 408 

example, high-dimensionality, sparsity, compositionality, interdependence, and hierarchical tree structures, 409 

all make multi-omics data integration challenging. In this paper, the proposed MRS provides a 410 

straightforward and flexible way to incorporate multi-omics datasets and explore the microbial interactions 411 

with other omics profiles. Integration of the proposed MRS and the risk scores constructed from other omics 412 

data increases the ability for disease prediction. Integrations of metagenomic with metatranscriptomic and 413 

host transcriptomic datasets from NYULH COVID-19 cohort underline the critical and insightful utility of 414 

the constructed risk scores for disease prediction and the promising ability of multi-omics data integration 415 

for predictive accuracy improvement. Additionally, the data from TEDDY study illuminates the potential 416 

in combining MRS and PRS to explore genetic-microbial interaction and identify the high risk population. 417 

Apart from the ANCOM-BC and Shannon index used in the proposed MRS𝛼, there are other differential 418 

abundance methods available to identify the signature microbial taxa associated with disease and other 419 

alpha diversity indices to characterize the community diversity. Here we investigate how does using two 420 

other differential abundance methods (ALDEx2 [56] and Maaslin2 [57] suggested by [32, 33] ) and 421 

Simpson and observed alpha diversity indices to construct MRS𝛼 affect the predictive performance of the 422 

MRS framework in terms of AUC value and 95% CI in the discovery and validation cohorts [27] separately. 423 

Figure S5 shows that no single MRS𝛼 can uniformly perform best for all predictions in the discovery and 424 

validation cohorts, as various DA methods have different model assumptions and test hypotheses and 425 

various alpha diversities indices have different definitions, while links between microbiome profile with 426 
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various healthy or disease conditions are different. Specifically, given an alpha diversity index in the second 427 

step, DA method has no effect on the prediction performance of MRS𝛼 in both discovery and validation 428 

cohorts (p-value>0.05) using the Kruskal-Wallis test on the AUC, except for Simpson index in the 429 

discovery cohort (p-value=0.03) (Figure S6). MRS𝛼 s constructed with ANCOM-BC, ALDEx2, and 430 

Maaslin2, which all have been well-recognized [32, 33], have comparable performances. It supports our 431 

suggestion that to carry over the evaluation results of the DA tests from an objective benchmark work to 432 

guide the selection of DA test in the MRS framework. In terms of comparisons among Shannon, Simpson 433 

and Observed indices, Observed index based MRS𝛼 has the highest AUCs, followed by Shannon index, 434 

while Simpson index has the lowest AUCs, in the discovery cohort (Figure S7). On the other hand, Shannon 435 

index consistently has better or comparable AUCs in the validation cohort. Meanwhile, Observed and 436 

Simpson indices introduce more variation in the predictive performance of MRS𝛼 (Figure S7). Observed 437 

index lacks some reproducibility in the validation cohort, compared to its impressing performance in the 438 

discovery cohort, probably because it only accounts for species richness. Taken together, Shannon index 439 

based MRS𝛼 has relatively more robust and consistent prediction performance. With existing discussions 440 

[32, 33] and the observations above in this manuscript, we include various DA methods commonly used 441 

and recommended in the microbiome association studies and various alpha diversity indices in the MRS R 442 

package to let the proposed MRS framework informative and more practically valuable. 443 

The findings of this study have some limitations. First, considering microbial profile varies across 444 

ethnicities as well as geographies [58-60], it is necessary to evaluate the portability of MRS between 445 

populations. More advanced methods will be required to reduce the bias due to ethnical or geographical 446 

differences. Second, the microbiome data have versatile characteristics and unique features, such as 447 

phylogenetic tree structure, functional structure, hierarchical taxonomy, and dynamic nature, which also 448 

play critical roles in analytical accuracy and efficiency [61, 62]. Incorporating such features may improve 449 

the accuracy of MRS. Third, derivation and validation of MRS require large scale microbiome studies. 450 

However, the high cost of metagenomics sequencing restrict the comprehensive external validation.  451 
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Despite the above challenges, this paper proposes a practicable way to summarize the microbial profiles 452 

and provides promising findings for comprehensive microbiome research to bolster the microbiome's utility 453 

as a potential source of novel therapeutic features. 454 

Conclusions 455 

This paper sheds light on the utility of the microbiome data for disease prediction and multi-omics 456 

integration by converting the complex microbial profile into a continuous risk score. The proposed MRS 457 

tool provides great potential in studying the complex microbial ecosystem, understanding the microbiome’s 458 

role in disease diagnosis and prognosis, and exploring microbiome’s full clinical potential. 459 

 460 

List of abbreviations 461 

ANCOM-BC: analysis of compositions of microbiomes with bias correction; AUC: area under the receiver 462 

operating characteristic curve; CA: colorectal adenoma; CC: colorectal cancer; CD: Crohn’s disease; CV: 463 

cross-validation; DA: differential abundance; DESeq2: differential expression analysis (v2); GMHI: gut 464 

microbiome health index; GWASs: genome-wide association studies; HR: hazard ratio; MetaPhlAn: 465 

metagenomic phylogenetic analysis; ML: machine learning; MRS: microbial risk score; MWASs: 466 

microbiome-wide association studies; NYULH: NYU Langone Health; PRS: polygenic risk score; PD: 467 

phylogenetic diversity; P+T: Pruning and thresholding; QIIME: quantitative insights into microbial ecology; 468 

RA: rheumatoid arthritis; ROC: receiver operating characteristic; StrainPhlAn: metagenomic strain-level 469 

phylogenetic analysis; TEDDY: the environmental determinants of diabetes in the young; T1D: type 1 470 

diabetes; T2D: type 2 diabetes (T2D). 471 

 472 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Declarations 473 

Ethics approval and consent to participate 474 

All utilized microbiome datasets are publicly available. No ethics approval or consent to participate was 475 

required for this study. 476 

Consent for publication 477 

Not applicable: All utilized microbiome datasets are publicly available. No consent for publication was 478 

required for this study. 479 

Availability of data and materials 480 

For the NYULH COVID-19 cohort, all sequencing data used for this analysis are available in the NCBI 481 

Sequence Read Archive under project numbers PRJNA688510 and PRJNA687506 (RNA and DNA 482 

sequencing, respectively). 483 

For the TEDDY study,  TEDDY microbiome 16S rRNA gene sequencing data are publicly available in the 484 

NCBI database of Genotypes and Phenotypes (dbGaP) with the primary accession code phs001443. v1.p1, 485 

in accordance with the dbGaP controlled-access authorization process. Clinical metadata analysed during 486 

the current study will be made available in the NIDDK Central Repository at 487 

https://repository.niddk.nih.gov/studies/teddy/?query=teddy.  488 

MRS R package used for the analyses is available at https://sites.google.com/site/huilinli09/software and 489 

https://github.com/chanw0/MRS, together with its manual. We also included the GMHI data and provided 490 

the code in the example section to reproduce the results in this manuscript.  491 

Competing interests 492 

The authors declare that they have no competing interests. 493 

Funding 494 

The study was supported in part by NIH grants P20CA252728 and R37 CA244775. 495 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://sites.google.com/site/huilinli09/software
https://github.com/chanw0/MRS
https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

Authors' contributions 496 

CW developed the microbial risk score framework, performed data analyses, and wrote the manuscript. 497 

LS performed data analyses in the NYULH COVID-19 cohort and contributed to manuscript writing. JH 498 

performed data analyses in the TEDDY cohort and contributed to manuscript writing. BZ, RH, and JA 499 

contributed to the biological insights and interpretation, and to manuscript writing. HL contributed to the 500 

methodological ideas for the proposed framework, simulations, real data analyses, and manuscript 501 

writing. All authors read and approved the final manuscript. 502 

Acknowledgements 503 

Not applicable. 504 

 505 

References 506 

1. Hu J, Koh H, He L, Liu M, Blaser MJ, Li H: A two-stage microbial association mapping 507 

framework with advanced FDR control. Microbiome 2018, 6(1):1-16. 508 

2. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight 509 

R: Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016, 510 

535(7610):94-103. 511 

3. Koh H, Livanos AE, Blaser MJ, Li H: A highly adaptive microbiome-based association test 512 

for survival traits. BMC genomics 2018, 19(1):1-13. 513 

4. Koh H, Blaser MJ, Li H: A powerful microbiome-based association test and a microbial taxa 514 

discovery framework for comprehensive association mapping. Microbiome 2017, 5(1):1-15. 515 

5. Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, Goedert JJ, Hayes RB, Yang L: Human gut 516 

microbiome and risk for colorectal cancer. Journal of the National Cancer Institute 2013, 517 

105(24):1907-1911. 518 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

6. Kostic AD, Xavier RJ, Gevers D: The microbiome in inflammatory bowel disease: current 519 

status and the future ahead. Gastroenterology 2014, 146(6):1489-1499. 520 

7. Hoffmann AR, Proctor L, Surette M, Suchodolski J: The microbiome: the trillions of 521 

microorganisms that maintain health and cause disease in humans and companion animals. 522 

Veterinary Pathology 2016, 53(1):10-21. 523 

8. Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, Correa A, He J: Gut microbiome 524 

associates with lifetime cardiovascular disease risk profile among bogalusa heart study 525 

participants. Circulation research 2016, 119(8):956-964. 526 

9. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R: Current understanding 527 

of the human microbiome. Nature medicine 2018, 24(4):392-400. 528 

10. Fattorusso A, Di Genova L, Dell’Isola GB, Mencaroni E, Esposito S: Autism spectrum 529 

disorders and the gut microbiota. Nutrients 2019, 11(3):521. 530 

11. Integrative H, Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, Zhou W, Buck 531 

GA, Snyder MP, Strauss III JF: The integrative human microbiome project. Nature 2019, 532 

569(7758):641-648. 533 

12. Wang C, Hu J, Blaser MJ, Li H: Estimating and testing the microbial causal mediation effect 534 

with high-dimensional and compositional microbiome data. Bioinformatics (Oxford, England) 2020, 535 

36(2):347-355. 536 

13. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm 537 

EJ, Arumugam M, Asnicar F et al: Reproducible, interactive, scalable and extensible microbiome 538 

data science using QIIME 2. Nat Biotechnol 2019, 37(8):852-857. 539 

14. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, 540 

Segata N: MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nature methods 2015, 541 

12(10):902-903. 542 

15. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N: Microbial strain-level population 543 

structure and genetic diversity from metagenomes. Genome research 2017, 27(4):626-638. 544 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

16. Choi SW, Mak TS-H, O’Reilly PF: Tutorial: a guide to performing polygenic risk score 545 

analyses. Nature Protocols 2020, 15(9):2759-2772. 546 

17. Wand H, Lambert SA, Tamburro C, Iacocca MA, O’Sullivan JW, Sillari C, Kullo IJ, Rowley R, 547 

Dron JS, Brockman D: Improving reporting standards for polygenic scores in risk prediction studies. 548 

Nature 2021, 591(7849):211-219. 549 

18. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The human 550 

microbiome project. Nature 2007, 449(7164):804-810. 551 

19. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, 552 

Behsaz B, Brennan C, Chen Y: American gut: an open platform for citizen science microbiome 553 

research. Msystems 2018, 3(3):e00031-00018. 554 

20. Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, Macklin P, Mitchell A, 555 

Shmulevich I, Xie L: The cancer microbiome: distinguishing direct and indirect effects requires a 556 

systemic view. Trends in cancer 2020, 6(3):192-204. 557 

21. de Cárcer DA: A conceptual framework for the phylogenetically constrained assembly of 558 

microbial communities. Microbiome 2019, 7(1):1-11. 559 

22. Coyte KZ, Rao C, Rakoff-Nahoum S, Foster KR: Ecological rules for the assembly of 560 

microbiome communities. PLoS biology 2021, 19(2):e3001116. 561 

23. Cho I, Blaser MJ: The human microbiome: at the interface of health and disease. Nature 562 

Reviews Genetics 2012, 13(4):260-270. 563 

24. Thukral AK: A review on measurement of Alpha diversity in biology. Agric Res J 2017, 564 

54(1):1-10. 565 

25. Whittaker RH: Evolution and measurement of species diversity. Taxon 1972, 21(2-3):213-251. 566 

26. Sulaiman I, Chung M, Angel L, Tsay J-CJ, Wu BG, Yeung ST, Krolikowski K, Li Y, Duerr R, 567 

Schluger R et al: Microbial signatures in the lower airways of mechanically ventilated COVID-19 568 

patients associated with poor clinical outcome. Nature Microbiology 2021, 6(10):1245-1258. 569 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

27. Gupta VK, Kim M, Bakshi U, Cunningham KY, Davis JM, Lazaridis KN, Nelson H, Chia N, 570 

Sung J: A predictive index for health status using species-level gut microbiome profiling. Nature 571 

communications 2020, 11(1):1-16. 572 

28. Lee HS, Burkhardt BR, McLeod W, Smith S, Eberhard C, Lynch K, Hadley D, Rewers M, Simell 573 

O, She JX: Biomarker discovery study design for type 1 diabetes in The Environmental 574 

Determinants of Diabetes in the Young (TEDDY) study. Diabetes/metabolism research and reviews 575 

2014, 30(5):424-434. 576 

29. Rewers M, Hyöty H, Lernmark Å, Hagopian W, She J-X, Schatz D, Ziegler A-G, Toppari J, 577 

Akolkar B, Krischer J: The Environmental Determinants of Diabetes in the Young (TEDDY) study: 578 

2018 update. Current diabetes reports 2018, 18(12):1-14. 579 

30. Zheng P, Li Z, Zhou Z: Gut microbiome in type 1 diabetes: A comprehensive review. 580 

Diabetes/metabolism research and reviews 2018, 34(7):e3043. 581 

31. Lin H, Peddada SD: Analysis of compositions of microbiomes with bias correction. Nature 582 

communications 2020, 11(1):1-11. 583 

32. Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, Jones C, Wright RJ, 584 

Dhanani AS, Comeau AM: Microbiome differential abundance methods produce different results 585 

across 38 datasets. Nature Communications 2022, 13(1):1-16. 586 

33. Lin H, Peddada SD: Analysis of microbial compositions: a review of normalization and 587 

differential abundance analysis. NPJ biofilms and microbiomes 2020, 6(1):1-13. 588 

34. Wilcoxon F: Individual comparisons by ranking methods. In: Breakthroughs in statistics. 589 

Springer; 1992: 196-202. 590 

35. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C: 591 

Metagenomic biomarker discovery and explanation. Genome biology 2011, 12(6):1-18. 592 

36. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-593 

seq data with DESeq2. Genome biology 2014, 15(12):1-21. 594 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

37. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential 595 

expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140. 596 

38. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD: Analysis of 597 

composition of microbiomes: a novel method for studying microbial composition. Microbial ecology 598 

in health and disease 2015, 26(1):27663. 599 

39. Kaul A, Mandal S, Davidov O, Peddada SD: Analysis of microbiome data in the presence of 600 

excess zeros. Frontiers in microbiology 2017, 8:2114. 601 

40. Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, Przymus P, Trajkovik V, 602 

Aasmets O, Berland M, Gruca A, Hasic J, Hron K: Applications of machine learning in human 603 

microbiome studies: a review on feature selection, biomarker identification, disease prediction and 604 

treatment. Frontiers in microbiology 2021, 12:313. 605 

41. Gou W, Ling C-w, He Y, Jiang Z, Fu Y, Xu F, Miao Z, Sun T-y, Lin J-s, Zhu H-l: Interpretable 606 

machine learning framework reveals robust gut microbiome features associated with type 2 607 

diabetes. Diabetes Care 2021, 44(2):358-366. 608 

42. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y: Lightgbm: A highly 609 

efficient gradient boosting decision tree. Advances in neural information processing systems 2017, 610 

30:3146-3154. 611 

43. Vabalas A, Gowen E, Poliakoff E, Casson AJ: Machine learning algorithm validation with a 612 

limited sample size. PloS one 2019, 14(11):e0224365. 613 

44. Lamri A, Mao S, Desai D, Gupta M, Paré G, Anand SS: Fine-tuning of Genome-Wide 614 

Polygenic Risk Scores and Prediction of Gestational Diabetes in South Asian Women. Scientific 615 

reports 2020, 10(1):1-9. 616 

45. Jost L: Entropy and diversity. Oikos 2006, 113(2):363-375. 617 

46. Gauthier J, Derome N: Evenness-Richness Scatter Plots: a Visual and Insightful 618 

Representation of Shannon Entropy Measurements for Ecological Community Analysis. Msphere 619 

2021, 6(2):e01019-01020. 620 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

47. Blaser MJ: Missing microbes: how the overuse of antibiotics is fueling our modern plagues: 621 

Macmillan; 2014. 622 

48. Padilla-Martínez F, Collin F, Kwasniewski M, Kretowski A: Systematic review of polygenic 623 

risk scores for type 1 and type 2 diabetes. International journal of molecular sciences 2020, 624 

21(5):1703. 625 

49. Perry DJ, Wasserfall CH, Oram RA, Williams MD, Posgai A, Muir AB, Haller MJ, Schatz DA, 626 

Wallet MA, Mathews CE: Application of a genetic risk score to racially diverse type 1 diabetes 627 

populations demonstrates the need for diversity in risk-modeling. Scientific reports 2018, 8(1):1-13. 628 

50. Udler MS, McCarthy MI, Florez JC, Mahajan A: Genetic risk scores for diabetes diagnosis and 629 

precision medicine. Endocrine reviews 2019, 40(6):1500-1520. 630 

51. Harrell FE: Cox proportional hazards regression model. In: Regression modeling strategies. 631 

Springer; 2015: 475-519. 632 

52. Chatterjee N, Shi J, García-Closas M: Developing and evaluating polygenic risk prediction 633 

models for stratified disease prevention. Nat Rev Genet 2016, 17(7):392-406. 634 

53. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, Lernmark Å, Hagopian 635 

WA, Rewers MJ, She J-X: The human gut microbiome in early-onset type 1 diabetes from the 636 

TEDDY study. Nature 2018, 562(7728):589-594. 637 

54. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, 638 

Doddapaneni H, Metcalf GA: Temporal development of the gut microbiome in early childhood from 639 

the TEDDY study. Nature 2018, 562(7728):583-588. 640 

55. Kuhn M: Building predictive models in R using the caret package. Journal of statistical 641 

software 2008, 28(1):1-26. 642 

56. Gloor G: ALDEx2: ANOVA-Like Differential Expression tool for compositional data. 643 

ALDEX manual modular 2015, 20:1-11. 644 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

57. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, Tickle TL, Weingart G, Ren 645 

B, Schwager EH: Multivariable association discovery in population-scale meta-omics studies. PLoS 646 

computational biology 2021, 17(11):e1009442. 647 

58. Gaulke CA, Sharpton TJ: The influence of ethnicity and geography on human gut 648 

microbiome composition. Nature medicine 2018, 24(10):1495-1496. 649 

59. Deschasaux M, Bouter KE, Prodan A, Levin E, Groen AK, Herrema H, Tremaroli V, Bakker GJ, 650 

Attaye I, Pinto-Sietsma S-J: Depicting the composition of gut microbiota in a population with varied 651 

ethnic origins but shared geography. Nature medicine 2018, 24(10):1526-1531. 652 

60. He Y, Wu W, Zheng H-M, Li P, McDonald D, Sheng H-F, Chen M-X, Chen Z-H, Ji G-Y, Zheng 653 

Z-D-X: Regional variation limits applications of healthy gut microbiome reference ranges and 654 

disease models. Nature medicine 2018, 24(10):1532-1535. 655 

61. Lozupone C, Knight R: UniFrac: a new phylogenetic method for comparing microbial 656 

communities. Appl Environ Microbiol 2005, 71(12):8228-8235. 657 

62. Chen J, Bushman FD, Lewis JD, Wu GD, Li H: Structure-constrained sparse canonical 658 

correlation analysis with an application to microbiome data analysis. Biostatistics 2013, 14(2):244-659 

258. 660 

Figure 1. The workflow of the microbial risk score (MRS) framework. Data Input: a phyloseq-class object 661 

is needed, which consists of a feature table (observed count table), a sample metadata, a taxonomy table 662 

(optional), and a phylogenetic tree (optional). MRS Algorithm has two steps: Step 1 is to identify a sub-663 

community consisting of the signature microbial taxa with the P+T method and AUC evaluation in the 664 

discovery cohort. The black ROC curve which has the largest AUC determines the optimal p-value cutoff. 665 

Step 2 is to integrate the identified microbial taxa into a continuous score, i.e., calculate the MRS value for 666 

each sample by calculating the diversity of the identified sub-community with the Shannon index. In 667 

addition, the constructed MRS is independently validated in the validation cohort. Application: In this 668 

manuscript, we perform multi-omics data integration for disease prediction by jointly modeling the 669 

proposed MRS and other risk scores constructed from other omics data in two real data cohorts. 670 

 671 

Figure 2. The optimal p-value thresholds by P+T method for including taxa in MRS𝛼 , MRS𝑤𝑆 , and 672 

MRS𝑢𝑛𝑤𝑆, separately, using the metagenomic data in the NYULH COVID-19 cohort. Specifically, given a 673 

cut-off, the taxa with p-values less than the cut-off were selected and defined as a sub-community. The p-674 

values were obtained by ANCOM-BC method. The leave-one-out CV was used for the predictions. MRS𝛼: 675 

the negative alpha diversity (Shannon index) was calculated for each sample on the selected sub-community; 676 

MRS𝑤𝑆: the weighted sum of relative abundances of the selected taxa with the weights being the coefficients 677 
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estimated from the ANCOM-BC log-linear model; MRS𝑢𝑛𝑤𝑆 : the sum of relative abundances of the 678 

selected taxa. 679 

 680 

Figure 3. Evaluation of MRS in the discovery and validation cohorts [27]. A: The AUC values and 95% 681 

confidence intervals (CIs) for MRS𝛼s to predict healthy and different disease conditions in discovery and 682 

validation cohorts, respectively. B:  Venn diagrams of taxa identified in pairwise comparisons of Healthy 683 

versus CA, CC, CD, and RA. CA: colorectal adenoma, CC: colorectal cancer, CD: Crohn’s disease, and 684 

RA: rheumatoid arthritis. 685 

 686 

Figure 4. The ROC curves and AUC values for the various risk scores to predict alive and deceased status 687 

in the NYULH COVID-19 cohort. A. Predication performance for the individual risk scores constructed 688 

based on metagenome (DNA_MRS𝛼), metatranscriptiome (RNA_MRS𝛼), and host transcriptome (Host), 689 

separately. B. Predication performance based on multiple risk scores using additive model. 690 

 691 

Figure 5. Box plots of the score comparisons between alive and deceased group. All risk scores are 692 

standardized among all samples, respectively. The statistical significance on group comparison is 693 

evaluated by Wilcoxon signed-rank test.  694 

 695 

Figure 6. Scatterplots of risk scores based on metagenome, metatranscriptome, and host transcriptome data. 696 

A-C: Scatterplots of DNA_MRS𝛼  vs RNA_ MRS𝛼 , DNA_ MRS𝛼  vs Host, and RNA_MRS𝛼  vs Host, 697 

respectively. Dotted line denotes the mean of the corresponding risk score across all subjects. D: 3D 698 

scatterplot of DNA_MRS𝛼vs RNA_MRS𝛼vs Host.  699 

 700 

Figure 7. Heatmaps of Spearman’s rank correlations between the top 50 taxa from metagenome and the 701 

top 50 genes from host transcriptome, in alive and deceased groups, separately. The top 50 features were 702 

selected based on the proportion of selection in all CV iterations. 703 

 704 

Figure 8. Results for T1D prediction in the TEDDY study. A. ROC curves and AUC values for 705 

predicting T1D status using various risk score. PRS_hla is constructed from the HLA alleles alone, and 706 

PRS is constructed from all SNPs found in the TEDDY cohort based on the existing PRS algorithm [49].  707 

MRS𝛼 is the negative alpha diversity (Shannon index) calculated on the selected sub-community, which is 708 

selected by ANCOM-BC method and P+T method. B–D. Kaplan–Meier plots for the groups of subjects at 709 

high and low risk of developing T1D, based on PRS, MRS𝛼, and the combination of PRS and MRS𝛼, 710 

respectively.  Subjects whose risk scores are above the third quartile are defined as high risk, others as 711 

low risk, others as low risk.  712 

 713 

Table 1. Classification evaluation for subjects having extreme risk categories (labeled as either “High risk” 714 

or “Low risk” by both or all three risk scores) in the NYULH COVID-19 cohort. 715 
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Combination of  the risk scores Sensitivity Specificity Accuracy F1 

DNA_MRS𝛼 + RNA_MRS𝛼 0.67 0.78 0.71 0.75 

DNA_MRS𝛼 + Host 0.78 0.65 0.74 0.80 

RNA_MRS𝛼 + Host 0.48 0.92 0.58 0.63 

DNA_MRS𝛼+ RNA_MRS𝛼+ Host 0.86 0.91 0.88 0.89 

 716 

Table 2. Association results between the risk scores and the time to death based on the Cox proportional-717 

hazards model in the NYULH COVID-19 cohort. 718 

Risk score 

Hazard ratio 

p-value Estimate 95% confidence interval 

DNA_MRS𝛼 1.80 1.36-2.38 3.56E-05 

RNA_MRS𝛼 1.87 1.11-3.14 0.0179 

Host 1.43 1.16-1.76 0.000855 

DNA_MRS𝛼+Host 1.54 1.28-1.84 2.52E-06 

DNA_MRS𝛼 + RNA_MRS𝛼 2.57 1.78-3.71 4.46E-07 

RNA_MRS𝛼+Host 2.00 1.51-2.64 1.39E-06 

DNA_MRS𝛼 + RNA_MRS𝛼 + Host 1.97 1.58-2.45 1.60E-09 

 719 

Additional material 720 

 721 

Additional file 1: Figure S1. The ROC curves and AUC values for various ML algorithms to predict the 722 

alive or deceased status in the NYULH COVID-19 cohort. A. Predication performance for elastic-net 723 

logistic regression (glmnet), penalized discriminant analysis (pda2), regularized random forest (RRF), and 724 

neural networks with feature extraction (pcaNNet) methods. B. Predication performance for naive Bayes 725 

(naïve_bayes), neural network (nnet), stochastic gradient boosting (gbm), and support vector machines with 726 

polynomial kernel (svmPoly) methods. 727 

Figure S2. The AUC values and 95% CIs for MRS𝛼s to classify healthy and nonhealthy and two disease 728 

conditions in the discovery and validation GMHI cohorts [27], respectively. CA: colorectal adenoma, CC: 729 

colorectal cancer, CD: Crohn’s disease, and RA: rheumatoid arthritis. 730 

Figure S3. Heatmaps of Spearman’s rank correlations between the top 50 taxa from metagenome and the 731 

top 50 taxa from metatranscriptiome, in the alive and deceased groups, separately. The top 50 features were 732 

selected based on the proportion of selection in all CV iterations. 733 

Figure S4. Heatmaps of Spearman’s rank correlations between the top 50 taxa from metatranscriptome and 734 

the top 50 genes from host transcriptome, in the alive and deceased groups, separately. The top 50 features 735 

were selected based on the proportion of selectin in all CV iterations.  736 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.06.07.495127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495127
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

Figure S5. Comparisons among various MRSs in terms of AUC value and 95% CI in the discovery and 737 

validation cohorts [27]. Here candidate taxa are identified by ANCOM-BC [31], ALDEx2 [56], and 738 

Maaslin2 [57], and the MRS𝛼s are constructed by Shannon, Simpson, and Observed indices, respectively. 739 

DA: differential abundance, CA: colorectal adenoma, CC: colorectal cancer, CD: Crohn’s disease, and 740 

RA: rheumatoid arthritis. 741 

Figure S6. The mean and standard derivation of the ranks of MRS𝛼’s AUCs with ANCOM-BC, 742 

ALDEx2, and Maaslin2, respectively. For each alpha diversity index in each comparison of two diseases 743 

or healthy conditions, the AUCs of MRS𝛼 with three DA methods were ranked 1-3. A higher rank 744 

represents a higher AUC. For each alpha diversity index, the Kruskal-Wallis test was performed to check 745 

difference among three DA methods. All: all samples were used for test.  Statistical significance: ns: p-746 

value>0.05; *:  p-value≤ 0.05. 747 

Figure S7. The mean and standard derivation of the ranks of MRS𝛼’s AUCs with Shannon, Simpson, and 748 

Observed indices, respectively. For each DA method in each comparison of two diseases or healthy 749 

conditions, the AUCs of MRS𝛼 with three indices were ranked 1-3. A higher rank represents a higher 750 

AUC. For each DA method, the Kruskal-Wallis test was performed to check difference among three alpha 751 

diversity indices. All: all samples were used for test.  Statistical significance: ns: p-value >0.05; *: p-value 752 

≤ 0.05; **: p-value ≤ 0.01; ***: p-value ≤ 0.001; ****: p-value ≤ 0.0001. 753 

 754 

 755 

Additional file 2: Table S1. Number of discovery and validation samples used for MRS evaluation and 756 

validation from the GMHI multi-study cohort. 757 

Table S2. AUC values for six common alpha diversity indices on the whole community to predict alive 758 

and deceased status in the NYULH COVID-19 cohort. 759 

Table S3 The identified species for MRS𝛼 construction in terms of comparisons among healthy, CA, CC, 760 

CD, RA, and nonhealthy based on the discovery samples in the GMHI multi-study cohort. 761 

Table S4. Average and standard deviation of relative abundances of the identified species in Healthy, CA, 762 

CC, CD, and RA discovery samples from the GMHI multi-study cohort. The identified species are used for 763 

MRS𝛼 construction in terms of pairwise comparisons of Healthy versus CA, CC, CD, and RA, respectively. 764 

Table S5. Average and standard deviation of relative abundances of the identified species in Healthy, CA, 765 

CC, CD, and RA validation samples from the GMHI multi-study cohort. The identified species are used for 766 

MRS𝛼 construction in terms of pairwise comparisons of Healthy versus CA, CC, CD, and RA, respectively. 767 

Table S6. Factors used for metagenomic, metatranscriptomic and host transcriptomic risk scores in the 768 

NYULH COVID-19 cohort. 769 

 770 

Additional file 3: Section S1 Computational details for risk scores 771 

 772 

 773 
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