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Abstract In this paper, we devise a discrete time SIR
model depicting the spread of infectious diseases in vari-
ous geographical regions that are connected by any kind of
anthropological movement, which suggests disease-affected
people can propagate the disease from one region to another
via travel. In fact, health policy-makers could manage the
problem of the regional spread of an epidemic, by orga-
nizing many vaccination campaigns, or by suggesting other
defensive strategies such as blocking movement of people
coming from borders of regions at high-risk of infection
and entering very controlled regions or with insignificant
infection rate. Further, we introduce in the discrete SIR
systems, two control variables which represent the effective-
ness rates of vaccination and travel-blocking operation. We
focus in our study to control the outbreaks of an epidemic
that affects a hypothetical population belonging to a spe-
cific region. Firstly, we analyze the epidemic model when
the control strategy is based on the vaccination control only,
and secondly, when the travel-blocking control is added. The
multi-points boundary value problems, associated to the opti-
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mal control problems studied here, are obtained based on
a discrete version of Pontryagin’s maximum principle, and
resolved numerically using a progressive-regressive discrete
scheme that converges following an appropriate test related
to the Forward-Backward SweepMethod on optimal control.

Keywords Multi-regions · Discrete SIR model · Optimal
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1 Introduction

Mathematical modeling has played important role in describ-
ing and analyzing the evolution of infectious diseases. In
1927,Kermack andMcKendrick [1]were thefirst researchers
on mathematical epidemiology to propose the SIR model
which is one of the classical epidemic models that has a
compartment structure. In SIR systems, the host population
is divided into three epidemiological groups: the suscepti-
bles (S) (individuals not yet infected with the disease), the
infectives (I ) (individuals who have been infected with the
disease and are capable of spreading the disease to those in the
susceptible category), and the removed (R) (individuals who
have been infected and then removed from the disease. Those
in this category are not able to be infected again or transmit
the infection to others). The transmission dynamics of an
infectious disease is described by modeling the population
movements among those epidemiological compartments. In
these types of models, individuals develop an immunity to
some diseases such as chicken pox and SARS. In addition,
contacts between infected and susceptible individuals can
take part in the spread of the epidemic.

On a large geographical scale, the disease becomes spa-
tially mobile to different regions due to the movement of
people from a region to another. The infection transport net-
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work becomesmore complex when people come via airplane
for instance, from further places.

The mathematical models conventional of the spread of
the disease, have usually ignored or overlooked the spatial
dynamics, while the spatial spread of infection has been
observed many times [2]. In fact, there exist in the his-
tory of infectious diseases, many examples of infection that
was observed spreading with respect to space. Sometimes,
epidemics spread over large areas, and can even reach con-
tinents. Such cases include the Black Death (plague) which
emerged in Europe in the 1300s, measles and smallpox in
the New World between the 1500s and 1600s, HIV/AIDS in
1981, West Nile virus in North America in the late 1990s,
and SARS in Asia in 2003 [3].

The spatial spread of infectious diseases is a phenomenon
that involves many different components, which makes its
modeling a complex task. Spatial heterogeneity requires a
formulation of a small model for each region (city, or state,
etc). One possible approach is to consider the travel of indi-
viduals between discrete geographical regions (subdomains
of domain of study), assuming that the transmission does
not take place during travel. For diseases that affect animals
and insects (vectors), and can also be passed on to humans
[4], it is important to accurately model not only the con-
tact/mixing between humans and the various species, but
also the movement patterns of each of the species involved,
including humans.

The importance of modelling spatial spread of infectious
disease can be highlighted by considering the Ebola out-
breaks disease in several sub-Saharan African countries [5].
Before the diagnosis of that disease, infected people moved
fromone city to another.After some infected caseswere diag-
nosed, and the problem was recognized, it took some time
until the political decisionwasmade to ban allmovements.At
that time, the infected cases had already been divided among
a large number of regions. The problem was exacerbated.
Then, in order to control the spatial spread of the disease, it
has became necessary to consider all parts that people can
visit. Hence, this study showcases the significance of inte-
gration of spatial dynamics in mathematical models of the
spread of infectious diseases.

There is an increasing interest in the study and applica-
tion of spatial spread [3,6,7]. Most of the models studied,
have been partly continuous because of their mathemat-
ical tractability. In Allen et al. [8], a discrete-time, age-
independent SIR type epidemic model with n subgroups
is formulated and analyzed, then applied to a measles epi-
demic on a university campus. In similar pattern, we devise
a discrete-time SIR model that describes the propagation of
a disease in a population of individuals who travel between
p regions (domains).

Figure1 illustrates an example of discrete geographical
domains of region of Casablanca-Settat (Morocco) where

Fig. 1 Region of Casablanca-Settat in Morocco. This region is
divided into nine subregions (or domains) (Ωi )1≤i≤9: Casablanca (Ω1),
Mohammedia (Ω2), El jadida (Ω3), Nouaceur (Ω4), Mediouna (Ω5),
Ben Slimane (Ω6), Berrechid (Ω7), Settat (Ω8) and Sidi Bennour (Ω9)
[9]

p = 9, that image was originally made based on information
from [9]. Births and deaths are included but the population
size of each domain remains constant. One reason for the
upsurge of discrete epidemic models is that discrete models
have advantages in describing an infectious disease since
epidemic data are usually collected in discrete time units,
which would make it more convenient to use discrete-time
models [10] and the ease with which data can be compared
to the simulated results [8].

In the literature, there have been many studies of discrete
epidemic models [11–15] and references therein. In Refer-
ence Allen et al. [11], explained the advantage of SIS and
SIR discrete-time models in approximating the more well-
known continuous-time epidemic models. As regards to the
positivity of solutions, discrete-time equations often provide
positive solutions. However, differential equations give simi-
lar behaviors of solutions when time step is approaching zero
[12].

There are different approaches to model the evolution of
infectious diseases in discrete time. The recurrent difference
equations from the discretisation of continuous differential
equation models is one of the direct modeling approaches
and frequently used, since this type of model can be well
understood in the application under reasonable assumptions
knowing that there are limits on the range of parameters
[13,14]. We will use this approach to formulate the model
considered in this paper. Optimal control theory is well used
as an available and effective option for diseases control,
mainly Tuberculosis [16–20], Malaria [21,22], HIV [23–
31], Hepatitis [32,33], Vector borne diseases [34], Cancer
[35–40], and other diseases [41–47], but there are very few
applications with both space and time as discrete variables.
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The aforementioned studies, especially those related to infec-
tious diseases, have mainly focused on the optimization of
the intervention for single region, rather than the intervention
for multiple regions, hence, this work has a novel control
application in addition to providing a framework to ana-
lyze spatial control strategies. The aim of this work is not
to consider a special disease but to set up an optimal control
problem relative to multi-regional discrete-time SIR model,
applicable for any type of infectious diseases. Firstly, we rep-
resent the percentage of vaccinated susceptible populations
as a control function of time in the SIR model corresponding
to the targeted region aiming to control. Hence, the purpose
of this optimal control (vaccination) strategy is to minimize
the infected and susceptible individuals, and to maximize
the total number of recovered individuals in that region by
using the minimum possible cost of applying this control and
simultaneously, to investigate the sensitivity of the suscep-
tible individuals by the control (vaccination). We illustrate
how the optimal control theory and the percentage of the
vaccination (control) variables can be applied to minimize
the susceptible and infected individuals and increase the
removed ones.

The importance of taking into account the spatial spread of
epidemic, is manifested in showing the influence of infection
rates in regions at high-risk on theirs neighbors. Secondly,
another control variable is added, characterizing the travel-
blocking operationwhich attempts to block contacts between
susceptibles of the controlled region (by vaccination) and
infected individuals of domains at high-risk. We derive the
optimality system for the multi-regional SIR model with
the percentage of vaccinated individuals and travel-blocking
operation. Then we find an optimal control strategy for this
model and solve numerically this system by using an iterative
procedure.

The rest of this paper is organized as follows:We describe
the model without controls in Sect. 2. Objective functional
and the analysis of optimal control with numerical simula-
tions, for the case when only the vaccination control is used,
are given in Sect. 3. Section4 includes the analysis of opti-
mal control problem and numerical simulations of the case
when the travel-blocking control is also added. Finally, we
conclude in Sect. 5.

2 The multi-regions discrete SIR model

We assume that there are p geographical regions (domains)
of the domain studied Ω (In Fig. 1, Ω is the region of
Casabanca-Settat with p = 9).

Let Ω = ⋃p
j=1 Ω j , and let N

Ω j
i be the population of

domain Ω j at time i , i.e., the number of individuals who
are physically present in Ω j , both residents and travelers.
According to the disease transmission mechanism, the host

population ofΩ j is grouped into three epidemiological com-

partments, let S
Ω j
i , I

Ω j
i and R

Ω j
i be the number of individuals

in the susceptible, infective, and removed compartments of
Ω j at time i , respectively. In addition to the death and recruit-
ment, there are population movements among those three
epidemiological compartments from time unit i to time i+1.
We assume that the recruited individuals (by birth and immi-
gration) are constant and enter the susceptible compartment.
To make the model a little more realistic, but in order to work
with a constant overall population, we suppose that birth and
death occur with the same rate. In addition, we suppose that
individuals who are out of their domain do not give birth,
and so birth occurs in the home domain at a per capita rate
d j > 0. And death takes place anywhere with a per capita
rate d j . After one unit time, the susceptible individuals may
stay in the susceptible compartment, or get infected andmove
to the infectious compartment, or die. Disease transmission
is assumed to occur between individuals present in a given
domain Ω j . The individuals in the infective compartment
can keep being the infective, or get recovery and be trans-
ferred to the recovered compartment, or die, assuming that
there is no mortality due to infection. The individuals in the
recovered compartment never leave the compartment unless
they die.

The disease transmission in a given domain Ω j at time i
is modelled using standard incidence, given by

p∑

k=1

β jk
IΩk
i

N
Ω j
i

S
Ω j
i

where the disease transmission coefficient β jk > 0 is the
proportion of adequate contacts in domain Ω j between a
susceptible from Ω j and an infective from another domain
Ωk .

The multi-regions discrete-time SIR model associated to
Ω j is written as follows

S
Ω j
i+1 = S

Ω j
i −

p∑

k=1

β jk
IΩk
i

N
Ω j
i

S
Ω j
i +

(
N

Ω j
i − S

Ω j
i

)
d j (1)

I
Ω j
i+1 = I

Ω j
i +

p∑

k=1

β jk
IΩk
i

N
Ω j
i

S
Ω j
i − γ j I

Ω j
i − d j I

Ω j
i (2)

R
Ω j
i+1 = R

Ω j
i + γ j I

Ω j
i − d j R

Ω j
i (3)

where d j is the birth and death rate and γ j is the recovery
rate. The biological background requires that all parameters
be non-negative.

N
Ω j
i = S

Ω j
i + I

Ω j
i + R

Ω j
i is the population size corre-

sponding to domainΩ j at time i . It is clear that the population
size remains constant for all i ≥ 0, in fact
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N
Ω j
i+1 = S

Ω j
i+1 + I

Ω j
i+1 + R

Ω j
i+1

= S
Ω j
i + I

Ω j
i + R

Ω j
i + d j N

Ω j
i − d j

×
(
S

Ω j
i + I

Ω j
i + R

Ω j
i

)
= N

Ω j
i

3 The model with vaccination only

3.1 Presentation of the model

We introduce a control variable u
Ω j
i that characterizes the

effectiveness of treatment (vaccination) in the above men-
tioned model (1–3). Then, for a given region Ω j the model
is given by the following equations:

S
Ω j
i+1 = S

Ω j
i −

p∑

k=1

β jk
IΩk
i

N
Ω j
i

S
Ω j
i +

(
N

Ω j
i − S

Ω j
i

)
d j

−u
Ω j
i S

Ω j
i (4)

I
Ω j
i+1 = I

Ω j
i +

p∑

k=1

β jk
IΩk
i

N
Ω j
i

S
Ω j
i − γ j I

Ω j
i − d j I

Ω j
i (5)

R
Ω j
i+1 = R

Ω j
i + γ j I

Ω j
i − d j R

Ω j
i + u

Ω j
i S

Ω j
i (6)

Our goal is obviously to try tominimize the population of the
susceptible group and the cost of treatment, while increasing
the population in the removed group. Our control function

is assumed taking values between u
Ω j
min and u

Ω j
max , where

u
Ω j
max < 1 and u

Ω j
min > 0, ∀ j = 1, . . . , p.

3.2 An optimal control approach

We are interested in controlling the population of region Ω j .
Then, the problem is to minimize the objective functional
given by

J j
(
uΩ j

) =
(
α I
j I

Ω j
N − αR

j R
Ω j
N

)

+
N−1∑

i=1

(

α I
j I

Ω j
i − αR

j R
Ω j
i + A j

2

(
u

Ω j
i

)2
)

(7)

where A j > 0, α I
j > 0, αR

j > 0 are the weight constants
of control, the infected and the removed group respectively,

and uΩ j =
(
u

Ω j
0 , . . . , u

Ω j
N−1

)
. Our goal is to minimize the

infected group, minimize the systemic costs attempting to
increase the number of the removed individuals in Ω j . In
other words, we are seeking an optimal control uΩ j∗ such
that

J j
(
uΩ j∗) = min

{
J j

(
uΩ j

)
/uΩ j ∈ Uj

}

where Uj is the control set defined by

Uj =
{
uΩ j measurable/u

Ω j
min ≤ u

Ω j
i ≤ u

Ω j
max

}

i = 0, . . . , N − 1
The sufficient condition for existence of an optimal control

for the problem follows from Theorem 1 in [48], and at the
same time, by using the Pontryagin’s Maximum Principle
[49] we derive necessary conditions for our optimal control.
For this purpose, we define the Hamiltonian as:

H (
Ω j

) = α I
j I

Ω j
i − αR

j R
Ω j
i + A j

2

(
u

Ω j
i

)2 + ζ
j
1,i+1

×
[

S
Ω j
i −

p∑

k=1

β jk
IΩk
i

N
Ω j
i

S
Ω j
i +

(
N

Ω j
i −S

Ω j
i

)
d j −u

Ω j
i S

Ω j
i

]

+ ζ
j
2,i+1

[

I
Ω j
i +

p∑

k=1

β jk
IΩk
i

N
Ω j
i

S
Ω j
i − γ j I

Ω j
i − d j I

Ω j
i

]

+ ζ
j
3,i+1

[
R

Ω j
i + γ j I

Ω j
i − d j R

Ω j
i + u

Ω j
i S

Ω j
i

]
(8)

Theorem 3.2.1 (Sufficient conditions) For the optimal con-
trol problem given by (7) along with the state Eqs. (4)–(6),
there exists a control uΩ j∗ ∈ Uj such that

J j
(
uΩ j∗) = min

{
J j

(
uΩ j

)
/uΩ j ∈ Uj

}

Proof See Dabbs ([48], Theorem 1). ��

Theorem 3.2.2 (Necessary Conditions) Given an optimal
control uΩ j∗ and solutions SΩ j∗, IΩ j∗ and RΩ j∗, there exist
ζ
j
k,i , i = 1 . . . N , k = 1, 2, 3, the adjoint variables satisfy-
ing the following equations:

ζ
j
1,i = −

[(

1 −
p∑

k=1

β jk
IΩk∗
i

N
Ω j
i

− d j − u
Ω j∗
i

)

ζ
j
1,i+1

+
p∑

k=1

β jk
IΩk∗
i

N
Ω j
i

ζ
j
2,i+1 + u

Ω j∗
i ζ

j
3,i+1

]

(9)

ζ
j
2,i = −

[

α I
j − β j j

S
Ω j∗
i

N
Ω j
i

ζ
j
1,i+1

+
(

1 + β j j
S

Ω j∗
i

N
Ω j
i

− γ j − d j

)

ζ
j
2,i+1 + γ jζ

j
3,i+1

]

(10)

ζ
j
3,i = −

[
−αR

j + (
1 − d j

)
ζ
j
3,i+1

]
(11)
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where ζ
j
1,N = 0, ζ j

2,N = α I
j , ζ

j
3,N = −αR

j , are the transver-
sality conditions. In addition

u
Ω j∗
i =min

⎧
⎨

⎩
max

⎧
⎨

⎩
u

Ω j
min,

(
ζ
j
1,i+1−ζ

j
3,i+1

)
S

Ω j
i

A j

⎫
⎬

⎭
, u

Ω j
max

⎫
⎬

⎭
,

(12)

i = 0, . . . , N − 1

Proof Using Pontryagin’s Maximum Principle [49], and set-
ting SΩ j = SΩ j∗, IΩ j = IΩ j∗, RΩ j = RΩ j∗ and uΩ j =
uΩ j∗ we obtain the following adjoint equations:

ζ
j
1,i = − ∂H

∂S
Ω j
i

= −
[(

1 −
p∑

k=1

β jk
IΩk
i

N
Ω j
i

− d j − u
Ω j
i

)

ζ
j
1,i+1

+
p∑

k=1

βk
IΩk
i

N
Ω j
i

ζ
j
2,i+1 + u

Ω j
i ζ

j
3,i+1

]

ζ
j
2,i = − ∂H

∂ I
Ω j
i

= −
[

α I
j − β j j

S
Ω j
i

N
Ω j
i

ζ
j
1,i+1

+
(

1 + β j j
S

Ω j
i

N
Ω j
i

− γ j − d j

)

ζ
j
2,i+1 + γ ζ

j
3,i+1

]

ζ
j
3,i = − ∂H

∂R
Ω j
i

= −
[
−αR

j + (
1 − d j

)
ζ
j
3,i+1

]

with ζ
j
1,N = 0, ζ j

2,N = α I
j , ζ

j
3,N = −αR

j . To obtain the
optimality conditions we take the variation with respect to

control u
Ω j
i and set it equal to zero

∂H
∂u

Ω j
i

= A ju
Ω j
i − ζ

j
1,i+1S

Ω j
i + ζ

j
3,i+1S

Ω j
i = 0

Then we obtain the optimal control

u
Ω j
i =

(
ζ
j
1,i+1 − ζ

j
3,i+1

)
S

Ω j
i

A j

By the bounds in Uj of the control, it is easy to obtain
uΩ j∗ in the following form

u
Ω j∗
i =min

⎧
⎨

⎩
max

⎧
⎨

⎩
u

Ω j
min,

(
ζ
j
1,i+1 − ζ

j
3,i+1

)
S

Ω j
i

A j

⎫
⎬

⎭
, u

Ω j
max

⎫
⎬

⎭
,

i = 0, . . . , N − 1 ��

Table 1 Parameters values of β, d and γ utilized for the resolution of
all multi-regions discrete systems (1)–(3), (4)–(6) and (15)–(17), and
then leading to simulations obtained from Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 and 12, with the initial conditions S0, I0 and R0 associated to the
three regions Ω1,Ω2 and Ω3

S0 I0 R0 β d γ

Ω1 10,000 900 0 0.051 0.16 0.0025

Ω2 8000 900 0 0.2481 0.1346 0.003

Ω3 7000 50 0 0.11 0.219 0.025

3.3 Numerical results

We now present numerical simulations associated to the
above mentioned optimal control problem. We write a code
in MATLABTM and simulated our results using different
data. The optimality systems is solved based on an itera-
tive discrete scheme that converges following an appropriate
test similar the one related to the Forward-Backward Sweep
Method (FBSM). The state system with an initial guess is
solved forward in time and then the adjoint system is solved
backward in time because of the transversality conditions.
Afterwards, we update the optimal control values using the
values of state and costate variables obtained at the previous
steps. Finally, we execute the previous steps till a tolerance
criterion is reached.

Themulti-regions SIR epidemicmodelwe suggest here, is
applicable for any number of regions p. For an example, and
inorder to show the importanceof ourwork,wechoose p = 3
i.e, we consider three regions (domains)Ω1,Ω2 andΩ3 with
different parameters cited in Table1. We try to controlΩ1 by
the vaccination term uΩ1 given by (12).

In Fig. 2, we can observe that in the absence of a con-
trol and in the presence of an epidemic that spreads in three
regions characterized by different parameters, the number
of infected individuals rise from IΩ1

0 = 900, IΩ2
0 = 900

and IΩ3
0 = 50 as initial conditions to 5730, 5430 and 3200

in the three regions respectively. Once a vaccination con-
trol is introduced in the system (4)–(6), particularly in the
equations that describes dynamics of SΩ1 , IΩ1 and RΩ1 func-
tions associated to the first region, we can deduce its effect
on decreasing the number of infected people in Fig. 3, from
5730 when there was yet no vaccination strategy, to 2750
when there is the control uΩ1 . One of the major benefits of
that control, is to increase the number of the removed peo-
ple, and this can be observed in the case (a) of Fig. 3, where
the number of the removed people becomes approximately
equal to 5500, and that can obviously prove the effectiveness
of the vaccination strategy in the first region with a rate that
varies in Fig. 4, from a value equal to 0.15 towards a value
equal to 0.3, and which also proves that by a control taking
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Fig. 2 Shapes of state
functions of the discrete system
(1)–(3) where there is yet no
control. a State variables S, I
and R associated to the region
Ω1. b State variables S, I and R
associated to the region Ω2. c
State variables S, I and R
associated to the region Ω3

(a) (b) (c)

Fig. 3 Shapes of state
functions of the discrete system
(4)–(6) when the control uΩ1∗ is
now introduced. given by (12). a
Optimal state variables S∗, I ∗
and R∗ associated to the region
Ω1. b Optimal state variables
S∗, I ∗ and R∗ associated to the
region Ω2. c Optimal state
variables S∗, I ∗ and R∗
associated to the region Ω3

(a) (b) (c)

Fig. 4 Shape of the optimal
control function uΩ1∗ showing
the values taken by the
effectiveness rate of the
vaccination in the first region
Ω1 during one month

only a nonzero value close to 0, we can reach our goal with
a significant number of the removed people.

We observe in Fig. 5 that the more the control severity
weight A1 is small, the control uΩ1 is more important and
then there is an increasing of the number of removed people
in (a), because A1 has obviously an impact on the values of
the control uΩ1 (see simulation (b)) from the control charac-
terization (12), and also these results are obtained from the
fact that the most important role of the vaccination control
uΩ1 is to increase the number of the removed people RΩ1 .

Figure6 is added here, to show the importance of another
control associated to a travel-blocking operation, instead of
following only a vaccination strategy. In fact, the number of
infected people in Ω1 is increased by hosting people coming

from Ω2, and we can see the impact of the infection rate β12

on the system (1)–(3) of Ω1 in Fig. 6, and we deduce that the
more β12 is big, the more the number of infected people in
the first region becomes huge.

4 The model with vaccination and travel-blocking

4.1 Presentation of the model

Let I = {1, . . . , p}, and denote by IH ⊂ I , the set of indexes
of domains at high-risk.We introduce a control variable v

jΩk
i

that characterizes the travel-blocking operation, in order to
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Fig. 5 Impact of the control
severity weight A1 on the
number of the removed people
of Ω1 (a), and also on the values
of the control uΩ1 (b)

(a)

(b)

Fig. 6 Impact of different
values of the infection rate β12
on the shape of the state
functions S(t), I (t) and R(t) in
region Ω1
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restrict movements from domains Ωk, k ∈ IH to Ω j . Where

⎧
⎪⎨

⎪⎩

v
jΩk
i < 1 ∀k ∈ IH k 
= j

v
jΩk
i = 1 elsewhere

∀i ≥ 0

(13)

Then for a given region Ω j the model is given as follows:

S
Ω j
i+1 = S

Ω j
i −

p∑

k=1

v
jΩk
i β jk

IΩk
i

N
Ω j
i

S
Ω j
i

+
(
N

Ω j
i − S

Ω j
i

)
d j − u

Ω j
i S

Ω j
i (14)

I
Ω j
i+1 = I

Ω j
i +

p∑

k=1

v
jΩk
i β jk

IΩk
i

N
Ω j
i

S
Ω j
i − γ j I

Ω j
i − d j I

Ω j
i

(15)

R
Ω j
i+1 = R

Ω j
i + γ j I

Ω j
i − d j R

Ω j
i + u

Ω j
i S

Ω j
i (16)

4.2 An optimal control approach

The problem is to minimize the objective functional given by

J j
(
uΩ j , v jΩk

)
=

(
α I
j I

Ω j
N − αR

j R
Ω j
N

)

+
∑

k∈IH

N−1∑

i=1

(
α I
j I

Ω j
i − αR

j R
Ω j
i

+ A j

2

(
u

Ω j
i

)2 + Bk

2

(
v
jΩk
i

)2
)

(17)

where A j > 0, Bk > 0, α I
j > 0, αR

j > 0 are the weight
constants of controls, the infected and the recovered respec-

tively, uΩ j =
(
u

Ω j
0 , . . . , u

Ω j
N−1

)
, v jΩk = (

v jΩk
)
k∈IH and

v jΩk =
(
v
jΩk
0 , . . . , v

jΩk
N−1

)
.

Our goal is to minimize the infected group, minimize the
cost of applying controls and increase the number of recov-
ered in Ω j .

In other words, we are seeking optimal controls uΩ j∗ and
v jΩk∗ such that

J j
(
uΩ j∗, v jΩk∗

)

= min
{
J j

(
uΩ j , v jΩk

)
/uΩ j ∈ Uj , v jΩk ∈ Vj

}

where Uj and Vj are the control sets defined by

Uj =
{
uΩ j measurable/u

Ω j
min ≤ u

Ω j
i

≤ u
Ω j
max , i = 0, . . . , N − 1

}
(18)

Vj =
{
v jΩl measurable/v jΩl

min

≤ v
jΩl
i ≤ v

jΩl
max , i = 0, . . . , N − 1, l ∈ IH

}
(19)

where u
Ω j
max <1, v jΩk

max <1 and u
Ω j
min > 0, v jΩk

min > 0, ∀k∈ IH .
By usingPontryagin’sMaximumPrinciple, [49]we derive

necessary conditions for our optimal controls. For this pur-
pose, we define the Hamiltonian as:

H (
Ω j

) =
∑

l∈IH
α I
j I

Ω j
i −αR

j R
Ω j
i + A j

2

(
u

Ω j
i

)2+ Bl
2

(
v
jΩl
i

)2

+ ζ
j
1,i+1

[

S
Ω j
i −

p∑

k=1

v
jΩk
i β jk

IΩk
i

N
Ω j
i

S
Ω j
i

+
(
N

Ω j
i − S

Ω j
i

)
d j − u

Ω j
i S

Ω j
i

]

+ ζ
j
2,i+1

[

I
Ω j
i +

p∑

k=1

v
jΩk
i β jk

IΩk
i

N
Ω j
i

S
Ω j
i

−γ j I
Ω j
i − d j I

Ω j
i

]

+ ζ
j
3,i+1

[
R

Ω j
i +γ j I

Ω j
i −d j R

Ω j
i +u

Ω j
i S

Ω j
i

]
(20)

Theorem 4.2.1 Given optimal controls uΩ j∗, v jΩk∗, k ∈
IH and solutions SΩ j∗, IΩ j∗ and RΩ j∗, there exist ζ j

k,i , i =
1 . . . N , j = 1, . . . , p, k = 1, 2, 3, the adjoint variables
satisfying the following equations:

ζ
j
1,i = −

[(

1 −
p∑

k=1

v
jΩk
i β jk

IΩk∗
i

N
Ω j
i

− d j − u
Ω j
i

)

ζ
j
1,i+1

+
p∑

k=1

v
jΩk
i β jk

IΩk∗
i

N
Ω j
i

ζ
j
2,i+1 + u

Ω j
i ζ

j
3,i+1

]

(21)

ζ
j
2,i = −

[

α I
j + β j j

SΩk∗
i

N
Ω j
i

(ζ
j
2,i+1 − ζ

j
1,i+1)

+ (
1 − γ j − d j

)
ζ
j
2,i+1 + γ jζ

j
3,i+1

]

(22)

ζ
j
3,i = −

[
−αR

j + (
1 − d j

)
ζ
j
3,i+1

]
(23)

where ζ
j
1,N = 0, ζ j

2,N = α I
j , ζ

j
3,N = −αR

j , j = 1, . . . , p
are the transversality conditions.

In addition, we have

u
Ω j∗
i = min

×
⎧
⎨

⎩
max

⎧
⎨

⎩
u

Ω j
min,

(
ζ
j
1,i+1 − ζ

j
3,i+1

)
S

Ω j∗
i

A j

⎫
⎬

⎭
, u

Ω j
max

⎫
⎬

⎭

(24)
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i = 0, . . . , N − 1

v
jΩl∗
i = min

×
⎧
⎨

⎩
max

⎧
⎨

⎩
v
jΩl
min ,

(
ζ
j
1,i+1−ζ

j
2,i+1

)
β jl I

Ωl∗
i S

Ω j∗
i

Bl N
Ω j
i

⎫
⎬

⎭
, v

jΩl
max

⎫
⎬

⎭

(25)

i = 0, . . . , N − 1, l ∈ IH

Proof Using Pontryagin’s Maximum Principle [49] and (13)
we obtain the following adjoint equations:

ζ
j
1,i = − ∂H

∂S
Ω j
i

= −
[(

1 −
p∑

k=1

v
jΩk
i β jk

IΩk
i

N
Ω j
i

− d j − u
Ω j
i

)

ζ
j
1,i+1

+
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v
jΩk
i β jk

IΩk
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N
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i

ζ
j
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Ω j
i ζ
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3,i+1

]

ζ
j
2,i = − ∂H

∂ I
Ω j
i

= −
[

α I
j + β j j

SΩk∗
i

N
Ω j
i

(
ζ
j
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)
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]

ζ
j
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∂R
Ω j
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= −
[
−αR
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1 − d j

)
ζ
j
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]

with ζ
j
1,N = 0, ζ j

2,N = α I
j , ζ

j
3,N = −αR

j , j = 1, . . . , p. To
obtain the optimality conditions we take the variation with

respect to controls (u
Ω j
i and v

jΩl
i ) and set it equal to zero

∂H
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Then we obtain the optimal control pair
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By the bounds in Uj and Vj of the controls, it is easy to

obtain u
Ω j∗
i and v

Ωl∗
i in the following form
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i = 0, . . . , N − 1

v
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×
⎧
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⎩
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⎧
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⎩
v
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(
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i

Bl N
Ωl
i

⎫
⎬

⎭
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⎫
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i = 0, . . . , N − 1, l ∈ IH ��
Remark 4.2.1 If h is the cardinality of IH then there are h+1
controls.

4.3 Numerical results

In this subsection,wekeep the samedata used above (Table1)
to simplify the comparison of results obtained in both cases.
I = {1, 2, 3}, andwe are also interested in controllingΩ1, by
assuming thatΩ2 is at high-risk of infection (see Fig. 2), then
IH = {2}. We introduce the second control v1Ω2 given by
(25), in order to reduce entry of infected people from region
Ω2.

Because of the impact of the infection rate associated to
only one region on neighbor regions, by increasing the num-
ber of its infected people via travel as it was shown in Fig. 6,
and in order to show the advantage of the travel-blocking
control v1Ω2 , in decreasing the number of infected people
who travel to the first region from the second region, we
deduce from Fig. 7 that the number of infected people in the
first region decreases from 5730 when there was no controls
yet in Fig. 2, and from 2750 when the control uΩ1 is intro-
duced alone in Fig. 3, towards a smaller number equal to 575
when the control v1Ω2 is added, and which can prove that the
travel-blocking operation was successful to prevent the dis-
ease from spread.We should note that themore v1Ω2 is small,
the more we can obtain good results regarding the evolution
of infection rate. In fact, it is easy to deduce from the dis-
crete control system (14)–(16), that when v1Ω2 is closer to 0,

the term “v1Ω2
i β12

I
Ω2
i

N
Ω1
i

” converges to 0 and when v1Ω2 is far

from 0, the term “v1Ω2
i β12

I
Ω2
i

N
Ω1
i

” participates to an increase of

the IΩ1 function. In contrast, the more uΩ1 is bigger and far
from 0, the more we can obtain satisfactory results regarding
the evolution of the number of the removed people.

Figure8 presents the simulations of uΩ1 and v1Ω2 , and we
can see that uΩ1 varies from 0.09 (<0.15 in Fig. 4) to 0.31
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Fig. 7 Simulations of the
optimal state functions
S∗(t), I ∗(t) and R∗(t)
associated to the multi-regions
discrete system (14)–(16) with
controls uΩ1∗ and v1Ω2 given by
(24) and (25) respectively. a
Dynamics of the population in
region Ω1. b Dynamics of the
population in region Ω2. c
Dynamics of the population in
region Ω3

(a) (b) (c)

Fig. 8 The optimal
effectiveness of the vaccination
control strategy: uΩ1∗ (see a),
the optimal effectiveness of the
travel-blocking control strategy:
v1Ω2 (see b)

(a) (b)

Fig. 9 Comparison of control
uΩ1∗ with and without use of
control v1Ω2

(=0.31 in Fig. 4) and v1Ω2 varies from 0.0275 to 0.05 which
proves that with this small v1Ω2 close to 0, the decrease of the
number of infected people in Fig. 7 is more important than
the case where there was no travel-blocking yet. In addition,
the effect of the lacking amount of the function uΩ1 in Fig. 8
compared to the simulation in Fig. 4, could be replaced by
the effect of control v1Ω2 , and by introducing both controls
uΩ1 and v1Ω2 , we would obtain better results that prove the
importance of the travel-blocking control. In general, it does
not occur a very big change of the control function uΩ1 from
the case when there is no control term v1Ω2 yet to the case
when v1Ω2 is introduced to (14)–(16) as we can see in Fig. 9,

but with changing the values of the severity weight A1 asso-
ciated to the control uΩ1 in cases (a) and (b) of Fig. 10, we
can observe more the impact of v1Ω2 on uΩ1 , and the lacking
effect of uΩ1 could be seen replaced by the effect of v1Ω2 ,
because for different values of A1, the control uΩ1 becomes
smaller in the presence of v1Ω2 in case (a), and bigger in case
(b) when v1Ω2 is not introduced yet to (4)–(6).

Figure11 also shows the impact of A1 on the values of
v1Ω2 , and we deduce that more A1 is important, the more
v1Ω2 is also important. In fact, by analogous conclusions
from Fig. 5, we deduce that in the case of a travel-blocking
control that the more the control severity weight A1 is big,
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Fig. 10 Comparison of control
uΩ1∗ with and without use of
control v1Ω2 with different
choices of A1. a uΩ1∗ in the
presence of control v1Ω2 . b uΩ1∗
in the absence of control v1Ω2

(a)

(b)

Fig. 11 Impact of the control
severity weight A1, with
B2 = 2.109, on the number of
the infected people in Ω1
(simulation a), and also on the
control v1Ω2 (simulation b)

(a)

(b)
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Fig. 12 Impact of the control
severity weight B2, with
A1 = 5.108, on the number of
the infected people in Ω1
(simulation a), and also on the
control v1Ω2 (simulation b)

(a)

(b)

the more the number of infected people in (a) is big, because
uΩ1 has obviously an impact on the values of the control v1Ω2

(see simulation Fig. 11b) as we explained above (the more
uΩ1 is small the more v1Ω2 is big), and also these results
are obtained from the fact that the most important role of
the travel-blocking control v1Ω2 is to decrease the number
of the infected people IΩ1 without forgetting that the more
v1Ω2 is closer to zero, the more the number infected becomes
insignificant. Opposite results are obtained in Fig. 12 by
changing the values of the control severity weight B2, andwe
obtain small v1Ω2 (see simulation Fig. 12b) whenever B2 is
taken small values because B2 has obviously an impact on the
values of the control v1Ω2 from the control characterization
(25).

For both Figs. 10 and 11, we can explain those numerical
results by the fact that more A1 is big, the more uΩ1 is small
(could obviously be deduced by the location of the severity
weight A j in the denominator of the characterization formula
(12) of uΩ1 in Theorem3.2.2, and then the effect of v1Ω2

becomes important and valuable. We can obtain analogous
results for v1Ω2 when we change the values of the severity
weight B2 associated to the control v1Ω2 , as we see in Fig. 12.

5 Conclusion

We analyzed in this work two different optimal control prob-
lems for a discrete-time multi-regions SIR epidemic model.

In the first part, only one control that characterizes the
effectiveness of vaccination is used, and where the optimal
control problemwas subject of an optimization criterion rep-
resented by the minimization of an objective function aiming
to minimize the number of infected people and the cost of
vaccinationwhilemaximizing the number of removed people
in the targeted region aiming to control. Numerical results,
associated to this first part, showed the effectiveness of this
vaccination while the targeted region was still sensitive to
infection rates in its neighboring domains at high-risk. Then,
we extended the first part to a second part by adding a
travel-blocking control, in which we have controlled con-
tacts between susceptible people of the controlled region
(by vaccination) and the infected of domains at high-risk
of infection. We showed the advantage of each case studied
with a comparison between the numerical simulations they
provided. We have identified optimal control strategies for
several values of the controls severity weights to show the
importance and the effectiveness of our approach in control-
ling the infection spread. Control programs that follow those
strategies can effectively reduce the number of infected cases
and increase the number of the removed individuals in a spe-
cific region.

Acknowledgements The authors would like to thank all the members
of theEditorialBoardwhowere responsible of this paper, and the anony-
mous referees for their valuable comments and suggestions to improve
the content of this paper.

123



On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach 929

References

1. Kermack WO, McKendrick AG (1927) Proc R Soc Edin A 115:
700

2. Roberts M, Andreasen V, Lloyd A, Pillis L (2015) Nine challenges
for deterministic epidemic models. Epidemics 10:49–53

3. Arino J, Jordan R, Van den Driessche P (2007) Quarantine in a
multi-species epidemic model with spatial dynamics. Math Biosci
206(1):46–60

4. Weiss RA (2001) The Leeuwenhoek Lecture 2001. Animal ori-
gins of human infectious disease. Philos Trans R Soc B Biol Sci
356(1410):957–977

5. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Maga-
ssouba N et al (2014) Emergence of Zaire Ebola virus disease in
Guinea. N Engl J Med 371(15):1418–1425

6. Arino J, Van Den Driessche P (2003) The basic reproduction num-
ber in a multi-city compartmental epidemic model. In: Positive
systems. Springer, Berlin Heidelberg, pp 135–142

7. Arino J, Van den Driessche P (2003) A multi-city epidemic model.
Math Popul Stud 10(3):175–193

8. Allen LJS, Jones MA, Martin CF (1991) A discrete-time model
with vaccination for a measles epidemic. Math Biosci 105(1):111–
131

9. National portal of territorial collectivities (2015) (Portail national
des collectivitées territoriales (P.N.C.L)). Ministry of interior-
Morocco. http://www.pncl.gov.ma/fr/Pages/default.aspx

10. Longini IM (1986) The generalized discrete-time epidemic model
with immunity: a synthesis. Math Biosci 82(1):19–41

11. Allen LJ, Burgin AM (2000) Comparison of deterministic and
stochastic SIS and SIR models in discrete time. Math Biosci
163(1):1–33

12. Allen LJ (1994) Some discrete-time SI, SIR, and SIS epidemic
models. Math Biosci 124(1):83–105

13. Brauera F, Fenga Z, Castillo-Chaveza C (2010) Discrete epidemic
models. Math Biosci 7:1

14. Enatsu Y, Nakata Y, Muroya Y (2010) Global stability for a class
of discrete SIR epidemic models. Math Biosci Eng 7(2):347–361

15. Ma X, Zhou Y, Cao H (2013) Global stability of the endemic
equilibrium of a discrete SIR epidemic model. Adv Differ Equ
2013(1):1–19

16. Jung E, Lenhart S, Feng Z (2002) Optimal control of treatments in
a two-strain tuberculosis model. Discrete Contin Dyn Syst Ser B
2(4):473–482

17. Moualeu DP,Weiser M, Ehrig R, Deuflhard P (2015) Optimal con-
trol for a tuberculosis model with undetected cases in Cameroon.
Commun Nonlinear Sci Numer Simul 20(3):986–1003

18. Silva CJ, Torres DFM (2013) Optimal control for a tuberculo-
sis model with reinfection and postexposure interventions. Math
Biosci 244(2):154–164

19. Agusto FB, Adekunle AI (2014) Optimal control of a two-strain
tuberculosis-HIV/AIDS co-infection model. Biosystems 119:20–
44

20. Whang S, Choi S, Jung E (2011) A dynamic model for tuberculosis
transmission and optimal treatment strategies in South Korea. J
Theor Biol 279(1):120–131

21. Kim BN, Nah K, Chu C, Ryu SU, Kang YH, Kim Y (2012) Opti-
mal control strategy of Plasmodium vivax malaria transmission in
Korea. Osong Public Health Res Perspect 3(3):128–136

22. ProsperO, Ruktanonchai N,MartchevaM (2014)Optimal vaccina-
tion and bednet maintenance for the control of malaria in a region
with naturally acquired immunity. J Theor Biol 353:142–156

23. Joshi HR (2002) Optimal control of an HIV immunology model.
Optim Control Appl Methods 23(4):199–213

24. Fister KR, Lenhart S, McNally JS (1998) Optimizing chemother-
apy in an HIV model. Electron J Differ Equ 1998(32):1–12

25. Yang Y, Xiao Y, Wu J (2013) Pulse HIV vaccination: feasibility
for virus eradication and optimal vaccination schedule. Bull Math
Biol 75:725–751

26. Kwon HD, Lee J, Yang SD (2012) Optimal control of an
age-structured model of HIV infection. Appl Math Comput
219(5):2766–2779

27. Roshanfekr M, Farahi MH, Rahbarian R (2014) A different
approach of optimal control on an HIV immunology model. Ain
Shams Eng J 5(1):213–219

28. Zhou Y, Liang Y, Wu J (2014) An optimal strategy for HIV multi-
therapy. J Comput Appl Math 263:326–337

29. Adams BM, Banks HT, Davidian M, Kwon HD, Tran HT, Wynne
SN, Rosenberg ES (2005) HIV dynamics: modeling, data analysis,
and optimal treatment protocols. J Comput Appl Math 184(1):10–
49

30. Costanza V, Rivadeneira PS, Biafore FL, D’Attellis CE (2013)
Optimizing thymic recovery in HIV patients through multidrug
therapies. Biomed Signal Process Control 8(1):90–97

31. Zakary O, RachikM, Elmouki I (2016) On the impact of awareness
programs in HIV/AIDS prevention: an SIR model with optimal
control. Int J Comput Appl 133(9):1–6 (January 2016. Published
by Foundation of Computer Science (FCS), NY, USA)

32. Chakrabarty SP, Joshi HR (2009) Optimally controlled treatment
strategy using interferon and ribavirin for hepatitis C. J Biol Syst
17(01):97–110

33. Zakary O, Rachik M, Elmouki I (2015) On effectiveness of an
optimal antiviral bitherapy in HBV-HDV coinfection model. Int
J Comput Appl 127(12):1–10 (Published by Foundation of Com-
puter Science (FCS), NY, USA)

34. Grsbll K, Ene C, Bdker R, Christiansen LE (2014) Optimal vacci-
nation strategies against vector-borne diseases. Spat Spatio Temp
Epidemiol 11:153–162

35. Burden TN, Ernstberger J, Fister KR (2004) Optimal control
applied to immunotherapy. Discrete Contin Dyn Syst Ser B
4(1):135–146

36. Ledzewicz U, Schättler H (2007) Antiangiogenic therapy in cancer
treatment as an optimal control problem. SIAM J Control Optim
46(3):1052–1079

37. Castiglione F, Piccoli B (2007) Cancer immunotherapy, mathemat-
ical modeling and optimal control. J Theor Biol 247(4):723–732

38. Elmouki I, Saadi S (2015) Quadratic and linear controls developing
an optimal treatment for the use of BCG immunotherapy in superfi-
cial bladder cancer. Optim Control Appl Methods 37(1):176–189.
doi:10.1002/oca.2161

39. Martin RB (1992) Optimal control drug scheduling of cancer
chemotherapy. Automatica 28(6):1113–1123

40. Engelhart M, Lebiedz D, Sager S (2011) Optimal control for
selected cancer chemotherapy ODE models: a view on the poten-
tial of optimal schedules and choice of objective function. Math
Biosci 229(1):123–134

41. Yan X, Zou Y (2008) Optimal and sub-optimal quarantine and iso-
lation control in SARSepidemics.MathComputModel 47(1):235–
245

42. Agusto FB (2013) Optimal isolation control strategies and cost-
effectiveness analysis of a two-strain avian influenza model.
Biosystems 113(3):155–164

43. Brown VL, White KJ (2011) The role of optimal control in
assessing the most cost-effective implementation of a vaccination
programme: HPV as a case study. Math Biosci 231(2):126–134

44. Su Y, Sun D (2015) Optimal control of anti-hbv treatment based on
combination of traditional chinesemedicine andwesternmedicine.
Biomed Signal Process Control 15:41–48

45. Buonomo B, Lacitignola D, Vargas-De-Len C (2014) Qualitative
analysis and optimal control of an epidemicmodelwith vaccination
and treatment. Math Comput Simul 100:88–102

123

http://www.pncl.gov.ma/fr/Pages/default.aspx
http://dx.doi.org/10.1002/oca.2161


930 O. Zakary et al.

46. Lowden J, Neilan RM, Yahdi M (2014) Optimal control of
vancomycin-resistant enterococci using preventive care and treat-
ment of infections. Math Biosci 249:8–17

47. Apreutesei N, Dimitriu G, Strugariu R (2014) An optimal control
problem for a two-prey and one-predator model with diffusion.
Comput Math Appl 67(12):2127–2143

48. Dabbs K (2010) Optimal control in discrete pest control models.
University of Tennessee Honors Thesis Projects

49. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko E
(1962) The mathematical theory of optimal processes (Interna-
tional series of monographs in pure and applied mathematics).
Interscience, New York

123


	On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach
	Abstract
	1 Introduction
	2 The multi-regions discrete SIR model
	3 The model with vaccination only
	3.1 Presentation of the model
	3.2 An optimal control approach
	3.3 Numerical results

	4 The model with vaccination and travel-blocking
	4.1 Presentation of the model
	4.2 An optimal control approach
	4.3 Numerical results

	5 Conclusion
	Acknowledgements
	References




