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pan‑cancer driver copy number 
alterations identified by joint 
expression/cnA data analysis
Gaojianyong Wang1 & Dimitris Anastassiou1,2*

Analysis of large gene expression datasets from biopsies of cancer patients can identify co-expression 
signatures representing particular biomolecular events in cancer. Some of these signatures involve 
genomically co-localized genes resulting from the presence of copy number alterations (CNAs), 
for which analysis of the expression of the underlying genes provides valuable information about 
their combined role as oncogenes or tumor suppressor genes. Here we focus on the discovery and 
interpretation of such signatures that are present in multiple cancer types due to driver amplifications 
and deletions in particular regions of the genome after doing a comprehensive analysis combining 
both gene expression and CNA data from The Cancer Genome Atlas.

Gene co-expression signatures in cancer often involve genomically co-localized genes resulting from the presence 
of various biological mechanisms that include, but are not limited to, the copy number alterations (CNAs) of 
malignant  cells1 and the immune response against cancer  cells2. For example, ERBB2, GRB7, MIEN1 are among 
the genes co-expressed in breast cancer due to the HER2  amplicon3, while HLA-DPA1, HLA-DPB1, HLA-DRA 
are among the genes co-expressed in the MHC Class II immune  cluster4. Any co-expression signatures that are 
consistently present in many different cancer types are referred to as "pan-cancer" signatures, representing uni-
versal (tissue-independent) biomolecular events in  cancer5–8. Ref.8 studied co-expressed genes in immune cells. 
There are several techniques for identifying co-expression signatures involving genomically co-localized  genes9–11.

We have proposed an unsupervised algorithm to identify genome-wide co-expression signatures known as 
attractor  metagenes5, a version of which was focusing on genomically co-localized signature finding. Attractor 
metagenes have been used successfully for cancer biomarker  discovery12–14.

The identification of genomically co-localized gene signatures can shed light on some complex cancer-related 
biological mechanisms, especially the tumor driving events caused by CNAs. CNAs involve amplified or deleted 
DNA regions, which have been generated by the chromosomal instability of malignant cells. If such CNAs are 
frequently present in cancer cells contained in multiple cancer samples, this suggests that they have an evolu-
tionary advantage and therefore are "driver" CNAs with the tendency to create subclones in the heterogeneous 
tumors. Although CNAs may include in some cases a single or few oncogenes or tumor suppressor genes, in 
which case their pan-cancer identification covers a small genomic region containing that  gene15,16, they typically 
influence DNA regions covering many genes, implying that some of these genes have synergistic functions in 
 tumorigenesis17. Here we focus on pan-cancer CNAs containing multiple genes.

The previous work on identifying pan-cancer  CNAs18,19 only made use of data resulting from analysis of the 
genomes in the malignant cells. However, the evolutionary advantage of CNAs is based on the expression of 
particular genes located within the CNA genomic region. Therefore, analysis of gene expression data provides 
additional valuable  information20–24. Some among the list of the consistently co-expressed genes, including the 
first and the last when sorted in terms of their genomic location, play some role in tumorigenesis and it is pos-
sible that this role is due to their synergistic functions. More generally, gene expression analysis provides helpful 
information for the identification of the driver genes in each preserved CNA genomic region by pointing to those 
genes that are consistently amplified or deleted.

In this paper, we use a novel methodology for the identification of pan-cancer co-localized gene signatures 
containing no less than five strongly co-expressed genes that are due to CNAs, by making use of gene expression 
as well as CNA data from The Cancer Genome Atlas (TCGA). Part of this method applies a pan-cancer version of 
a genomically co-localized attractor algorithm, which is an extension of our previous  work5. Our work identified 
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several pan-cancer CNAs not previously detected in the pan-cancer analysis of  CNAs18,19, such as 1q41, 7p22.3, 
8q13.1-24.3, 10p12.1, 19q13.12, 20p13 (amplifications) and 1p36.33-36.22, 16q22.1 and 17p13.2 (deletions).

Results
Summary. We applied the pan-cancer genomically co-localized attractor algorithm (Materials and Meth-
ods) to the TCGA expression data of 56,830 genes and 8593 tumor cases covering eighteen major types of cancer 
(Table S1), using a window size of 150 genes. This resulted in the identification of 101 pan-cancer genomically 
co-localized gene signatures (Table S2). To designate such signatures as being caused by driver CNAs, we rea-
soned that they should satisfy two conditions simultaneously: They should exhibit a high association between 
their corresponding levels of gene expression and CNA values, and at the same time their genomic regions 
should frequently appear as CNAs in multiple cancer types. 76 signatures had high expression/CNA level asso-
ciation (P < 0.05, Table S3, Materials and Methods). 54 signatures had high amplification or deletion frequency 
(Table S4, Materials and Methods). 37 genomically co-localized signatures satisfied both conditions above, and 
were designated as being caused by CNAs in cancer cells containing cooperative oncogenes/tumor suppressor 
genes (Tables S3 and S4). Among those 37 genomically co-localized signatures, 25 signatures correspond to pan-
cancer amplifications (Table 1 and Fig. 1) and 12 signatures correspond to pan-cancer deletions (Table 2 and 
Fig. 2). Figures 1 and 2 include bars whose height is proportional to the weight of each gene in the co-expression 
signature (Materials and Methods). References confirming the oncogenic roles of amplified gene signatures and 
the tumor suppressing roles of the deleted gene signatures are listed in Tables 1 and 2.

Some of the identified signatures are located genomically close to each other. This suggests that each of 
them, by itself, has sufficient evolutionary advantage (indeed, we observed that the expression levels of adjacent 
genomically co-localized signatures are often independent of each other), but it is also possible for an amplicon 
to cover multiple such regions simultaneously (Materials and Methods, Table S5).

To provide insights of the underlying biological significance in particular examples, we analyze some of such 
CNAs in the following sections.

Genomically co-localized signatures associated with 1q21.3-q41 amplification. We identified 
signature VPS72 and signature FLAD1 located on 1q21.3 amplicon (Fig. 1A,B). The expression level of signature 
VPS72 is strongly associated with the expression level of signature FLAD1 (Figure S1) and these two signatures 
have a co-amplification frequency of 91.6% (Figure S2, Table S5). We also identified another genomically co-
localized signature, RAB3GAP2, located on 1q41, which has not been detected as a pan-cancer  amplicon18,19. 
We observed that the expression level of signature FLAD1 is not associated with the expression level of signature 
RAB3GAP2 (Figure S3), although they are co-amplified in 79.8% of the cancer cases (Figure S4, Table S5).

GSEA86 (Gene Set Enrichment Analysis) was applied to the genes of the three signatures VPS72, FLAD1 
and RAB3GAP2, concluding that these genes are enriched with the GO (Gene Ontology) term ‘Mitochondrion’ 
(P < 10−7, Q < 10−3), thus potentially helping the efforts to shed light on the underlying biological mechanism.

Genomically co-localized signatures associated with 8q13.1–24.3 amplification. We identified 
three genomically co-localized signatures located on the 8q arm: ARMC1, UTP23 and SHARPIN (Fig. 1L,M,N). 
The expression plots between signature ARMC1 and signature UTP23 show that they are associated with each 
other (Figure S5), and that they are co-amplified in 76.2% of the cancer cases (Figure S6, Table S5). This suggests 
that there is a synergistic effect between them. On the other hand, the expression levels of signature UTP23 and 
signature SHARPIN are independent (Figure S7) although these two signatures are co-amplified in 77.6% of the 
cancer cases (Figure S8, Table S5).

Genomically co-localized signatures associated with 1p36.33–22 deletion. We identified two 
genomically co-localized signatures, UBE2J2 and MIIP (Fig. 2A,B) located on 1p36.33-36.22 that have not been 
detected as pan-cancer deleted  regions18,19. The expression levels of signature UBE2J2 and signature MIIP are 
strongly associated with each other (Figure S9) with co-deletion frequency of 70.3% (Figure S10, Table S5), sug-
gesting these GLAs can either independently exist or be co-deleted. Among the genes in these two signatures, 
gene AURKAIP1 down-regulates the Aurora-A  oncogene67. Gene FAAP20 is needed in DNA repair  pathway68. 
The deletion of gene MIIP can induce chromosomal  instability69. Tumor suppressor gene MAD2L2 inhibits can-
cer  growth70. GSEA was applied to the genes of the two signatures UBE2J2 and signature MIIP, concluding that 
these genes are enriched in the GO term ‘Negative Regulation of Cellular Component Organization’ (P < 10−4, 
Q < 0.05), suggesting potential mechanisms associated with the evolutionary advantage of their simultaneous 
deletion.

Comparison with previous TCGA studies. We compared our results with the tumor driving CNAs 
detected in Refs.18,19. On the one hand, several CNAs that we identified by our joint expression/CNA analysis 
were missed in both of those references. On the other hand, because our algorithm was designed to detect at 
least five consistently strongly co-expressed genes (Materials and Methods), we do not include the “peak CNAs”, 
as well as those CNVs containing less than five co-expressed genes (Table S6), which were obtained in Refs.18,19. 
Such peak CNAs include those containing MYC, CCND1, METTL1, NKX2-1, EGFR, FGFR1, KRAS, CCNE1, 
CRKL, CDKN2A, FHIT, WWOX, PTPRD, MACROD2, PRKN, LRP1B, RNA5SP174, PLK2, and RBFOX1 (Fig-
ures S11, S12, Table S6). Despite the small number of potential driver genes in peak CNAs, our algorithm can 
help identify the cooperative effects between those genes. For example, signature MYC (Figure S11A) consists 
of genes in the neighborhood of gene MYC. Among them, the long non-coding RNA PVT-1 has the second 
strongest association with the signature, suggesting that PVT-1 also plays a role in tumorigenesis, consistent 
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Genomically co-localized 
signatures Oncogenes Band

Detected as pan-cancer 
amplicons

Detected as cancer-specific 
amplicons Reference

VPS72 VPS72, PSMB4, PSMD4, 
SCNM1, MRPL9, HAX1 1q21.3 Refs.18,19 PSMD4,  PSMB425,26

FLAD1 FLAD1, MRPL24, PRCC, NAXE, 
SCAMP3 1q21.3 Neither SCAMP327

RAB3GAP2
RAB3GAP2, ACBD3, SDE2, 
EPRS, IARS2, FBXO28, NUP133, 
HEATR1, WDR26

1q41 Neither Breast28 and stomach  cancer29 ACBD330

PIK3CA PIK3CA, PHC3, PRKCI, MFN1, 
TBL1XR1 3q26.32 Ref.18 PIK3CA18

PAK2 PAK2, UBXN7, ACAP2, DLG1, 
FYTTD1 3q29 Refs.18,19 PAK231

C5orf22
C5orf22, PAIP1, DNAJC21, 
GOLPH3, C5orf51, NUP155, 
ZNF131, NIPBL, ZFR

5p13.3 Ref.19 GOLPH3, NIPBL,  ZFR32–34

MEA1
MEA1, KLHDC3, POLR1C, 
PPP2R5D, MAD2L1BP, RRP36, 
BYSL, YIPF3, MRPL14, MRPL2

6p21.1 Refs.18,19 MEA1,  KLHDC335

BRAT1
BRAT1, PSMG3, AP5Z1, 
MAD1L1, C7orf50, C7orf26, 
EIF3B

7p22.3 Neither Lung  cancer36 and 
 cholangiocarcinoma37 MADL1,  EIF3B38,39

KRIT1 KRIT1, ANKIB1, PEX1, AKAP9, 
VPS50 7q21.2 Refs.18,19 AKAP940

POLR2J

POLR2J, COPS6, LAMTOR4, 
MOSPD3, ZNHIT1, POP7, 
ALKBH4, PDAP1, AP4M1, 
ATP5J2, PPP1R35, PTCD1, 
LRWD1, CPSF4

7q22.1 Ref.18 COPS641

ASH2L ASH2L, BAG4, PLPBP, DDHD2, 
LSM1, ERLIN2, NSD3 8p11.23 Ref.19 ASH2L42

ARMC1
ARMC1, YTHDF3, TCEA1, 
UBE2W, IMPAD1, ARFGEF1, 
STAU2, RB1CC1, LYPLA1, 
VCPIP1, RAB2A

8q13.1 Neither Breast  cancer43 and thyroid 
 cancer44 YTHDF345

UTP23
UTP23, FAM91A1, RAD21, 
MTDH, TAF2, ATP6V1C1, 
AZIN1, OTUD6B, SLC25A32, 
VIRMA

8q24.11 Neither Breast  cancer43,46 and non-small 
cell lung  cancer47 RAD2148

SHARPIN

SHARPIN, CYHR1, HSF1, 
VPS28, BOP1, HGH1, EXOSC4, 
COMMD5, ZC3H3, DGAT1, 
ADCK5, MAF1, FBXL6, PUF60, 
SLC52A2, PPP1R16A, PYCR3, 
GPAA1, GLI4, LRRC14

8q24.3 Refs.18,19 SHARPIN49,  MAF150

YME1L1 YME1L1, KIF5B, WAC, ABI1, 
RAB18, ACBD5 10p12.1 Neither Diffuse Large B-Cell 

 Lymphoma51 RAB1852

MED21 MED21, MRPS35, ERGIC2, 
INTS13, FGFR1OP2 12p11.23 Ref.18 ERGIC253

CLTC CLTC, INTS2, MED13, APPBP2, 
BPTF, HELZ, DCAF7, CCDC47 17q23.1 Refs.18,19 APPBP2,  TRIM3754,55

GPS1

GPS1, ANAPC11, DUS1L, 
RFNG, OXLD1, MRPL12, 
LRRC45, CENPX, ASPSCR1, 
CCDC137, FAAP100, CEP131, 
MCRIP1, DCXR, PCYT2, SIRT7

17q25.3 Ref.19 DUS1L56

POLR2I
POLR2I, TIMM50, MRPS12, 
RBM42, C19orf47, NFKBIB, 
TBCB, SDHAF1, YIF1B, 
EXOSC5

19q13.12 Neither Pancreatic  cancer57 and bladder 
 cancer58 YIF1B59

ZNF420

ZNF420, ZNF461, ZNF567, 
ZNF383, ZNF566, ZFP30, 
ZNF260, ZNF585A, ZNF570, 
ZNF527, ZNF571, ZNF569, 
ZFP14, ZNF568

19q13.12 Neither Pancreatic  cancer57 and bladder 
 cancer58 ZFP1460

HSPBP1
HSPBP1, ZNF865, ZNF579, 
ZNF787, EPN1, FIZ1, ZNF444, 
ZNF524, ZNF580, ZNF784, 
RPL28, ZNF581

19q13.42 Refs.18,19 RPL2861

ZNF134 ZNF134, ZNF304, ZNF551, 
ZNF776, ZNF17 19q13.43 Refs.18,19 ZNF30462

SNRPB SNRPB, MRPS26, ITPA, IDH3B, 
VPS16 20p13 Neither breast  cancer43 SNRPB63

ROMO1 ROMO1, PIGU, EIF6, DYN-
LRB1, ERGIC3, RALY 20q11.22 Ref.19 ROMO164

Continued
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with the previous  conclusion87 that PVT-1 and MYC have cooperative effect in cancer. Furthermore, FAM84B, 
another gene adjacent to MYC, is the fifth top-ranked gene associated with the signature, consistent with its 
identified  role88 of strengthening the function of MYC. Examples of signatures containing less than five genes 
are those containing ATAD1 and PTEN in 10q23.31 (Table S6), THAP3, 2BTB48, PARK7 in 1p36.31 (Table S6), 
and STK25, ATG4B, ING5, THAP4 in 2q37.3 (Table S6). All signatures identified on the CNAs listed in Refs.18,19 
can be found in Table S6.

Discussion and conclusion
This paper focuses on detecting pan-cancer genomically co-localized gene co-expression signatures associ-
ated with amplicons or deleted regions, identifying several novel pan-cancer CNAs. Such signatures contain 
oncogenes or tumor suppressor genes and result from the cooperative effect of some of their member genes. We 
have also found that some amplified regions contain multiple genomically co-localized signatures with differ-
ent tumorigenesis functions, which are occasionally amplified separately. Previous studies (Refs.20,24) used the 
association between expression and CNA levels as part of their methods to determine whether a gene is likely to 
be an oncogene or a tumor suppressor gene. Therefore, many of such previously identified genes are included in 
our identified genomically co-localized signatures. For example, gene VPS72 and gene PSMD4 are identified as 
two oncogenes in Ref.20, and these two genes are identified as cooperative oncogenes co-expressed in signature 
VPS72. Gene MED21 and gene CCDC91, two oncogenes independently identified in Ref.20, are co-expressed in 
signature MED21. Genes SYNCRIP and MAP3K7, two tumor suppressor genes reported in Ref.24, are identified 
as components of signature SYNCRIP in this paper. Similarly, tumor suppressor signature CCAR contains three 
co-expressed tumor suppressor genes, CHMP7, CCDC25, and INTS9, which were identified as independent 
tumor suppressor genes in Ref.24. Our analysis not only indicates that genes may be oncogenes or tumor suppres-
sor genes, but also suggests that the co-expressed genes in a genomically co-localized signature have cooperative 
effects in tumorigenesis due to their simultaneous amplification or deletion.

Materials and methods
Data preparation. We downloaded harmonized TCGA gene expression data processed by HTSeq-FPKM 
(High-Throughput Seq-Fragments Per Kilobase of transcript per Million mapped reads) workflow and copy 
number segment (CNS) data generated by Affymetrix SNP 6.0 platform from Genomic Data  Commons89 using 
the TCGAbiolinks package from Bioconductor. We also used the PanCancer Atlas Clinical Data Resource (CDR) 
Outcome from https ://gdc.cance r.gov/about -data/publi catio ns/panca natla s.

We focused on eighteen major types of cancer: bladder urothelial carcinoma (BLCA), breast invasive carci-
noma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocar-
cinoma (COAD), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), 
kidney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma 
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarci-
noma (OV), prostate adenocarcinoma (PRAD), sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach 
adenocarcinoma (STAD), thyroid carcinoma (THCA), uterine corpus endometrial carcinoma (UCEC), covering 
8593 cancer cases. The number of cases in each type of cancer is given in Table S1.

The  log2(1 + X) transformed expression data were normalized using the quantile normalization methods 
implemented in the limma package from Bioconductor. Genes having zero value across all samples from any type 
of cancer were excluded from the whole datasets. Gene-level CNA values were inferred from their corresponding 
CNS data. The CNS data are in the form of log-2-ratio, i.e. zero means a normal diploid number of 2, a positive 
number means amplification, and a negative number represents deletion. If a gene did not fall into any segment 
in the CNS data, then its CNA value was inferred by the mean value of its two adjacent segments. Each row of an 
expression/CNA matrix corresponds to a gene (or a signature), while each column corresponds to a cancer case.

Association measurement. The association measure of mutual information (MI) I(A;B) between two 
random variables A and B is defined by the expected value of −log

(

pApB/pAB
)

 , where pA and pB are the mar-
ginal distributions and pAB is the joint probability density. We use a spline-based estimator with six bins in each 
dimension to estimate the  MI90 given the two vectors representing the variables. We normalize this estimate 
by dividing by the maximum of the estimated I(A;A) and I(B;B) , so that the result has a maximum value of 1 
representing complete corlation beeen two variables, and a minimum value of zero representing independence 
between two variables. We multly by − 1 whenever the Pearson correlation between A and B is negative, so the 
final association measure can take values between − 1 and 1.

If variables A and B both exist in all types of cancer, then the pan-cancer association between A and B is 
defined by the weighted median of the normalized MIs between A and B across all types of cancer, where the 
weights are given by the proportion of samples in each cancer type. Specifically, by using the weighted median, 

Genomically co-localized 
signatures Oncogenes Band

Detected as pan-cancer 
amplicons

Detected as cancer-specific 
amplicons Reference

MTG2
MTG2, ARFGAP1, ADRM1, 
UCKL1, ZGPAT, ARFRP1, 
OGFR

20q13.33 Refs.18,19 ADRM165

Table 1.  List of tumor driving genomically co-localized signatures associated with amplifications.

https://gdc.cancer.gov/about-data/publications/pancanatlas
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Figure 1.  Illustration of all tumor driving genomically co-localized signatures associated with amplifications.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:17199  | https://doi.org/10.1038/s41598-020-74276-6

www.nature.com/scientificreports/

in which the weights are given by the proportion of samples in each cancer type, the evaluation of the pan-cancer 
association is balanced, ensuring that all samples are treated equally.

Genomically co-localized signature finding algorithm. We first sort all N genes (N = 56,830) based 
on genomic mid-point and apply a sliding-window preprocessing approach to identify the co-exprsion signa-
tures, as follows. We use each of the N genes as a seed gene, applying the iterative attractor metagene iterative 
 algorithm5, considering only the nearest S genes (S/2 at each side, or as many as available at chromosomal ends) 
of this gene according to the genomic sorting (setting window parameter S = 150 genes, exponent parameter 
α = 2 and convergence parameter ε = 10–7). The resulting attractor metagene is defined by a weighted average 
of the expression values of these S + 1 genes. There are S + 1 such weights. The name of the gene with the high-
est weight is used as the name of this metagene, and the remaining S genes are sorted in terms of their corre-
sponding weights. The strength of each attractor metagene is defined as the fifth highest weight. We filter out 
metagenes with strength less than 0.5. Therefore, each metagene contains at least five strongly co-expressed 
genes. The chromosomal range of each metagene is defined by its member genes with weight larger than 0.5. 
Attractor metagenes with overlapped chromosomal ranges are then merged into one cluster, resulting in a total 
of L clusters, each of which defines a chromosomal range.

For each of these resulting L chromosomal ranges, we run the attractor metagene algorithm again, using 
each of the member genes as a seed within the range. If a chromosomal range yields multiple different attrac-
tor metagenes, we select the one with the highest strength to represent the chromosomal range. In the end, we 
generate L attractor metagenes. We further filter out any attractor metagenes whose top five genes have zero 
expression values in more than half of the samples. Finally, we filter out the gender-based attractor metagenes 
located on chromosome X and Y.

Association between the expression levels and the CNA levels of a signature. We use the aver-
age of expression/CNA levels of the top five genes of a genomically co-localized signature as a measure of the 
overall expression/CNA level of this signature. Then the pan-cancer association between the expression levels 
and CNA levels of a signature (pan-cancer expression-CNA association) is given by the weighted median of 
the corresponding normalized MIs, where the weights are given by the proportion of samples in each cancer 
type. We run 10,000 permutations and a random distribution between the permuted expression level and CNA 
level of each signature in each type of cancer is generated. For each signature, its pan-cancer distribution is 
obtained by the weighted median of its sorted distribution in each type of cancer. The P value of the pan-cancer 
expression/CNA association is given by the proportion of the pan-cancer distribution larger than the pan-cancer 

Table 2.  List of tumor suppressing genomically co-localized signatures associated with deletions.

Genomically co-localized 
signatures Tumor suppressor genes Band

Detected as pan-cancer deleted 
regions

Detected as cancer-specific 
deleted regions Reference

UBE2J2

UBE2J2, AURKAIP1, INTS11, 
CPTP, ATAD3A, FAAP20, 
WRAP73, AL391244.1, DVL1, 
NOC2L, C1orf159, B3GALT6, 
PUSL1

1p36.33 Neither Neuroblastoma, breast cancer, 
etc.66 AURKAIP1,  FAAP2067,68

MIIP MIIP, KIAA2013, SRM, PEX14, 
MAD2L2 1p36.22 Neither Neuroblastoma, breast cancer, 

etc.66 MIIP,  MAD2L269,70

CASP8AP2 CASP8AP2, SYNCRIP, 
MAP3K7, ZNF292, RNGTT 6q14.3 Ref.18 CASP8AP2,  MAP3K771

CCAR2 CCAR2, CHMP7, ELP3, 
CCDC25, INTS9 8p21.3 Ref.18 CHMP772

HRAS HRAS, TSSC4, MOB2, POLR2L, 
PTDSS2, MRPL23, PSMD13 11p15.5 Refs.18,19 11p15.5  deletion73

CUL5 CUL5, NPAT, DLAT, RDX, 
AASDHPPT 11q22.3 Refs.18,19 CUL574

COG6
COG6, COG3, AKAP11, ELF1, 
FNDC3A, GPALPP1, VPS36, 
ZC3H13, UTP14C

13q14.3 Ref.18 Co-deleted with  RB175

TRIP11
TRIP11, GOLGA5, BTBD7, 
ATG2B, PAPOLA, DICER1, 
PPP4R3A

14q32.12 Ref.18 ZC3H1476

TMEM208 TMEM208, VPS4A, FAM96B, 
PRMT7, ACD, NUTF2, DUS2 16q22.1 Neither Breast  cancer77 VPS4A78

APRT
APRT, CTU2, TRAPPC2L, 
MVD, COX4I1, KLHDC4, 
CHMP1A, EMC8

16q24.3 Ref.18 CTU2 79

PSMB6
PSMB6, TRAPPC1, SPAG7, 
PELP1, ELP5, CTDNEP1, 
SLC25A11, WRAP53, NAA38, 
MED11, SENP3, MPDU1

17p13.2 Neither
Intrahepatic 
 cholangiocarcinoma80 and 
gastric  cancer81

PSMB6, SLC25A11, 
 CTDNEP182,83

SELENOO SELENOO, TRABD, HDAC10, 
LMF2, NCAPH2, SCO2 22q13.33 Refs.18,19 HDAC10,SCO284,85
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expression/CNA association and later adjusted using Bonferroni correction. We assume that P = 0.05 defines the 
threshold of statistical significance.

Signatures located on amplicons or deleted regions across multiple types of cancer. We set 
thresholds tamp and tdel to identify genomically co-localized signatures located on amplified or deleted regions, 
to be selected so that genes with CNA values larger than tamp are amplified and genes with CNA levels smaller 
than tdel are deleted. The thresholds tamp and tdel are set using the empirical distribution of CNS levels in normal 
samples. vels of a normal sample are first subtracted by the mean CNS value of this sample. Then, for each can-
cer type c , we obtain tamp|c ( tdel|c ) using the mean value of the top (bottom) 10 percentile CNA values from all 
the samples in this cancer type. The thresholds tamp ( tdel ) are calculated by the weighted median of tamp|c ( tdel|c ) 
across the eighteen types of cancer. This gives tamp = 0.45 and tdel = −0.62.

The amplification and deletion frequencies of each genomically co-localized signature are calculated in each 
of the eighteen types of cancer. A signature is classified as amplified (deleted) in one type of cancer if its ampli-
fication (deletion) frequency is larger than tfreq , which is empirically set to 3%. We assume that if a signature 
is amplified (deleted) in more than 6 types of cancer, then this signature is located on a pan-cancer amplicon 
(deleted region) and assume two adjacent signatures are co-amplified or co-deleted if they have a CNA differ-
ence less than 0.1.
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