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ABSTRACT

The choice of guide RNA (gRNA) for CRISPR-based
gene targeting is an essential step in gene editing
applications, but the prediction of gRNA specificity
remains challenging. Lack of transparency and fo-
cus on point estimates of efficiency disregarding
the information on possible error sources in the
model limit the power of existing Deep Learning-
based methods. To overcome these problems, we
present a new approach, a hybrid of Capsule Net-
works and Gaussian Processes. Our method predicts
the cleavage efficiency of a gRNA with a correspond-
ing confidence interval, which allows the user to in-
corporate information regarding possible model er-
rors into the experimental design. We provide the first
utilization of uncertainty estimation in computational
gRNA design, which is a critical step toward accurate
decision-making for future CRISPR applications. The
proposed solution demonstrates acceptable confi-
dence intervals for most test sets and shows re-
gression quality similar to existing models. We in-
troduce a set of criteria for gRNA selection based
on off-target cleavage efficiency and its variance and
present a collection of pre-computed gRNAs for hu-
man chromosome 22. Using Neural Network Inter-
pretation methods, we show that our model redis-
covers an established biological factor underlying

cleavage efficiency, the importance of the seed re-
gion in gRNA.

INTRODUCTION

Prokaryotic Class 2 CRISPR (Clustered Regularly In-
terspaced Short Palindromic Repeats)–Cas (CRISPR-
associated) systems possess effector modules that consist of
a single multi-domain RNA-Guided Nuclease (RGN) (1–
3), which makes them an invaluable resource for develop-
ing tools for genome editing and other applications, such
as highly sensitive nucleic acid detection (4). In these ap-
plications, an RGN functions by binding, in many cases,
with subsequent cleavage, the target DNA or RNA at pro-
grammed sites through sequence-specific base-pairing be-
tween the unique portion of the guide RNAs (gRNAs),
known as a spacer, and the complementary sequence in
DNA or RNA targets (1,5,6). From the experimental stand-
point, it is hard to distinguish between binding and cleav-
age efficiency for the experimental data do not offer the dis-
tinction between the case where the binding happened, but
cleavage has not, and the case where binding did not oc-
cur. Therefore, in this study we use the term ‘cleavage effi-
ciency’ even in the cases where there is no actual cleavage,
such as dCas9 gene expression modulation experiments.
The strength of base-pairing interactions can modulate the
RGN binding affinity and reduce off-target effects (7,8). Im-
provement in specificity, on-target cleavage efficiency, and
reduction of off-target cleavage can be achieved through di-
rected engineering of the RGN or sgRNA, as well as modi-
fication of Cas-sgRNA delivery methods. Improvements in
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each of these directions are crucial for the full realization
of the enormous potential of the RGN-based technologies
(7–9).

A major challenge of CRISPR-based genome
engineering techniques is accurate prediction or
estimation/evaluation of the gRNA specificity for the
target. It has been shown that gRNAs widely differ in
the efficiency of their interaction with fully matching
targets. In some cases, interactions between the gRNA
and the target tolerate up to several mismatches, resulting
in off-target effects that are difficult to predict (10,11).
Both the on-target cleavage efficiency and off-target effects
have to be taken into consideration when developing
gRNAs for biological and especially for health-related
applications. Several large-scale studies have been con-
ducted aiming at the determination of the molecular
features that determine gRNA specificity in vivo (12–16).
Notwithstanding differences in details, all these studies
postulated that for popular Cas9 RGN intermediate
GC content, a G in the proximal position of the PAM
(Protospacer Adjacent Motif) and a C in the first PAM
position were the main prerequisites of efficient targeting.
Despite some inconsistencies between the results of these
analyses, they were implemented in predictive models
for binary classification or/and regression analysis of
on-target vs off-target specificity (Guide Picker (17), Az-
imuth (https://github.com/MicrosoftResearch/Azimuth),
WU-CRISPR (18), CRISPRscan (15)). Comparison of
the performance of these tools (19,20) has shown that
sequence-based off-target predictions were highly reliable,
identifying most off-targets with cleavage frequency >0.1%,
whereas the false positive rate can be substantially reduced
using a cutoff on the output of off-target model (21).
Additionally, it has been shown that the optimal on-target
efficiency prediction model strongly depends on whether
the gRNA is expressed from the U6 RNA polymerase III
promoter that is routinely used for small RNA production
or transcribed in vitro followed by the introduction of
pre-programmed RGN inside cells (19). Nevertheless, the
best prediction approaches can substantially reduce the
time spent on gRNA screening.

Deep learning allows design of optimal gRNAs with-
out any prior assumptions on the structural features of the
target region. Several tools exploiting deep learning have
been recently developed for predicting the on-target cleav-
age efficiency of Cas9 and Cas12a nucleases (DeepCRISPR
(22), DeepCpf1 (23)) and the off-target effects of Cas9 (24).
These tools exhibited high performance in on-target and
off-target predictions of gRNAs, allowing one to design op-
timal gRNA for custom applications. However, the tools
provide only part of the relevant information for experi-
mental design, namely, a point estimate of the on-target and
off-target cleavage efficiencies––a single digit that estimates
the cleavage efficiency of gRNA. Because cleavage efficiency
varies between replications of the experiment, estimating
the parameters (mean and variance) of cleavage efficiency
distribution is preferable to predicting a single value, as it
will allow one to incorporate information on prediction er-
ror in the decision-making process.

Here, we describe a new approach for prediction of
gRNA on-target cleavage efficiency and off-target probabil-

ity for various Cas9 proteins and AsCas12a, a Cas12a RGN
from Acida minococcus sp.). Our method is based on a com-
bination of a Hit-Or-Miss capsule network (introduced in
arXiv preprint arXiv:1806.06519, 2018), which acts as a fea-
ture extractor, and a Gaussian Process to model the distri-
bution from which the real-valued on-target and off-target
activities are sampled. This approach allows estimation of
the cleavage efficiency of gRNAs containing mismatches to
their target sites using large-scale measurements across mul-
tiple cell models from recent studies (25) as training sets.
Although our setup is quite different from the common ap-
plications of regression, we show that our tool performs as
well or better compared with previous Deep Learning at-
tempts in regression tasks. Moreover, for the first time, we
introduce uncertainty quantification in the CRISPR cleav-
age efficiency estimation pipeline. Our tool provides the end
user with the ability to carefully assess the deviation in cleav-
age efficiency estimates in order to make optimal decisions
during CRISPR experiment design. For example, the tool
helps select the guides that not only have the highest pre-
dicted on-target cleavage efficiency, but also those with the
most confident predictions. This feature of the method can
improve the quality of experimental design by providing in-
formation on possible model error.

MATERIALS AND METHODS

Problem setup

We use the models to predict cleavage efficiency from se-
quences. Cleavage efficiency is a real number usually rang-
ing from 0 to 1. It can be slightly greater than 1 or smaller
than 0 (depends on the dataset), but for the purpose of pre-
diction, we scale and shift the labels so the maximum is 1
and minimum is 0. The sequences are strings over an alpha-
bet of four symbols (A, T, G and C), 20–23 symbols long.
The problem is the task of regression which we solve using a
neural network-enhanced Gaussian process. We provide the
solution that, unlike others, not only gives a point estimate
of the cleavage efficiency, but, for the first time, also gives
the confidence interval for it.

Data collection and preprocessing

For on-target Cas9 cleavage efficiency prediction, we used
three non-overlapping datasets, geCRISPR, DeepCRISPR
and DeepHF. The geCRISPR dataset (26) consists of
4569 experimentally verified gRNAs for Cas9 derived from
Homo sapiens, Danio rerio, Mus musculus and Xenopus trop-
icalis. DeepCRISPR dataset (22) consists of 16 492 experi-
mentally verified gRNAs for Cas9 derived from four human
cell lines (hela, hl60, hct116, hek239t). DeepHF (27) pro-
vides the data for SpCas9 (55604 sequences) and two high
fidelity orthologs: SpCas9HF1 (56888 sequences) and eSp-
Cas9 (58617 sequences). For prediction of Cas9 efficiency
with mismatched gRNA and target sequences, we used the
dataset of Jost et al (25) with 26 248 gRNA–target pairs. For
on-target Cas12a cleavage efficiency prediction, we used the
DeepCpf1 (23) dataset that consist of 20 506 experimentally
verified gRNAs for Cas12a. For Cas12a off-target predic-
tion, we used the dataset of (28) with 1565 gRNA–target
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pairs. Before training the neural networks, we used one-
hot encoding on every sequence in the on-target datasets,
as shown on Figure 2A. For the off-target datasets, the en-
coding algorithm was used twice, that is, once on the guide,
and the second time, on the target, so that the output is a
two-channel image (2, 4, N) where N is the length of the in-
put sequences. For the on-target datasets, the algorithm was
applied only once, so that the output is a (4, N) image.

Overview of the GuideHOM architecture

We developed a deep kernel learning model, named Guide-
HOM (Guide Hit-Or-Miss). GuideHOM employs a Hit-
Or-Miss capsule network as an intermediate feature extrac-
tor built upon a preprocessing module and a Gaussian Pro-
cess to estimate the distribution of the cleavage efficiency of
RGN programmed with a given gRNA. The estimation is
based on the representation produced by the Hit-Or-Miss
capsules to predict on-target and off-target cleavage effi-
ciency using gRNA spacer sequence features (see Figure 2A
for example of a single input encoding). In GuideHOM, we
implemented two preprocessing approaches that differed in
terms of the prediction strategy and the analyzed datasets.
The first approach predicts the on-target cleavage efficiency
based on the gRNA spacer sequence only, under the as-
sumption that the target sequence is its exact complement.
The second approach aims to estimate the cleavage effi-
ciency based on the mismatching gRNA spacer-target pairs.
We assume that all sequences in the genome that match a
particular gRNA are cleaved with the same efficiency al-
though this is unlikely to hold precisely, for example, due
to differences in chromatin accessibility. However, in this
work, we do not use chromatin accessibility or data on other
potential contributing factors, relying solely on the gRNA
and target sequences.

The model is a deep neural network that consists of three
modules: (i) preprocessing subnetwork that extracts low-
level sequence features using either a 1D or 2D convolu-
tional layer followed by Leaky ReLU (the Rectified Linear
Unit, a commonly used activation function) or an LSTM
layer (Long Short Term Memory networks); (ii) encoder
subnetwork that extracts high-level sequence features from
preprocessed inputs using a set of Hit-or-Miss capsules (29),
and (iii) a set of Gaussian Processes (30) that estimate cleav-
age efficiency based on the extracted features computed by
the encoder subnetwork (Figure 2C). The sequences are en-
coded in an one-hot fashion as shown on Figure 2A: each
nucleotide i is replaced by a vector of 4 components with the
i-th component being equal to 1 and every other component
set to zero. For gRNA preprocessing, the final, machine-
readable input is an array of size (4, N), where N is the length
of gRNA spacer; for gRNA-target preprocessing, the final
input is an array of size (2, 4, N). To predict on-target cleav-
age efficiency based only on gRNA, we use the 1D convolu-
tional or recurrent preprocessing modules. To predict cleav-
age on- and off-target efficiencies based on gRNA and tar-
get sequences we use 2D convolutional preprocessing. For
a gRNA–target pair, our model estimates the lower and up-
per bounds of the cleavage efficiency. The recurrent layer
is not used for the case with two sequence inputs, in order

to minimize unnecessary complexity in the setup. Pytorch
(31) is used as the deep learning framework and GPytorch
(32) is used as the Gaussian Process library. All experiments
were carried out with a single Nvidia GeForce 1070 GPU.
The same architecture and training routine were used for all
datasets with minor modifications to accommodate differ-
ent lengths of the input data (for example, the geCRISPR
dataset provides gRNAs with 20 nucleotide spacer lengths
only, compared to DeepCRISPR, DeepHF and DeepCpf1
that provide 23nt). The simplest use case of the GuideHOM
model is shown in Figure 1.

As can be seen from Figure 1, the choice between gRNA
and gRNA–target preprocessing module depends only on
the input data in the dataset, whereas the rest of the
workflow remains the same: preprocessing, computation of
HOM representations, sampling the cleavage efficiency dis-
tribution, computation of mean cleavage efficiency and its
variance. The general architecture is shown in Figure 2B
and C, and the dataset-specific changes are described in
Supplementary Table S1.

Preprocessing subnetwork

The preprocessing subnetwork provides the extraction of
low-level sequence features on the level of k-mers. For the
experiments in this work, we used three types of prepro-
cessing subnetworks: (i) 1D convolutional, (ii) 2D convo-
lutional and (iii) LSTM-based. An 1D convolutional pre-
processing subnetwork consists of a 1d CoordConv layer
(33) followed by Leaky ReLU activation. The 2D con-
volutional layer is the same but with 2D convolutions.
We use CoordConv instead of convolutions because it is
shown to work better on one-hot encoded data (33). The
LSTM preprocessing consists of four consecutive LSTM
layers.

Encoder subnetwork for feature extraction

The encoder is used to learn patterns based on the sets of k-
mers and to present the learned patterns in a concise man-
ner as a matrix of real numbers. The encoder consists of
a number of Hit-Or-Miss capsules applied to the prepro-
cessed input in parallel. Each Hit-Or-Miss capsule is a lin-
ear layer followed by batch normalization to accelerate the
learning process, and sigmoid activation to constrain the
output between 0 and 1 (Figure 2B). Hit-Or-Miss capsule
i encodes the difference between an input example and a
center of the space of possible outputs:

Oi (X) = C − Sigmoid(BatchNormi (Lineari (X))),

where C = [0.5, 0.5, ...0.5]. In case of classification, when
Hit-or-Miss capsules are optimized with their special Cen-
tripetal loss, the perfect ‘hit’ is the vector filled with zeros,
and the wrong answers accumulate large ‘misses’. In our
case, we did not use the classification (centripetal) loss and
classification setup, so the ‘misses’ simply encode the posi-
tion of the input in the space of all possible inputs, not nec-
essarily the class vectors. Consult the Supplementary Table
S1 for details for the structure and parameters used in the
encoder subnetwork.
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Figure 1. The UML (Unified Modelling Language) sequence diagram of a single input use case for the GuideHOM architecture. First, the user supplies
the model with an input through the Dataset object. The Dataset object supplies the preselected preprocessing module with one-hot encoded sequence or
pair. Either of the preprocessing modules supplies the HOM capsule layer with the preprocessing output. The HOM capsule layer computes coordinates of
gRNA/gRNA pairs in the guide space, then, sends the coordinates to the Gaussian Process. The Gaussian Process samples activities from the approximate
distribution it has learnt, computes the mean and variance, then, sends the outputs back to the user.

Gaussian process for cleavage efficiency prediction

For prediction of the cleavage efficiency, we use a model
called Gaussian Process (GP). A Gaussian process is a prob-
ability distribution over possible functions that fit a set of
points:

f (x) = G P(m(x), k(x, x′)),

where x and x′ are the pair of inputs, f(x) is the function we
would like to fit, m(x) - mean function and k(x, x′) - covari-
ance function, such as:

m(x) = E[ f (x)],

k(x, x′) = E[( f (x) − m(x))( f (x′) − m(x′))].

Mean and covariance functions denote the priors of the dis-
tribution over functions. By setting mean and covariance,
we choose a set of functions that are used for inference. We
fit the Gaussian Process by selecting from a prior distribu-
tion only those functions that agree with the observations.
This is achieved via optimizing the parameters of the co-
variance function, the mean function and the encoder neu-
ral network using gradient descent. We obtain actual pre-
dictions of a value by sampling the Gaussian Process. Co-
variance function specifies the covariance between pairs of
random variables and mean function specifies the base level
of the predicted value. As our loss function we use Evidence
Lower Bound (34):

ELBO(q(x)) = E[log p(x|z)] − KL(q(z)||p(z)),

where x is the observed cleavage efficiency, z is the latent
variable (representation computed by the neural network),

p(x|z) is the conditional distribution of cleavage efficiency
given the latent variable, q(z) is the variational distribution
of the latent variable, p(z) is the prior distribution of the la-
tent variable, KL is their Kullback–Leibler divergence. It is
a ‘natural’ loss function for deep Gaussian processes that,
in our case, can be efficiently computed and optimized via
gradient descent using GPytorch primitives. For the gradi-
ent descent, we use the Adam algorithm introduced in arXiv
preprint arXiv:1412.6980, 2014 with starting learning rate
�0 = 0.01. We schedule our learning rate to decrease by mul-
tiplying it by 0.9 every tenth epoch. The model is trained for
60 epochs. Such step wise reduction helps in convergence
towards good local minima of the loss function surface.
We also experiment with additional, more traditional loss,
Mean Squared Error, so for a number of experiments (in
the Supplementary Table S3 and everywhere else referred
as ‘E+M’), the loss is as follows:

LossE+M(q(x), y, ŷ) = ELBO(q(x)) + αMSE(y, ŷ),

where y is the optimization target, ŷ is the prediction, that is,
the mean of a sample from GP and � = 0.5. Gaussian Pro-
cesses can be nested just as linear layers in neural networks.
Our network consists of two layers with a linear and con-
stant mean. The output shape of the first layer is 2, and the
second process used the previous output as input and out-
puts the 1D distribution. The scheme is similar to a fully
connected neural network, but outputs not a single num-
ber but a distribution that can be sampled. After the sam-
pling, we compute the mean prediction and the confidence
interval, which is the uncertainty-aware prediction of cleav-
age efficiency we aim at obtaining. Agglomerative clustering
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Figure 2. The GuideHOM architecture. (A) The input: one or two one-hot encoded sequences. To predict on-target cleavage efficiency based only on gRNA,
we use the 1D convolutional or recurrent preprocessing modules, and to predict cleavage efficiency based on mismatched gRNA and target sequences, we
use 2D convolutional preprocessing. (B) The structure of Hit-or-Miss capsule layer; 5 capsule layers are used in the Hit-or-Miss network. (C) Schematic
illustration of the GuideHOM architecture. See ‘Materials and Methods’ for more details.

of the guide space for motif analysis was performed using
SciPy library (35), with default settings, max d of 2 and cri-
terion ‘distance’. Weblogo (36) library was used to visualize
motifs.

Performance metrics for regression, quality of confidence in-
tervals and cross validation

To analyze the performance of the regression models, we use
three classical metrics - determination coefficient (r2), Pear-
son and Spearman correlation coefficients (PCC and SCC
respectively), computed using scipy library. To understand
whether the confidence intervals the model gives is accept-
able, we compute how many real labels for examples from
the test set lie between the predicted label and predicted
standard deviation:

ρ(Y, Ŷ, σ, M) =
∑N

i=0 I(Yi ∈ [Ŷi − Mσi , Ŷi + Mσi )
N

,

where N is the test set size, I is the indicator function which
is 1 if the argument is true and 0 othervise, M ∈ [1, 2, 3]. We
compute � for one, two and three standard deviations and
check whether the values are close to 68%, 95% and 99.7%,
respectively. We denote those values as �68, � 95 and � 99.7.

To robustly assess the performance of the models, in ad-
dition to hold-out set testing used in most previous studies
(23,25,27), 10-fold cross validation was performed: the data
was randomly split into 10-fold, the model was trained on 9-
fold, the performance was tested on the 10th and the results
were saved, The results of 10 performance tests were next

used to compute the mean performance and standard devi-
ation. These results are reported separately from the results
obtained with the hold-out set.

Neural network interpretation

To interpret the predictions of the model, the Accumulated
Local Effects (ALE, (37)) are computed using Python li-
brary alibi (38). ALEs are computed over M randomly gen-
erated synthetic gRNAs (or gRNA-target pairs, depends on
the model) that are flattened into (M, 4N) or (M, 4 × 2N)
matrix. The model requires (M, 2, 4, N) or (M, 4, N), where
N is the length of the input, so an intermediate class to re-
shape the inputs is used. M in our work is set to 10 000. The
resulting ALE values have the shape of (4N, A, B), where A
is the number of feature intervals, in our case, 2 for 0 and 1
of one-hot encoded nucleotides, and B is the number of pre-
diction targets, again, 2 in our case, corresponding to mean
efficiency and variance. We are interested only in the com-
ponent of features that corresponds to the values of 1, be-
cause we would like to see the importance of a presence of
a certain nucleotide on a certain position.

The heatmaps from Figure 7, Supplementary Figures
S1 and S2, are constructed from the ALE explainer class,
first and second components of the vector that corresponds
to the value 1 of features for mean efficiency and vari-
ance respectively. See the Figure 7.ipynb, Supplementary
Figure1.ipynb, Supplementary Figure 2.ipynb and repro-
duce explanations.py notebooks and scripts.

For logo sequences, constructed out of ALE val-
ues, the softmax with additional temperature parameter
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is calculated:

yi (X, t) = exp( Xi
t )

∑N
j=1 exp( Xj

t )
,

where t is temperature parameter, the less temperature is, the
more distinct the output probabilities are, Xi are the features
that correspond to ith nucleotide out of four, i and j are the
counters. Softmax is applied along the nucleotide axis, the
resulting matrix is of (4, N) size, and if we sum the vector
along the first axis, we get the vector of N ones. We use we-
blogo to draw the resulting sequences.

The genome analysis pipeline

Input: the raw sequence data, downloaded from the UCSC
genome browser and respective annotation. Output: the list
of possible gRNAs with computed average cleavage effi-
ciency, standard deviation. The input is downloaded with
the following options: Chromosome - Download FASTA,
Visible range (while whole chromosome is opened in the
browser); Annotation – Download csv. The pipeline pro-
ceeds as follows:

1. the genes are extracted from the chromosome sequence
according to the annotation using a BioPython-based
script;

2. Cas-OFFinder (39) is used for each separate gene.fasta to
produce a list of potential targets. The mask is NNNN
NNNNNNNNNNNNNNNNNRG for Cas9, TTTN
NNNNNNNNNNNNNNNNNNNN for Cas12a. The
result is saved in .tsv files, one for each gene;

3. the model is used for each Cas-OFFinder output. For
each target sequence, the model computes the average
cleavage efficiency and standard deviation (or just the
cleavage efficiency in case of (25)). If the model requires
two sequences, the input target is duplicated to form (4,
N, 2) vector, so the input sequence acts as both gRNA
and target;

4. the guides are sorted by cleavage efficiency in descending
order. Each result is saved in a table that combines Cas-
OFFinder output and model output.

For this analysis we use the best performing Cas9 and
Cas12a on-target models. The results are available at a ded-
icated Zenodo repository, consult the ‘Code and data avail-
ability’ section for details.

RESULTS

GuideHOM provides acceptable confidence intervals and ac-
curate and reliable predictions of on-target cleavage effi-
ciency

In our study, combination of Hit-Or-Miss networks (arXiv
preprint arXiv:1806.06519, 2018) and Deep Gaussian Pro-
cesses (30) helps to augment the point estimates of cleav-
age efficiency with the information on prediction uncer-
tainty. To our knowledge, this is the first application of
uncertainty-aware machine learning for CRISPR cleavage
prediction efficiency. Using the confidence intervals derived
from the model helps to overcome the problem of noisy and

biased training data. We attempt to replicate the results of
each original study from which we extracted datasets used
to train the GuideHOM model. It allows us to systemati-
cally compare its performance with the original models.

We use the same data for training and testing in cases
where the actual training and testing sets are available
and the same train-test split ratio in other cases. Supple-
mentary Table S2 shows the train-test splits corresponding
to each analyzed dataset. The confidence intervals Guide-
HOM provides tend to be acceptable (see Figure 3C for vi-
sual explanation): the frequency of the real value Y present
within the confidence intervals (with confidence level �)
computed on the corresponding test sets was, for all cases,
close to the preset confidence level (� = �, 2�, 3�). As
the loss function, we use ELBO (Evidence Lower Bound
(34)) or a sum of ELBO and a half of MSE (Mean Squared
Error). For example, the frequencies of the real values in
Ymean ± �, Ymean ± 2�, Ymean ± 3� for a model trained
with minimizing ELBO as an optimization objective are
0.7535, 0.9422 and 0.9835, respectively, as estimated on the
respective validation set. The full table of confidence inter-
vals for all trained models is given in Supplementary Ta-
ble S3. According to the learning curves (Figure 3A), only
about 30% of the DeepHF (27) and Cas9 gRNA-target pair
(25) datasets provide sufficient data for the model to reach
results comparable to the original models. The Cas9 gRNA-
target pair model reaches lower levels of uncertainty while
having less data to train on, which implies a lower noise level
in Jost et al. (25) dataset (Figure 3B) because most of the un-
certainty in the output comes from label noise in the dataset
(arXiv preprint arXiv:1705.10694, 2017, 40).

The same performance dynamics is observed for all ana-
lyzed datasets: after the training sample size grows to about
10 000 gRNAs, the performance converges at a plateau so
that the additional improvement is negligible. Uncertainty
reduction follows a similar course: the smallest mean stan-
dard deviation is achieved near the 10,000 gRNAs mark
and remains approximately constant with larger training
sets. These observations suggest that for this version of the
GuideHOM architecture, collecting datasets of more than
10 000 gRNAs yields diminishing returns in terms of the
model accuracy, so a better strategy is to focus on the re-
duction of the label noise. However, the cut-off may have
to be re-accessed depending on the type of gRNA library
used, i.e. those targeting intronic, exonic regions, high/low
expressed genes etc. The performance of the method for on-
target cleavage efficiency prediction on benchmark datasets
tends to be close to that of the best original point estimate
models (Table 1; GuideHOM models are denoted as fol-
lows: preprocessing module (C for CNN or R for RNN),
loss function (E for ELBO or E+M for ELBO+MSE); see
the ‘Overview of GuideHOM architecture’, ‘Preprocessing
subnetwork’ and ‘Gaussian process for cleavage efficiency
prediction’ subsections for more information. Wang et al.
(27) and Kim et al. (23) did not perform 10-fold cross val-
idation, which is indicated as ‘NN’ - not applicable – in
Table 1.

The performance of all trained models is given in Sup-
plementary Table S3. Although in the original work on
DeepHF datasets, the RNN-based models have been found
to be superior to CNN-based ones (27), in our analysis,
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Figure 3. Models learning curves on different datasets. (A) Learning curves for indicated models/datasets are shown. Dashed lines indicate the performance
of previous tools (DeepHF, DeepCpf1 and so on). The line for Cas12a off-target dataset is not shown since only classification models for this dataset are
published. (B) Reduction of uncertainty dependent on the training set size. The models for DeepHF and DeepCpf1 shown here are CNN-based and were
trained to minimize ELBO+MSE. The Cas9 gRNA-target pair model was also trained to minimize ELBO+MSE. (C) The output of trained model. The
dots denote examples from the validation set. For each input example, the model outputs a sample of predictions, the mean of which is shown as the orange
line, and the standard deviation gives the possible range of errors. 68% of all real activities lie in the blue area between the orange and blue lines––for 68%
examples, the real cleavage efficiency is no more than one predicted standard deviation larger or smaller than the predicted mean cleavage efficiency. 27%
of real activities lie in the green area––only 27% of examples have the real cleavage efficiency larger or smaller than the predicted mean cleavage efficiency
for more than one predicted standard deviation. 4.7% of real activities lie in the red area––for 4.7% examples, the real cleavage efficiency is larger or smaller
than the predicted mean cleavage efficiency for more than two predicted standard deviations. The rest 0.3% are the ones that have the real cleavage efficiency
larger or smaller than the predicted mean cleavage efficiency for more than three predicted standard deviations.

Table 1. Performance on benchmark datasets for on-target cleavage effi-
ciency prediction

Dataset Model Metric Value

DeepHF wildtype (27), RNN Hold-out SCC 0.8555
DeepHF wildtype (27), RNN 10-fold CV SCC NA
DeepHF wildtype This study, C E Hold-out SCC 0.8392
DeepHF wildtype This study, C E 10-fold CV SCC 0.8066
DeepHF eSpCas9 (27), RNN Hold-out SCC 0.8491
DeepHF eSpCas9 (27), RNN 10-fold CV SCC NA
DeepHF eSpCas9 This study, R E Hold-out SCC 0.8220
DeepHF eSpCas9 This study, R E 10-fold CV SCC 0.6927
DeepHF
SpCas9-HF1

(27), RNN Hold-out SCC 0.8512

DeepHF
SpCas9-HF1

(27), RNN 10-fold CV SCC NA

DeepHF
SpCas9-HF1

This study, R E+M Hold-out SCC 0.8364

DeepHF
SpCas9-HF1

This study, R E+M 10-fold CV SCC 0.7900

geCRISPR V520 (26), mono binary Hold-out PCC 0.6700
geCRISPR V520 (26), mono binary 10-fold CV PCC 0.6800
geCRISPR V520 This study, C E+M Hold-out PCC 0.6055
geCRISPR T3619 This study, C E+M 10-fold CV PCC 0.5926
DeepCpf1 H1 (23) Hold-out SCC 0.7600
DeepCpf1 H1 This study, R E Hold-out SCC 0.7283
DeepCpf1 H2 (23) Hold-out SCC 0.7400
DeepCpf1 H2 This study, C E+M Hold-out SCC 0.7184
DeepCpf1 H3 (23) Hold-out SCC 0.5800
DeepCpf1 H3 This study, R E Hold-out SCC 0.5478
DeepCpf1 train (23) 10-fold CV SCC NA
DeepCpf1 train This study, C E+M 10-fold CV SCC 0.5165

this distinction was not as pronounced. Some CNN-based
GuideHOM models outperform RNN-based ones: for ex-
ample, for the wildtype, the CNN-based model performs
better. From the performance of the best models, it be-
comes clear that a combination of ELBO and MSE loss
functions performs better than ELBO only. Let us consider
the following use case: we would like to choose a model for

Table 2. Comparison of model predictions of the on-target cleavage effi-
ciency for the AsCas12a subset

Model �68 �95 �99.7 PCC SCC r2

DeepCpf1 R E:H1 0.69 0.95 1.00 0.74 0.73 0.55
DeepCpf1 C E+M:H2 0.68 0.93 0.99 0.72 0.72 0.52
DeepCpf1 C E:H1 0.67 0.93 0.99 0.73 0.72 0.53
DeepCpf1 C E:H2 0.68 0.93 0.99 0.71 0.71 0.51
DeepCpf1 C E+M:H1 0.67 0.93 0.99 0.72 0.71 0.52
DeepCpf1 R E:H2 0.71 0.95 1.00 0.71 0.71 0.51
DeepCpf1 R E+M:H1 0.70 0.96 1.00 0.72 0.70 0.52
DeepCpf1 R E+M:H2 0.72 0.95 1.00 0.67 0.66 0.45
DeepCpf1 R E:H3 0.27 0.67 0.95 0.51 0.55 0.26
DeepCpf1 C E:H3 0.25 0.63 0.92 0.50 0.53 0.25
DeepCpf1 C E+M:H3 0.24 0.62 0.91 0.49 0.51 0.24
DeepCpf1 R E+M:H3 0.31 0.73 1.00 0.42 0.46 0.18
Cas12a pair E 0.59 0.87 0.96 0.57 0.57 0.32
Cas12a pair E+M 0.59 0.86 0.96 0.56 0.57 0.31

gRNA selection for asCas12a editing experiment in human
HEK293T cell line. We aim at maximizing the on-target ef-
ficiency but are not interested in minimizing the off-target
effect. In Table 2, we provide a subset of performance mea-
sures for this case.

As can be seen from Table 2, we have a choice between
models trained on DeepCpf1 and on Cas12a gRNA–target
pair set. All DeepCpf1-based models show acceptable con-
fidence intervals and good r2, Pearson and Spearman Cor-
relation Coefficients.

For this test case, we are not interested in off-target ef-
fects, therefore DeepCpf1 R E is the model of choice (it
outperforms all others on H1 and H3 datasets in Spearman
Correlation Coefficient). We also can use all good models
as an ensemble, which will result in an improvement of 1-
2% in the correlations at the excess of increased uncertainty
since we would have to sum the variances to get the correct
uncertainty estimation.
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Table 3. Comparison of the results for the subset from (25) study

Metric Jost et al. E Jost et al. E+M

�68 0.7222 0.7125
�95 0.9208 0.9155
�99.7 0.9838 0.9828
PCC 0.7849 0.7805
SCC 0.7003 0.6982
r2 0.6161 0.6192

Table 3 shows the results for the Jost et al. dataset, where
the difference between E+M and E only is negligible. Com-
pared with the model (25), changed accordingly to reflect
the difference in the input size (we used as input 23 nt se-
quence, including the gRNA spacer and PAM, whereas in
the Jost et al. (25) analysis, two upstream and one down-
stream flanks were also included, resulting in the input size
of 26 nt), the performance improves from 0.617 to 0.625.
For the purpose of the comparison, we modify the origi-
nal code from the supplementary file (25) by taking the se-
quence parts from second to 24-th nucleotide and changing
the input size to (4, 23, 2) instead of (4, 26, 2). A 2D vi-
sualization of GuideHOM representations allows for intu-
itive design for gene editing and modulation of gene expres-
sion experiments. The representation computed by the Hit-
or-Miss layer can be interpreted as either coordinates of a
gRNA in the space of all possible gRNAs or a gRNA/target
pair in the space of all possible gRNA/target pairs depend-
ing on the model (the former is for RNN and 1D-CNN
models, and the latter is for 2D-CNN models used for the
Cas9 and Cas12a gRNA–target pair sets). Due to the gra-
dient descent optimization, the sequences in such a space
are arranged according to sequences and cleavage efficien-
cies (similar sequences are expected to occupy a compact
subspace of the guide space). The dimensionality of such a
guide space is determined by the number and output dimen-
sionality of the HOM capsule layers.

2D visualization of the guide space provides actionable
insights into the variety of functional gRNAs available for
a gene of interest. Figure 4 presents an example of the guide
space for LOC440792 gene. The representation of the guide
space (Figure 4A) as a scatter plot with mean cleavage effi-
ciency denoted as the point color is more visually appealing
and intuitive than spreadsheets that are commonly used for
the same purpose. On the scatter plot, the most efficient se-
quences are clustered together with sub clusters formed ac-
cording to different sequence determinants of cleavage ef-
ficiency (Figure 4B). An example of a sequence motif as-
sociated with one such cluster is shown on Figure 4B. The
sequence determinants are specific for each cluster, which
implies no simple linear dependency of cleavage efficiency
and/or the cleavage efficiency variance on the sequence mo-
tifs. While efficient gRNAs share some common features,
such as high GC content, there is no single unifying mo-
tif. Instead, any nucleotide change increases, decreases or,
in some cases, does not perceptibly affect the efficiency. Vi-
sual arrangement allows for quick search for most efficient
gRNA or a functional gRNA sets. Different functional sets
of gRNAs can be found by following the color gradient
from the most efficient to the least efficient (from purple
to yellow dots in Figure 4 A). An example of this path is
shown in Figure 4A (numbers in boxes denote the number

of gRNAs in the gRNA set, the same numbers correspond
to cleavage efficiency distributions on Figure 4C). The set of
gRNAs from Figure 4C found by following the color gradi-
ent of the gRNA space visualization, that has the required
properties––gRNAs with all range of cleavage efficiency
values, can be used to study the metabolic pathway respon-
sible for hyperprolinemia (since the LOC440792 is associ-
ated with it, https://www.genecards.org/cgi-bin/carddisp.pl?
gene=LOC440792) by performing in vitro experiments with
each of the gRNAs and measuring the levels of proline. All
sequences from this set are presented in the Supplemen-
tary Table S4. All logo sequences for the identified clus-
ters are presented in Zenodo repository. The clustering and
cleavage efficiency gradients in the 2D visualization of the
guide space are apparently agnostic to the method of visu-
alization. We experimented with PCA (Figure 5A), UMAP
(arXiv preprint arXiv:1802.03426, 2018) (Figure 5B) and
NCVis (41) (Figure 5C), and the results are qualitatively
the same: each visualization method yields partitioning of
the gRNAs into motif-dependent subclusters, and the color
gradient is sufficient for delineating a functional set of gR-
NAs.

For all visualizations in Figures 4 and 5 (except for D
and E where we use test set of Cas9 off-target dataset (25)),
we use the LOC440792 gene (2781 gRNAs) and the Guide-
HOM DeepHF wildtype C E+M model. The visualizations
are not supervised with respect to either the average cleavage
efficiency or the standard deviation, therefore representa-
tions encoded in the outputs of capsule network are enough
to produce the scattering of gRNAs on the plot by color,
which shows once again that the model has learned the rep-
resentations related to cleavage efficiency.

In addition to reproducing the training routines from pre-
vious studies, we conducted a 10-fold cross-validation anal-
ysis. Most of the previous studies we based our work on
did not perform 10-fold cross validation, so that we can-
not compare our performance with that reported in these
studies without reproducing them in their entirety, which is
outside of the scope of this work. The cross validation re-
sults are available in Supplementary Table S7. Under the
10-fold cross validation scenario, the values of quality met-
rics tend to be smaller than in the hold-out dataset case
by about 0.05 (e.g. DeepHF wildtype CNN ELBO reaches
0.8392 for the hold-out and 0.8066 on average in 10-fold
CV, with standard deviation of 0.0216). The largest gap was
observed for the Cas12a off-target model, which, in the10-
fold CV, on average, does not yield acceptable confidence
intervals with respect to p68, p95 and p99.7. This could be ex-
plained by the small size of the dataset, which only includes
1597 gRNA-target pairs, less than half of the next smallest
dataset, geCRISPR, with 3619 gRNAs. For the rest of the
models, the confidence intervals, on average, remain accept-
able. There is also a substantial gap in the performance be-
tween the RNN and CNN-based models for the geCRISPR
dataset, with RNN ELBO and RNN ELBO+MSE per-
forming worse than the CNN counterparts (Pearson cor-
relation 0.3882 and 0.4403 versus 0.5946 and 0.5926). The
remaining models do not yield significant differences in per-
formance either between RNN and CNN or between ELBO
and ELBO+MSE. Overall, the cross validation study shows
that the GuideHOM architecture is robust to overfitting
provided there is enough data to train it on.

https://www.genecards.org/cgi-bin/carddisp.pl?gene=LOC440792


PAGE 9 OF 15 Nucleic Acids Research, 2022, Vol. 50, No. 2 e11

Figure 4. 2D visualization of the guide space with NCVis. The active and inactive gRNAs scatter around the plane according to their mean cleavage
efficiency (A) and cluster into small subgroups based on the sequence determinants of cleavage efficiency (B). The color gradient at (A) denotes mean
efficiency (yellow – the largest, purple––the smallest). Color of the dots denotes the cluster label at (B). One of the groups is shown as red dots and the
sequence logo of that cluster is shown in the inset of (B). A path along the gradient of color (red lines in panel (A) gives a functional set of gRNAs sufficient
for modulation of gene expression (C). The numbers at the plot (A) and at the plot (B) denote the same gRNAs. The gRNA sequences are shown in the
Supplementary Table S4. For this figure, the DeepHF Cas9 C E wildtype model was used.

GuideHOM solves off-target cleavage regression with ac-
ceptable confidence intervals

Our approach allows not only for the prediction of the on-
target cleavage efficiency based on a single gRNA but also,
with minimal changes to the architecture (see ‘Materials
and Methods’), for the prediction of off-target cleavage ef-
ficiency from a pair of a gRNA and the target. For the
Cas9 gRNA–target pair dataset (25), we train the model on
80% of the training set and test it on the remaining 20%.
We found an r2 value of 0.625, as compared with 0.617 in
the original study, and an acceptable confidence interval
(0.7176 on Ymean + 1, 0.9124 on Ymean + 2, 0.9804 on

Ymean + 3). The prediction plots for the test set are shown
in Figure 5D and E.

The original Cas9 gRNA-target pair model (25) is ob-
tained by slightly modifying the supplementary file in
Jupyter Notebook. The sgRNA and genome target se-
quences are trimmed to remove the first two and one last
nucleotides (the flanks) in order to leave only the gRNA and
the PAM. The parameter input shape in the model defini-
tion is changed to (4, 23, 2).

The model trained on the Cas9 gRNA-target pair dataset
provides Cas9 cleavage efficiency estimates for guide and
target pairs with small numbers of mismatches between the
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Figure 5. 2D visualization of the guide space with different visualization methods: (A) PCA, (B) UMAP, (C) NCVis. All views illustrate the same properties.
Predictions vs observed activities for (D) GuideHOM and (E) Jost et al. models. (F) ROC curves of the GuideHOM and the Jost et al. model (25) on the
dataset of Peng et al. (42). For this figure, the DeepHF Cas9 C E wildtype model was used.

guide and the target. This information can be used to solve
the off-target classification task using the Peng et al. (42)
classification dataset to test our models. We compared the
performance of our models with that of the reproduced Jost
et al. model and obtain a better AUROC of 0.7528 (the Jost
et al. model scored 0.6777). The ROC curves for these mod-
els are shown in Figure 5F. For the test, we removed from
the Peng et al. dataset all pairs that have more than 6 mis-
matches to reduce the number of negatives. According to
the ROC curves, our model tends to produce fewer false
positives for low decision thresholds.

We next trained a regression model for Cas12a gRNA-
target pair dataset. We split the dataset of (28) into 90% for
training and 10% for testing. We obtain Spearman Corre-
lation Coefficient of 0.6 and a borderline acceptable con-
fidence interval (0.58 on �, 0.86 on 2�, 0.95 on 3�). The
variability and lower correlation are likely due to the small
dataset size of only 1565 gRNA-target pairs. We did not use
the PAM information because all sequences in the dataset
contained the TTTA PAM but use additional flank re-
gion so the overall input length is 23. The limitations of
the Cas12a gRNA-target pair dataset are also reflected in
the corresponding learning curves (Figure 2A and B). The
learning curve and mean standard deviations converge to-
wards 0.6 and 0.2, respectively, and are comparable to the
results obtained with other small samples, such as the Deep-

Cpf1 set, but the correlation (Spearman correlation coeffi-
cient) is weaker than that for DeepHF. To our knowledge,
this is the first attempt at off-target cleavage efficiency re-
gression for asCas12a and the performance of the model is
promising.

Diversity of CRISPR off-target effect predictions demon-
strated by analysis of gRNA-target pairs

We analyze an empirically validated sgRNA library for 2400
genes that are essential for robust cell growth (25). The con-
sistency and slight but significant superiority of results ob-
tained with our method compared to those in the original
study (r2 value of 0.625 versus 0.617 for the Jost et al. model,
see details above) supports the utility of our approach. As
an example of a practical application, we provide the top
5 gRNAs with mean and variance values for each gene in
the Homo sapiens reference genome (hg38) chromosome
22. An example of the output for gene SERPIND1 is shown
in Table 4. We suppose that the gRNAs could be used right
away to plan the CRISPR/Cas9 gene editing experiment
with the gene SERPIND1.

Cas-OFFinder (39) was used to make a list of potential
targets. A detailed description of the pipeline used for hu-
man genome analysis is presented in ‘Materials and Meth-
ods’. To apply our approach for prediction of mismatched
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Table 4. Example of top 5 gRNAs for Cas9. The model is DeepHF WT R E

Start Sequence Strand Mean Variance

5273 GGATCAGCTAGAGAAAGGAGGGG + 0.9344 0.0122
12819 CAGCGGCATGAACCCCACCGTGG - 0.9310 0.0120
10683 TCATGGCAGAAAGAATGGAGAGG + 0.9230 0.0119
7403 GTGTGTGGACAGATCAGGAGGGG - 0.9264 0.0119
4807 AGAGACAAAGTTCCCACCAGGGG - 0.9260 0.0119

gRNA cleavage efficiency and search of sgRNAs with sys-
tematically modulated activities, we analyze 1000 random
gRNAs which are extracted from the top 10 highly effi-
cient gRNAs (see Supplementary Table S5 for the 1000 ex-
tracted). For each of these gRNAs, all possible off-targets
with no more than 6 mismatches are selected from human
chromosome 22. The mean cleavage efficiency and cleav-
age efficiency variance are computed using the GuideHOM
model trained on the Cas9 gRNA–target dataset (CNN
ELBO) for each identified off-target gRNA–target pair.

The inclusion of uncertainty estimates in the off-target
analysis provides for two orthogonal axes that characterize
off-target properties: cleavage efficiency and stability of pre-
diction, where cleavage efficiency shows how probable is the
cleavage of the DNA strand with this particular target and
this particular gRNA, and prediction variance shows how
robust the prediction of cleavage efficiency is. Figure 6A
shows that most of the predicted off-targets (74%) have low
cleavage efficiency (<0.15) but there is a minority of highly
efficient off-targets (26%) that should be avoided for any ap-
plication that depends on the minimization of off-target ef-
fects. Most off-targets (82%) have small variance (<0.015,
see Figure 6B, they differ from the predicted mean cleavage
efficiency only by 0.1223 at worst, with the probability of
0.65), so there is a negligible chance that these off-targets
are incorrectly predicted. However, a minority of the off-
targets with large variance (18%) should be removed from
experimental validation because gRNAs with such cleavage
efficiency variance on off-targets can be problematic in the
experiments (the real cleavage efficiencies of these gRNAs
can differ from the predicted mean so much that one can
not be sure in the quality of the cleavage efficiency predic-
tion even with the confidence intervals taken into account).

Most off-targets with cleavage efficiency variance <0.015
and mean cleavage efficiency <0.15 are located in the left
bottom corner of the plot on Figure 6C. For gene editing,
only the gRNAs with the smallest number of off-targets
with high prediction variance and the highest on-target
cleavage efficiency should be selected. For gene expression
modulation, a set of gRNAs that produce off-targets with
chosen levels of prediction variance can be used. In this case,
the low variance of the off-target effect allows the selection
of a suitable set of gRNAs with predictable results. For each
of 1000 randomly selected highly efficient gRNA, the pro-
portions of the different kinds of off-targets are shown in
the Supplementary Table S6. Figure 6D shows that most
gRNAs have largely off-targets with both low cleavage ef-
ficiency and low prediction variance (the mean fraction of
off-targets with low cleavage efficiency is 0.80, with the stan-
dard deviation of 0.13, and the mean fraction of off-targets
with low prediction variance was 0.62, with the standard
deviation of 0.17). However, for some gRNAs, many off-

targets with high cleavage efficiency and high prediction
variance were identified (on average, the proportion of both
off-targets with high cleavage efficiency and low prediction
variance and off-targets with low cleavage efficiency and
high prediction variance is 58% with 14% standard devia-
tion, and there is an insignificant amount of the off-targets
that both have high cleavage efficiency and high prediction
variance, only 23 gRNA out of 1000 have them, there are
only 56 such off-targets out of 1 994 178 total. Such prop-
erties would exclude the gRNAs from the candidate pool
for an experiment. The proportion of off-targets with low
cleavage efficiency and low prediction variance can be used
to select gRNA for different types of experiments because
the off-targets with low cleavage efficiency and low predic-
tion variance are distributed differently for different gR-
NAs. Thus, the results show that our approach is useful for
the prediction of mismatched gRNA cleavage efficiency and
evaluation of systematically attenuated gRNAs that can be
used to control gene expression, from tuning biochemical
pathways to identifying suppressors for diseases and stress
conditions.

Neural network interpretation demonstrates the sequential
preferences for on-target and off-target cleavage

We use the Accumulated Local Effects (ALE (37)) to ex-
plain predictions of trained models. A single ALE value
shows the influence of a feature towards the output of the
network. In case of one-hot encoded features, it shows the
impact of presence and absence of a feature. ALE is a black-
box explanation method that requires very few assumptions
about the model, so it is perfect for our case, with model
that predicts not only the cleavage efficiency, but also its
variance. We compute the influences for all nucleotides to-
wards mean efficiency and variance, plot the heatmaps and
logo sequences of the resulting matrices. The logo sequences
and heatmaps show the preferences for gRNA sequence
in on-target cleavage (Figure 7) and gRNA-target pair in
off-target cleavage (Supplementary Figure S1 for Cas9 and
Supplementary Figure S2 for Cas12a). The region of about
4–5 nt located near the PAM is more important for the pre-
diction than the rest of the sequence. This holds for both
Cas9 and Cas12a––for Cas9 it is located on the 3′ end, and
for Cas12a it is located on 5′ end. The mechanics of PAM
and target recognition implies the importance of the seed
region. The recognition of target starts from PAM and goes
towards the end of the target through the seed region. If
there is a mismatch in the seed region, the cleavage is highly
unlikely. Our model captures the importance of seed region
without any additional supervision from the user. We didn’t
indicate it in any way (a possible way to indicate would be to
give the network a mask in addition to the sequence, which
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Figure 6. Analysis of off-targets in Chromosome 22 shows the existence of different off-target categories: (A) distribution of mean off-target cleavage
efficiency for real known values extracted from the training set (pink) and for predictions for Chromosome 22 (blue) with cleavage efficiency threshold of
0.15. (B) distribution of off-target cleavage efficiency variance for Chromosome 22 with prediction variance threshold of 0.015. (C) Mean versus Variance
plot for off-targets from gRNAs extracted from top 10 of different Chromosome 22 genes with indicated cleavage efficiency and prediction variance
thresholds. (D) Distributions for proportions of off-targets with low efficiency (green) and off-targets with low prediction variance (pink) for 1000 of top10
gRNAs.

we didn’t do), the model had to learn it on its own to use in
cleavage efficiency prediction.

Importance heatmaps for efficiency and variance tend to
mirror each other, not exactly, but very close. For example,
in Cas9 (Figure 7A and B), the Gs and Cs in the seed re-
gion are very important for efficiency, but for variance, Ts
and As are more important. Basically, if a gRNA has Cs
and Gs in the seed region, the variance will be low, but the
cleavage efficiency will be rather high. However, this holds
poorly for Cas12a. In Figure 7E and F, in two first letters
of the seed, both variance and efficiency matrices value As
and Gs, and undervalues Ts. The rest of the seed and the rest
of the sequence after the seed have the same overall impor-
tance. For mismatching gRNA-target pairs (Supplementary
Figure S1) in Cas9, the mismatches in PAM are very impor-
tant, as important as in the seed region. The lack of impor-
tance for Ts in the seed region for Cas12a is also reproduced

in Cas12a off-target model despite using different datasets
(Supplementary Figure S2). The same holds for Gs and Ts
in seed region of Cas9 (Supplementary Figure S1). It shows
that models learn the same features from different datasets
of the same Cas effector – those features are not dataset-
specific, but Cas effector-specific.

DISCUSSION

In this work, we introduce Deep Kernel Learning-based
methods for estimation of confidence intervals for gRNA-
target cleavage efficiency. Using a number of publicly avail-
able datasets, we construct a set of effector- and cell line-
specific models. Our results indicate that deep kernel learn-
ing offers substantial advantages over basic deep learning in
the estimation of the efficiency of CRISPR-mediated target
cleavage. The methods we develop here are distinct from all
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Figure 7. Neural Network Interpretation for Cas9 and Cas12a on-target models shows the importance of seed region which is located at the right hand
side for Cas9 (A) and (C), and at the left hand side (E) and (G) for the prediction of cleavage efficiency. The same importance is observed for the variance
of predictions (B) and (D) for Cas9, (F) and (H) for Cas12a). The models used are DeepHF WT C E and DeepCpf1 C E.

previously described ones in that an uncertainty estimation
is explicitly given. The uncertainty of the model provides
valuable clues for the design of gene editing experiments,
allowing the end user to select not only gRNAs that are op-
timal with respect to the on-target and off-target efficiency,
but also those that are the most predictable in their behavior
in experiments. For example, a researcher probably should
pick a low variance gRNA with a lower predicted efficiency
compared to a gRNA with a higher efficiency but a wider
confidence interval. The confidence interval is important in
two cases: when there are many gRNAs to select from and
when highly specific editing is required. Given that exper-
imental researchers routinely use at least 10 different gR-
NAs to target the gene of interest, the confidence intervals
become a valuable tool, because they allow the likelihood
of an experimental failure to be minimized through opti-
mal selection of gRNAs. As for the specific editing, there
are many tasks that require not only silencing a gene, but
silencing it using a specific region of the gene as the target.

A salient example is analysis of small RNAs, including
miRNAs and their targets. In cases when there are many
predicted target sites for a small RNA (each can be as short
as 8 bp), inducible Cas9 experiments and multiplexed sin-
gle guide RNAs can be used to generate hundreds of tar-
geted mutations in parallel (43–45). When the goal is to
target different regulatory sites in many genes, as in the
case of miRNA targets, and analyze Cas9-induced muta-
tions, it seems to be advantageous to choose not the most
efficient gRNA for a given gene, but those gRNAs that

match the sequences closest to the putative target sites of
small RNAs, even such gRNAs are inferior in efficiency.
The choice among the low efficiency gRNAs requires tak-
ing into account the variability in efficiency prediction, in
order to reduce the uncertainty of the experimental results.

As an encoder, we used the Hit-Or-Miss capsule network,
which is a capsule network without routing. This design is
faster than traditional capsule networks because it omits the
most time-consuming step, while maintaining nearly identi-
cal performance. We had to modify the setup for the HOM
networks because they were initially designed for classifica-
tion. In the classification setting, the representation learned
by HOM capsules represents the difference from the tem-
plate, that is, a perfect example of the class. In our set-
ting, the HOM capsules learn a coordinate in the space
of all possible gRNAs or gRNA-target pairs. The space is
bounded by the sequence and cleavage efficiency. The two-
dimensional visualization of this space is a natural way to
present the gRNAs for the gene of interest. This visualiza-
tion provides an overview of the gene targeting by gRNAs
and helps in the selection of most efficient gRNAs or a
set of gRNAs that are useful for gene expression modula-
tion. The functional gRNA set can be formed by selecting
the guides alongside the efficiency gradient that is shown
by colors in the plots. Taking into account that the Hit-
Or-Miss capsule network approach has been successfully
applied for prediction of targeting efficiency for gRNA–
target pairs, we use a recently published large-scale sgRNA
mismatch dataset (25) for exploration of the ground rules
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of mismatched gRNA–target interactions. These data en-
able prediction of sgRNAs with intermediate cleavage effi-
ciency against complete sets of expressed genes and demon-
strate that the activities of mismatch-containing sgRNAs
are determined by a variety of factors that can be cap-
tured using supervised machine learning approaches. The
utility of the Hit-Or-Miss capsule networks for the study
of complex global and local dependencies on spatially or-
dered functions, such as nucleotide sequences, including
factors that regulate CRISPR gRNA cleavage efficiency,
suggest that this approach will enable further character-
ization of the features of mismatched sgRNAs that con-
tribute the most to their efficiency. Such features can be ex-
ploited for analysis of expression-phenotype relationships
in mammalian cells. In a recent study, systematically at-
tenuated sgRNAs for staging cells along a continuum of
expression levels were employed for exploration of fun-
damental biological questions, specifically, for the analy-
sis of gene-specific expression–phenotype relationships and
expression-level-dependent cell responses at single-cell res-
olution (25). Our approach enables further investigation of
these fundamental biological problems and could be use-
ful for systematic large-scale studies of activities of individ-
ual genes in basic cell biology, drug development and func-
tional genomics. Our work also shows that experimental de-
sign benefits from the estimation of the model uncertainty,
which is provided by the Gaussian Process. The resulting
models can be used for the design of Cas9/Cas12a-based
gene editing experiments that maximize on-target efficiency
and minimize the off-target effects, by taking into account
the information on dataset-specific and replication-specific
noise, and proportions of different off-target types. For ex-
ample, when facing a choice between a gRNA that has a
high number of inefficient and low variance off-targets and
a gRNA with a small number of efficient but high vari-
ance off-targets, the experimenter should pick the former
because the latter comprises a much greater uncertainty.
The high-efficiency and high-variance off-targets are rare,
but it is important to exclude the gRNAs that are associated
with such off-targets from the set of selected gRNAs be-
cause including these can have unpredictable consequences
for the experiment outcome. The proportions of off-targets
with high and low efficiency, as well as high and low vari-
ance thus serve as additional metric to the number of off-
targets, which is customarily used in experimental design,
providing information that is lacking in most available tools.
Compared to the performance of the point estimate mod-
els (DeepCpf1 (23), DeepHF (27), Jost et al. (25) etc), our
model provides acceptable confidence intervals and compa-
rable performance. There seems to be a trade-off between
the uncertainty estimation and point estimation quality.
This trade-off has been observed previously in a similar set-
ting (40). For mere experiment design, the knowledge of
cleavage efficiency (and its variance) is most of the time suf-
ficient. However, neural networks are more than simply a
way to estimate probabilities, they also can be used as black-
box models for the biological process of interest. Such mod-
els allow the researcher to test hypotheses on biological pro-
cesses in silico. To assess the compatibility of our models
with the known features of the Cas protein-induced cleav-
age, we explained the predictions with Accumulated Local

Effects and found that our model reproduced the known be-
havior of the system, namely, the dependence of cleavage on
the seed region of the gRNA. This behavior was reproduced
in both Cas9 and Cas12a models showing that our Capsule
Network-Gaussian Process hybrid indeed builds the repre-
sentations relevant for prediction of properties of CRISPR
systems and is unlikely to result from overfitting.
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