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Abstract: As an important abiotic stress factor, ultraviolet-B (UV-B) light can stimulate the accumula-
tion of antioxidants in plants. In this study, the possibility of enhancing antioxidant capacity in pak-
choi (Brassica rapa L.) by UV-B supplementation was assessed. Irradiation with 4 µmol·m−2·s−1 UV-B
for 4 h or 2 µmol·m−2·s−1 UV-B for 24 h significantly increased the 1,1–diphenyl–2–picrylhydrazyl
(DPPH) scavenging activity and total reductive capacity, as a result of inducing a greater accumulation
of total polyphenols and flavonoids without affecting the plant biomass. A high performance liquid
chromatography (HPLC) analysis showed that the concentrations of many flavonoids significantly
increased in response to UV-B treatment. The activities of three enzymes involved in the early steps
of flavonoid biosynthesis, namely phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase
(C4H), and 4-coumarate: coenzyme A (CoA) ligase (4CL), were significantly increased after the
corresponding UV-B treatment. Compared with the control, the expression levels of several flavonoid
biosynthesis genes (namely BrPAL, BrC4H, Br4CL, BrCHS, BrF3H, BrF3′H, BrFLS, BrDFR, BrANS,
and BrLDOX) were also significantly up–regulated in the UV-B treatment group. The results sug-
gest that appropriate preharvest UV-B supplementation could improve the nutritional quality of
greenhouse-grown pakchoi by promoting the accumulation of antioxidants.

Keywords: pakchoi; greenhouse; UV-B; antioxidant activity; flavonoids; biosynthetic pathway

1. Introduction

In recent years, consumers have become more aware of the importance of dietary
nutrition. High-quality functional foods, combining health and safety, are desired by
consumers. Secondary plant metabolites (SPM), which include flavonoids, can not only be
used as sunscreens by plant leaves to protect inner cells from harmful radiation, but are also
considered to be the major bioactive compounds in edible plants with respect to human
health benefits due to their potent antioxidant capacity [1,2]. Brassica species are known for
their high contents of SPM, many of which are appreciated for their health-promoting effects.
Kale (Brassica oleracea L.) has high concentrations of the flavonol aglycones kaempferol
and quercetin, which show different antioxidant activities dependent on their chemical
structure [3,4]. Several antioxidant phenolic compounds including flavonoids have been
investigated and identified in Chinese cabbage (Brassica rapa L.) leaves [5]. Cabbage
(Brassica oleracea L.) heads have important antioxidant and anti-inflammatory properties
due to their rich glucosinolates content [6]. Pakchoi (Brassica rapa L.) is rich in SPM and
contains numerous antioxidants, including flavonoids, hydroxycinnamic acids, carotenoids,
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chlorophylls, and glucosinolates [7,8]. With increasing attention being paid to the quality
and safety of food, Brassica vegetables rich in antioxidants are gradually finding their way
into our diets.

The biosynthesis of antioxidants in plant-derived food is regulated by many factors,
including the light environment [3]. Ultraviolet-B (UV-B; 280–315 nm) radiation is an
intrinsic part of the solar radiation that reaches the earth’s surface and plays an important
role in regulating the growth, photosynthesis, and SPM of higher plants [9]. UV-B radiation
resulted in changes in a number of antioxidants in different Brassica vegetables. Much
evidence has indicated that the impact of UV-B radiation on plants depends upon the
context, such as radiation dosage, exposure time, stress acclimation, nutritional status, and
plant species [7,10,11]. Exposure to low doses of UV-B and UV during the late develop-
mental stages of pakchoi resulted in higher concentrations of flavonoids, hydroxycinnamic
acids, carotenoids, and chlorophylls [7]. Six leafy Brassica species were analyzed for their
flavonoid glycoside accumulation after short-term UV-B treatment, which showed species-
specific responses [12]. Blue light treatment after pre-exposure to UV-B stabilized the
changes in flavonoid glycoside and led to a higher hydroxyl radical scavenging capacity in
three different Brassica sprouts [4]. Moreover, the treatment of low, ecologically relevant
UV-B levels did not result in adverse effects at the human cell level [13]. Cooking methods
might affect the bioavailability and content of SPM. It was found that steaming retained
more chlorophylls, glucosinolates, phenolic acids and flavonoid compounds than boiling
in three different cultivars of pakchoi [8]. These findings suggested that the supplemen-
tation of white light with UV-B irradiation may be a sustainable tool for improving crop
production quality and food safety. A crucial issue is the dosage of radiation necessary to
optimize the biosynthesis of beneficial phytochemicals without affecting the times, quality,
and quantity of the harvest.

Vegetables are the main source of antioxidants in the human diet and are essential
in our daily lives. The consumption of diets high in vegetables has been associated with
a lower risk of a number of chronic illnesses [14]. As a result of market demands and
economic incentives, greenhouse vegetable production has been developed and rapidly
expanded as an intensive form of agriculture, which provides consumers with sufficient
vegetables in the on- and off-seasons in many developing countries [15]. However, most
plastic films covering greenhouses or polytunnels almost completely absorb and hence
block UV radiation (both UV-A and UV-B) reaching the plants, due mainly to the stabilizers
used in the different materials to extend the longevity of the film [16]. Polycarbonate,
polyethylene, and fiberglass are the most commonly used greenhouse covering materials,
with the effect of excluding more than 90% of the incident UV-B radiation [17]. Therefore,
most greenhouse-grown vegetables are basically protected from UV-B irradiation during
the growth process, leading to a decrease in the content of antioxidants such as flavonoids.
For example, the concentrations of flavonoid derivatives in the leaf blade of various pakchoi
cultivars ranged from 15 to 39 mg·g−1 dry matter under field conditions, but only ranged
from 4.7 to 16.7 mg·g−1 dry matter under greenhouse conditions. The concentrations
of hydroxycinnamic acid derivatives were also significantly reduced [18,19]. So, it is of
great significance to increase the accumulation of antioxidants in greenhouse vegetables by
supplementation with UV-B.

Pakchoi is a leafy Brassica vegetable that is widely available in Asia and consumed
in rising quantities in Europe with a high contents of antioxidants. Several studies have
reported the effect of UV-B radiation on antioxidants in pakchoi as described earlier. How-
ever, to our knowledge, the direct correlation between antioxidants accumulation and
antioxidant activity under different UV-B irradiation conditions has not yet been studied.
The objective of this research is to identify the most appropriate UV-B treatment for improv-
ing the antioxidant capacity in pakchoi and to identify the antioxidants stimulated by UV-B
radiation. The activities of the key enzymes and expression levels of the genes involved
in flavonoid biosynthetic pathway were determined to explore the molecular mechanism
of UV-B radiation in improving antioxidant capacity. Our results will provide a potential
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new tool by which to generate greenhouse vegetables enriched with antioxidants for either
fresh consumption or as a source of functional foods.

2. Results and Discussion
2.1. Impacts of UV-B Radiation on Plant Growth and Biomass in Pakchoi

It is critical to identify the most appropriate UV-B radiation dosage and exposure
period, which enhances antioxidant capacity without affecting the growth and morphology
of pakchoi. We first assessed how pakchoi plant growth was impacted by two different
doses (2 µmol·m−2·s−1 and 4 µmol·m−2·s−1) of UV-B radiation over each off our different
exposure periods (2 h, 4 h, 8 h and 24 h). Compared with the control, there was no significant
difference in fresh weight and dry weight under any UV-B radiation fluence rates (Figure 1).
Our results are consistent with previous studies reporting that low, ecologically relevant
UV-B levels do not affect plant growth [7,12]. As such, we further explored the impact
of supplementary UV-B radiation on nutritional components and secondary metabolites
in pakchoi.
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Figure 1. The effect of ultraviolet-B (UV-B) radiation on the above-ground biomass of pakchoi.
(A) Fresh weight of 25-day-old seedlings treated with either 2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 of
UV-B irradiation for 2 h, 4 h, 8 h, or 24 h. (B) Dry weight of 25-day-old seedlings treated with either
2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 of UV-B irradiation for 2 h, 4 h, 8 h, or 24 h. The plants without
supplemental UV-B radiation served as controls. Data points are mean ± SE of three biological
replicates. Significant differences between treated group and the control group at the same exposure
period, identified by Student’s t-test analysis.

2.2. UV-B Irradiation Effect on Total Antioxidant Capacity in Pakchoi

The total antioxidant capacity is often evaluated by 1,1–diphenyl–2–picrylhydrazyl
(DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), ABTS radical
scavenging capacity, and oxygen radical absorption capacity assay in vegetables and
fruits [20]. DPPH, as a stable free radical, has been widely employed to measure the radical
scavenging effects of plant extracts [21]. The FRAP assay is a key method for assessing
the total reduction capacity and offers a putative index of antioxidant capacity [22]. In the
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current study, the effect of UV-B radiation on total antioxidant capacity in pakchoi was
assayed by measuring the DPPH scavenging activity and total reduction capacity.

There was no significant difference in DPPH scavenging activity between plants
treated with either dose of UV-B radiation for 2 h and the control plants. Irradiation with
2 µmol·m−2·s−1 UV-B for 4 h or 8 h did not significantly increase the radical scavenging ef-
fects on DPPH. The DPPH scavenging activity of the plants irradiated with 2 µmol·m−2·s−1

UV-B for 24 h (81.12%) was significantly greater than that of the control (75.57%). The
DPPH-scavenging activities of the plants irradiated with 4 µmol·m−2·s−1 UV-B for 4 h
(87.84%; p < 0.01) or 8 h (84.95%; p < 0.05) were significantly greater than those of the
controls (79.82% or 80.20%), although 4 µmol·m−2·s−1 UV-B irradiation for 24 h (74.64%)
did not increase the scavenging effects on DPPH relative to the control (75.57%) (Figure 2A).
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Figure 2. The effect of UV-B radiation on the total antioxidant capacity of pakchoi. (A) The 1,1–
diphenyl-2-picrylhydrazyl (DPPH) scavenging activity of 25-day-old seedlings treated with either
2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 of UV-B irradiation at 2 h, 4 h, 8 h, or 24 h. (B) The total reduction
capacity of 25-day-old seedlings treated with either 2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 of UV-B
irradiation at 2 h, 4 h, 8 h, or 24 h. The plants not exposed to UV-B radiation served as controls. Three
independent experiments were performed and data points represent the mean± SE of three biological
replicates. Asterisks indicate a significant difference (* p < 0.05; ** p < 0.01) to the corresponding
control, using Student’s t-test.

The effect of UV-B irradiation on total reduction capacity was similar to the effects on
DPPH scavenging activity. The total reduction capacity of 2 µmol·m−2·s−1 UV-B radiation
for either 8 h or 24 h and of 4 µmol·m−2·s−1 UV-B radiation for 4 h was significantly
greater (p < 0.01) than that of the controls. No significant difference was found in the total
reduction capacity between the plants exposed to other UV-B treatments and control plants
(Figure 2B). These results indicated that the effect of UV-B radiation on total antioxidant
capacity in pakchoi was dose-dependent, consistent with the previously reported results
in the literature [7]. When the samples were collected immediately after the irradiation
time-points, treatments with 2 µmol·m−2·s−1 UV-B radiation for 24 h or 4 µmol·m−2·s−1

UV-B radiation for 4 h had the greatest enhancement effect on antioxidant capacity in
pakchoi. There was no significant stimulatory effect in response to 2 µmol·m−2·s−1 UV-B
radiation for a shorter time or 4 µmol·m−2·s−1 UV-B radiation for a longer time. This effect
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may be related to different UV-B intensities activating particular signaling pathways, as
described earlier [23]. However, the effect of UV-B radiation on antioxidant capacity varies
over the collection time, which needs to be further studied.

In general, the effect of secondary metabolite accumulation induced by UV-B radiation
lasts for some time. Su et al. reported that UV-B-induced anthocyanin accumulation in
hypocotyls of radish sprouts could be sustained for a long time (more than 24 h) in the dark
after irradiation [24]. To investigate whether a UV-B-induced increase of total antioxidant
capacity continues after UV-B irradiation in pakchoi, the seedlings were first exposed to
4 µmol·m−2·s−1 UV-B for 4 h, and then transferred to darkness for 6, 12, 24, 36, and 48 h,
respectively. The induction of DPPH scavenging activity could be maintained for 24 h in
the dark following the radiation treatment (Figure 3A), although the enhancement effect
was not apparent at 36 h or 48 h after treatment. As with DPPH scavenging activity, the
induction of the total reduction capacity could also be maintained for 24 h in the dark after
radiation (Figure 3B). Pakchoi is commonly consumed not only fresh (e.g., as salad), but
also after cooking or fermentation. Furthermore, 21-day-old seedlings in three different
cultivars of pakchoi were used to analyze the effect of domestic cooking methods (boiling
and steaming) on secondary metabolites [8]. The production cycle of the pakchoi cultivar
‘Can Bai’ is 20–40 days, depending on growing temperature and consumer preference. The
25-day-old seedlings can be consumed for their high nutritional value, especially as baby
salads. At the same time, there are some other ways to stabilize or further increase the
enhancement effect of antioxidant capacity, such as blue light treatment after pre-exposure
to UV-B as previously reported [4]. These might make the preharvest UV-B treatment an
effective tool, allowing people to harvest more nutritious greenhouse-grown pakchoi in
time. The decrease in DPPH scavenging activity from 6 h to 12 h might be due to the
variable time of darkness in both the UV-B treatment and control groups. Dark treatments
after UV-B irradiation can eliminate confounding factors such as incandescent and provide
experimental evidence of energy efficiency and practical applications for enhancing the
nutritional quality of pakchoi. The results showed that the energy could be saved for at
least 6 h by the dark treatment.
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6 h, 12 h, 24 h, 36 h, or 48 h after 4 µmol·m−2·s−1 UV-B radiation for 4 h. Plants grown without UV-B
radiation served as controls. Three independent biological replicate experiments were performed;
data points represent the mean ± SE of the three biological replicates. Asterisks indicate a significant
difference (* p < 0.05; ** p < 0.01) relative to the corresponding control, using Student’s t-test.

2.3. Effects of UV-B Irradiation on Non-Enzymatic Antioxidants

Polyphenols, glutathione and ascorbate are considered to be potent non-enzymatic
antioxidants in plants as they exhibit a high scavenging activity of harmful reactive oxygen
species (ROS) [25–27]. Phenolic compounds are ubiquitous in the plant kingdom and
constitute a large class of secondary metabolites, including phenolic acids, flavonoids,
tannins, lignans, coumarins, and stilbenes [28]. Flavonoids are a biologically important
group of phenolics, which have been recently suggested to contribute primary antioxidant
functions in the responses of plants to a wide range of abiotic stresses, including UV-B
radiation [1].

In the current study, the concentrations of total polyphenols, flavonoids, glutathione,
and ascorbate in UV-B-treated and untreated pakchoi were determined and compared. As
shown in Figure 4A, the concentration of total polyphenols increased very significantly
after treatment with 2 µmol·m−2·s−1 UV-B radiation for 24 h or 4 µmol·m−2·s−1 UV-B
radiation for 4 h compared with the control. The total polyphenol concentration increased
from 13.94 mg·g−1 to 15.63 mg·g−1 (p <p0.01) after treatment with 2 µmol·m−2·s−1 UV-B
radiation for 24 h or from 13.65 mg·g−1 to 16.13 mg·g−1 (p < 0.01) after treatment with 4
µmol·m−2·s−1 UV-B radiation for 4 h. No significant changes were observed in response to
other UV-B irradiation treatments.
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total polyphenol concentration of 25-day-old seedlings treated with either 2 µmol·m−2 ·s−1 or
4 µmol·m−2·s−1 of UV-B radiation at 2 h, 4 h, 8 h, or 24 h. (B) The total flavonoid concentration of
25-day-old seedlings treated with either 2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 of UV-B radiation at 2 h,
4 h, 8 h, or 24 h. The plants untreated with UV-B radiation served as controls. Three independent
biological replicate experiments were performed; data points represent the mean ± SE of the three
biological replicates. Asterisks indicate a significant difference (* p < 0.05; ** p < 0.01) relative to the
corresponding control using Student’s t-test.
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As the main phenolic compounds, the response of total flavonoid concentration to
UV-B radiation was similar to that of total polyphenol concentration. The total flavonoid
concentration increased significantly from 18.81 mg·g−1 to 20.57 mg·g−1 (p < 0.05) af-
ter treatment with 2 µmol·m−2·s−1 UV-B radiation for 24 h and from 22.20 mg·g−1 to
24.43 mg·g−1 (p < 0.01) after treatment with 4 µmol·m−2·s−1 UV-B radiation for 4 h. There
was no significant increase in the total flavonoid concentration in response to other UV-B
irradiated conditions compared with the control. The results showed that the induction of
total polyphenols and flavonoids in UV-B-treated pakchoi was dependent on the radiation
dosage and time (Figure 4B).

There are many types of flavonoid, and changes in the concentrations of individual
flavonoids in pakchoi between UV-B treatment and control groups were analyzed by
high-performance liquid chromatography (HPLC). More than a dozen flavonoids were
isolated from the pakchoi leaves based on their ultraviolet absorption spectrum and elution
profile (Figure 5A). Among them, the peak areas of Peak 1, Peak 2, Peak 3, Peak 4, Peak 5,
Peak 6 and Peak 9 increased very significantly (p < 0.01) in extracts of plants treated with
4 µmol·m−2·s−1 UV-B radiation for 4 h. The peak areas of Peak 7 and Peak 8 increased
significantly (p < 0.05) in the extracts of plants treated with 4 µmol·m−2·s−1 UV-B radiation
for 4 h. The peak area of Peak 10 did not change significantly (Figure 5B). In order to identify
metabolic features, we carried out a liquid chromatography–mass spectrometry (LC–MS)
analysis, and found that four of the peaks possibly representing flavonoids increased in
response to UV-B (Figure S1). Due to the lack of suitable databases and standards, we could
not confirm which specific type of flavonoids these peaks are. We speculate that they are
most likely kaempferol glycosides according to the reported literature [8,11,12].
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performance liquid chromatography (HPLC) chromatogram of the flavonoids in extracts of 25-day-
old seedlings. (B) The peak areas fractionated by HPLC. Twenty-five-day-old seedlings treated with
4 µmol·m−2·s−1 UV-B for 4 h were harvested for extraction. Twenty-five-day-old seedlings not
treated with UV-B radiation served as the control. Three independent biological replicate experiments
were performed; data points represent the mean ± SE of the three biological replicates. Asterisks
indicate a significant difference (* p < 0.05; ** p < 0.01) relative to the corresponding control, using
Student’s t-test.

On the other hand, there was no obvious enhancement effect of UV-B radiation on
glutathione and ascorbate concentrations in pakchoi (Figure S2). Pakchoi synthesizes
comparatively high amounts of glucosinolates, most of which were not affected by reduced
UV-B conditions during the late developmental stages of pakchoi [7]. Flavonoids were
still not evaluated and further investigations on glucosinolates are required. Nonetheless,
these results revealed that the increase in non-enzymatic antioxidant activity was mainly
due to the accumulation of phenolic compounds, especially flavonoids. This finding
is in agreement with previous studies that showed that UV-B radiation can induce the
biosynthesis of flavonoids in a range of plants [29–32].

2.4. Effects of UV-B Radiation on Flavonoid Biosynthesis Enzymes

The phenolic and flavonoid compound biosynthesis pathway is one of the most exten-
sively studied areas of SPM. Flavonoids are synthesized via the shikimate-phenylpropanoid-
flavonoid pathways in plants as documented in recent literature [33,34]. The phenyl-
propanoid pathway begins from the aromatic amino acids phenylalanine and tyrosine,
which are synthesized by the shikimate pathway, to generate 4-coumaroyl-CoA, which is
utilized in the flavonoid pathway. A number of important enzymes are involved in this
process, such as PAL, C4H, 4CL, CHS, F3H, F3′H, FLS, DFR, and ANS. Among them, PAL,
C4H and 4CL are three major enzymes in the phenylpropanoid pathway.

The effects of UV-B radiation on PAL, C4H and 4CL activities in pakchoi were ex-
amined in this study. PAL activity increased very significantly (p < 0.01) in response to
2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 UV-B radiation for 4 h or 24 h compared with the con-
trol (Figure 6A). The activity of C4H increased very significantly (p < 0.01) after exposure
to 2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 UV-B radiation for 4 h compared with the control,
whereas the increase after 24 h was only significant (p < 0.05) (Figure 6B). The activity of
4CL increased significantly (p < 0.05) in response to 2 µmol·m−2·s−1 or 4 µmol·m−2·s−1

UV-B radiation for 24 h compared with the control and very significantly (p < 0.01) after
2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 UV-B radiation for 4 h compared with the control
(Figure 6C). The results revealed that the observed stimulatory effect of UV-B radiation
on the production of flavonoids could be explained by the induction of the activities of
important enzymes in the flavonoid biosynthesis pathway, a finding which was consistent
with previous reports from other plant species [24,26,35].

2.5. UV-B Effect on the Expression of Flavonoid Biosynthesis Genes

Anthocyanins and flavonols are the two major classes of flavonoid compounds, in
terms of their role in protecting plants against abiotic and biotic stresses. A total of 73 antho-
cyanin biosynthetic genes in Brassica rapa have been identified using comparative genomic
analyses between Brassica rapa and Arabidopsis thaliana [36]. The expression levels of some of
these flavonoid biosynthesis genes in response to 2 or 4 µmol·m−2·s−1 UV-B irradiation for
4 h or 24 h were analyzed in pakchoi in the current study. The expression of each of the three
major genes of the phenylpropanoid pathway, BrPAL, BrC4H, and Br4CL, was upregulated
significantly (p < 0.05 or p < 0.01) in each of the UV-B treatment groups compared with the
controls, a finding which was basically consistent with the results of the corresponding
enzyme activity analysis. The expression of the early biosynthesis genes in the flavonoid
pathway, BrCHS, BrCHI, BrF3H, BrF3′H, and BrFLS, and of the late biosynthesis genes in the
flavonoid pathway, BrDFR, BrANS, BrLDOX, and BrUFGT, were upregulated significantly
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(p < 0.05) or very significantly (p < 0.01) after UV-B irradiation, compared with the control.
Overall, the highest expression level occurred at 2 µmol·m−2·s−1 UV-B radiation for 24 h
and 4 µmol·m−2·s−1 UV-B radiation for 4 h, findings which were consistent with the previ-
ous enzyme activity results (Figure 7). These results showed that the irradiation-induced
increases in concentrations of flavonoids were associated with corresponding increases in
the expression of flavonoid biosynthesis genes.

All of the above results indicated that the changes in gene expression, enzyme activity,
and antioxidant concentration in response to supplementary UV-B radiation are basically
consistent, as previously reported [37]. Moreover, the gene expression levels and biosyn-
thetic enzyme activities are more sensitive to UV-B radiation than the flavonoid antioxidant
concentration levels.
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Figure 6. The effect of UV-B radiation on the activities of flavonoid biosynthesis enzymes in pakchoi.
(A) The activity of PAL in 25-day-old seedlings treated with either 2 µmol·m−2·s−1 or 4 µmol·m−2·s−1

of UV-B radiation at 4 h or 24 h. (B) The activity of C4H in 25-day-old seedlings treated with either
2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 of UV-B radiation at 4 h or 24 h. (C) The activity of 4CL in
25-day-old seedlings treated with either 2 µmol·m−2·s−1 or 4 µmol·m−2·s−1 of UV-B radiation at 4 h
or 24 h. The plants without UV-B radiation served as controls. Three independent biological replicate
experiments were performed; data points represent the mean ± SE of three biological replicates.
Asterisks indicate a significant difference (* p < 0.05; ** p < 0.01) relative to the corresponding control,
using Student’s t-test.
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Figure 7. Relative expression levels of the genes related to flavonoid biosynthesis in response to
UV-B radiation. Black columns represent control; gray columns represent 2 µmol·m−2·s−1 UV-B;
white columns represent 4 µmol·m−2·s−1 UV-B. Gene expression values are relative to reference
BrActin2 expression; data points represent the mean ± SE of three biological replicates. Asterisks
indicate a significant difference (* p < 0.05; ** p < 0.01) relative to the corresponding control using
Student’s t-test.

3. Materials and Methods
3.1. Plant Materials and Growth Conditions

A local commercial cultivar of pakchoi, ‘Can Bai’ (by Zhejiang Academy of Agricul-
tural Sciences, Hangzhou, China), was used in the experiments. The plants were cultivated
in an illuminated growth chamber (26 ◦C, 12 h/12 h light/dark cycle regime) in soil (peat,
pH 5.5–6.5; Fafard, Saint-Bonaventure, QC, Canada). Water was supplied as required by
the plants and fertilizer was administered weekly with Hoagland’s nutrient solution. The
light intensity of incandescent was 100 µmol·m−2·s−1 (400–700 nm). For experimentation,
25-day-old seedlings were supplemented with (treatment group) or without (control group)
UV-B irradiation and tissue was collected immediately after the irradiation time-points for
analysis. Fifteen plants were pooled for one biological replicate, and all experiments were
performed in triplicate.

3.2. Radiation Procedure

Pakchoi seedlings were placed on shelves and exposed to the supplementary UV-
B radiation, at doses of 2 µmol·m−2·s−1 (equals 0.7 W·m−2) or 4 µmol·m−2·s−1 (equals
1.4 W·m−2) for 2 h, 4 h, 8 h, or 24 h. UV-B radiation was supplied by five fluorescent
lamps (40 W 12RS, Beijing Lighting Research Institute, Beijing, China), whereby the UV-B
emission peaked at 313 nm. The desired radiation dose was obtained by changing the
number of UV-B lamps and the distance between the lamps and the plants. UV-B radiation
was measured using an Optronics Model 720 spectroradiometer (Beijing Normal University
Optronics Factory, Beijing, China), with a spectral range of 280 to 400 nm.
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3.3. DPPH Scavenging Assay

The DPPH scavenging activity assay was performed according to the method reported
by Alhaithloul et al. [38]. Aliquots (0.2 g) of the dried samples were extracted with 45 mL
70% methanol in a water bath at 70 ◦C for 60 min and centrifuged for 15 min at 4700× g.
The supernatant was retained and used to determine DPPH scavenging activity. An aliquot
(4 mL) of 2.0 × 10−4 mmol·L−1 DPPH solution in 70% ethanol was added to 1 mL of the
supernatant. The mixture was allowed to incubate for 30 min at room temperature in the
dark, after which the absorbance at 517 nm was measured.

3.4. Determination of Total Reduction Capacity

The FRAP assay was performed to determine the total reduction capacity according to
the procedure reported previously [6]. Aliquots (0.2 g) of the dried samples were extracted
with 45 mL 70% methanol in a water bath at 70◦C for 60 min and centrifuged for 15 min at
4700× g. The supernatant was retained and used for assays. The FRAP reagent included a
300 mM acetate buffer (pH 3.6), 10 mM 2,4,6-tris(2-pyridyl)-1,3,5-triazine in 40 mM HCl,
and 20 mM FeCl3 in the ratio 10:1:1 (v:v:v). An aliquot (3 mL) of the FRAP reagent was
mixed with 100 µL of the sample extract in a test tube, vortexed and incubated at 37 ◦C for
30 min in a water bath. The absorbance was measured at 700 nm.

The total phenolic concentration was measured using the Folin–Ciocalteu method as
described previously with some modifications [39]. In brief, 0.5 mL of sample extract was
mixed with 1.8 mL of 0.1 N Folin–Ciocalteu reagent (Sangon Biotech, Shanghai, China).
After incubating for 5 min at room temperature, the reaction was stopped by the addition
of 1.2 mL of an aqueous solution of 7.5% sodium carbonate. Then, the absorbance was
measured at 765 nm. Gallic acid was used as the standard for a calibration curve, and the
results were expressed as gallic acid equivalents.

The determination of total flavonoid concentration was performed as described pre-
viously with slight modifications [40]. Then, 2 mL of the sample extract was placed in a
10-mL volumetric flask and 0.5 mL of 5% NaNO2 was added, following which, 0.5 mL of
10% AlCl3 was added. After 6 min, 4 mL of 4% NaOH was added, and the total volume
was 10 mL, with 70% ethanol. The solution was mixed well again, and the absorbance was
measured at 510 nm. Rutin was used as the standard for a calibration curve, and the results
were expressed as rutin equivalents.

3.5. Analysis of Flavonoids by HPLC and LC–MS

The HPLC and LC–MS analyses of flavonoids were carried out as described before
with some modifications [41]. A tissue sample (0.1 g dry weight) was extracted in 1.5 mL
of 80% methanol in the water bath for 60 min at 70 ◦C, centrifuged for 15 min at 4700× g
and then filtered through a 0.22-µm pore size filter (Millipore, Billerica, MA, USA) prior
to analysis. An HPLC analysis was performed on a Waters 2695 Alliance HPLC system
(Waters, Milford, MA, USA) equipped with a photodiode array detector. A C18 col-
umn (4.6 mm i.d. × 250 mm) (Waters, Milford, MA, USA) was used with a flow rate of
1 mL·min−1 at 25 ◦C. Gradient elution was employed using mobile phases of 0.1% triflu-
oroacetic acid (A) and acetonitrile (B) (Supplementary Table S1). Spectra were measured
at a wavelength of 350 nm, and individual flavonoids were identified by comparing the
retention time and UV spectra. LC–MS analyses were carried out using an LCQ ion trap
mass spectrometer (Finnigan MAT, San Jose, CA, USA) equipped with an ESI source in the
positive ion mode. Helium was used as the buffer gas and nitrogen was used as the dry gas
(12 L·min−1, 350 ◦C). The heated metal capillary temperature was 180 ◦C. The electrospray
voltage was at 4.5 kV. The data were analyzed using a DataAnalysis Compass.

3.6. Assay of Flavonoid Biosynthesis Enzyme Activities

PAL activity was determined as described previously with some modifications [42].
Briefly, fresh samples (0.5 g) were homogenized in 10 mL of pre–cooled extractant solution
(0.01 mol·L−1 boric acid buffer, pH 8.8; containing 5 mmol·L−1 β–mercaptoethanol) and
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centrifuged for 20 min at 4 ◦C at 9600× g. The supernatant was retained and used to
determine the PAL activity. The reaction mixture consisted of 100 µL supernatant, 3.0 mL
of 0.01 mol·L−1 sodium borate (pH 8.8; containing 0.005 mol·L−1 β–mercaptoethanol) and
700 µL of 0.01 mol·L−1 L–phenylalanine. The reaction mixture was incubated at 30 ◦C for
30 min and the reaction was stopped by adding 0.2 mL of 6 mol·L−1 HCl. PAL activity was
spectrophotometrically measured by monitoring the absorbance at 290 nm. Then, C4H and
4CL activity were determined according to the procedures reported previously [43,44].

3.7. RNA Extraction and Quantitative Reverse Transcription PCR (qRT–PCR) Analysis

Total RNA was isolated with the OmniPlant RNA Kit (DNase I) CW2598 (CWBIO,
Beijing, China) as previously described [45]. HiFiScript gDNA Removal cDNA Synthesis
Kit CW2582 (CWBIO, Beijing, China) was used to achieve first-strand cDNA synthesis
from approximately 1 µg of total RNA. qRT–PCR was performed using the iQ SYBR
Green Supermix (Bio–Rad, Hercules, CA, USA) and run on the ABI Prism 7000 system
(Applied Biosystems, Foster City, CA, USA). The sequences of the genes studied in this
article (BrActin, Bra022356; BrPAL, Bra005221; BrC4H, Bra018311; Br4CL, Bra030429; BrCHS,
Bra008792; BrCHI, Bra007142; BrF3H, Bra036828; BrF3’H, Bra009312; BrFLS, Bra009358;
BrDFR, Bra027457; BrANS, Bra013652; BrLDOX, Bra019350; BrUFGT, Bra023954) were
derived from a previously published paper [36] and Brassica database BRAD (http://
brassicadb.cn, accessed on 20 January 2022) [46]. Furthermore, BrActin2 was used as
the reference housekeeping gene. The relative expression level of the target genes was
normalized against the reference housekeeping gene [47]. The primers used in the qRT–PCR
are listed in Supplementary Table S2.

4. Conclusions

Pakchoi is a very popular vegetable, rich in antioxidants with health benefits for
consumers. However, greenhouse cultivation negatively affects the biosynthesis of antiox-
idants in pakchoi by interfering with incident UV-B. Preharvest UV-B supplementation
has proved to be a very effective measure by which to improve the nutritional quality
of pakchoi by promoting the accumulation of antioxidants in greenhouse-grown plants.
Since the effects of UV-B radiation on plants depend on the radiation dose, exposure time,
and plant species, we evaluated the effects of two different doses of UV-B radiation on
pakchoi for four different irradiation periods. Our results showed that the appropriate
UV-B irradiation treatments (4 µmol·m−2·s−1 for 4 h or 2 µmol·m−2·s−1 for 24 h) could
significantly upregulate the expression of flavonoid biosynthesis genes (BrPAL, BrC4H,
Br4CL, BrCHS, BrF3H, BrF3′H, BrFLS, BrDFR, BrANS, and BrLDOX), increase the activi-
ties of the most important enzymes (PAL, C4H and 4CL), promote the accumulation of
flavonoids, and eventually lead to the improvement of antioxidant activity in pakchoi. This
study provides a basis for future comprehensive studies on the metabolic mechanism of
flavonoid biosynthesis, and new insight into an enhancement of the nutritional quality of
greenhouse-grown vegetables.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11060766/s1, Figure S1. Mass spectrometric analysis of
the flavonoids which increased in response to 4 µmol·m−2·s−1 UV-B radiation for 4 h. Figure S2:
The effect of UV-B radiation on the antioxidant concentrations of pakchoi. (A) The glutathione
concentration of 25-day-old seedlings treated with either dosage (2 µmol·m−2·s−1 or 4 µmol·m−2·s−1)
of UV-B radiation at 4 h or 24 h. (B) The ascorbate concentration of 25-day-old seedlings treated
with either dosage (2 µmol·m−2·s−1 or 4 µmol·m−2·s−1) of UV-B radiation at 4 h or 24 h. The plants
without UV-B radiation served as controls. Three biologically independent replicate experiments
were performed; data points represent the mean ± SE of three biological replicates. Asterisks indicate
a significant difference (* p < 0.05; ** p < 0.01) relative to the corresponding control, using Student’s
t-test; Table S1: Gradient elution program for HPLC analysis; Table S2: Primers used in quantitative
reverse transcription PCR (qRT–PCR).

http://brassicadb.cn
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