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Background: Ginsenosides are known as the principal pharmacological active constituents in Panax
medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, espe-
cially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically
synthesize. The present study provides an approach to produce such trace ginsenosides applying
biotransformation through Escherichia coli modified with relevant genes.
Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax noto-
ginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an
ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Proto-
panaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for
biotransformation with recombinant E. coli modified with those UGT genes.
Results: E. coli engineered with GT95syn selectively transfers a glucose moiety to the C20 hydroxyl of
20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified
E. coli glycosylated the C3eOH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing p2GT95synK1,
a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosyla-
tion at C20eOH and C3eOH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth.
Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli
engineered with UTG genes.
� 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ginsenosides are the main pharmacological active dammarane-
type triterpene saponins distributed in the genus Panax, such as
Panax ginseng Meyer, Panax quinquefolius L., and Panax notoginseng
(Burk.) F. H. Chen [1e3]. There are nearly 300 saponins reported
from Panax species [4]. Those saponins can be classified into six
types: protopanaxadiol (PPD), protopanaxatriol (PPT), octillol (OT),
oleanolic acid (OA), and C17 side-chain varied and miscellaneous
types. Some PPD-type saponins with one to three monosaccharides
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are limited in plants and are regarded as rare ginsenosides, such as
ginsenosides Rh1, Rh2, compound (CK), Rg3, and notoginsenosides
ST-4 and Ft1, which showed potent biological activities [5e9].

According to the chemical configuration at C20, the
dammarane-type triterpenoids could also be classified into the
20(S)-type and the 20(R)-type groups. Most of the saponins in
Panax plants are in 20(S) type, yet a few of them exist in both 20(S)
and 20(R) types, such as ginsenosides Rg3, Rh2, Rh1, Rg2, R2, and
notoginsenosides ST-4/Ft1 [4].
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Table 1
Genes used in the study

No. UGT Origin GenBank Accession number
of the original sequence

1 GT71syn1) Medicago sativa AY747627
2 GT73syn1) Medicago sativa AY747626
3 GT74syn1) Vaccaria v. wolf DQ915168
4 GT82syn1) Panax notoginseng GU997661
5 GT95syn1) Panax notoginseng GU997660
6 GTK11) Bacillus subtilis 1.1470 JX982975
7 GTC11) Bacillus subtilis 1.1470 JX982974

UGT, uridine diphosphate glycosyltransferase.
1) A number was given to a certain gene for standing for the gene in this study; e.g.,

GT71 stands for the UGT gene from Medicago sativa.
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Ginsenosides, especially the rare ginsenosides, possess a broad
spectrum of bioactivities [10,11]. For instance, ginsenoside CK was
proved to protect against myocardial infarction [12] and inhibits
angiogenesis [13]. Ginsenoside F2 showed antitumor [14] and an-
tiobesity [15] activities.

Previous research focused on 20(S)-type ginsenosides, and little
attention was paid to 20(R)-type ginsenosides because only a few
20(R)-type ginsenosides were available. In fact, ginsenosides with
different chemical configurations often showed inequable biolog-
ical responses. For example, ginsenoside Rg3 was stereospecific in
stimulating the immune response, and 20(R)-Rg3 showed more
potent adjuvant activity than 20(S)-Rg3 [16]. Conversely, 20(R)-Rg2
showed a stronger effect on improving cortical neuron cell vitality
against oxygen-glucose deprivation/reperfusion (OGD/R)-induced
injury than 20(S)-Rg2 [17].

To obtain more active rare ginsenosides, some rich ginsenosides
have been used as substrates for conversion via various methods
such as heating, mild acid hydrolysis, alkali treatment, as well as
microbial and enzymatic biotransformation [18]. As reported, CK
was transformed from Rb1 with b-glucosidase [19]. Ginsenosides
Rb1, Rb2, and Rc were also selected for use as substrates to prepare
CK through biotransformation with microorganisms such as in-
testinal bacteria [20], fungus [21], and food microorganisms [22]. In
our recent studies, the rare notoginsenoside ST-4 [20 (S) type] and
Ft1 [20 (R) type] through enzymatic transformation and acid hy-
drolyzing strategy, respectively [23,24]. Ginsenoside CK has also
been produced using PPD as substrate through microbial metabolic
engineering by heterologous expressing uridine diphosphate gly-
cosyltransferase (UGT) in yeast [25]. Although aglycone PPD is an
easily available and ideal substrate, there is no report on the
biotransformation of the 20(R)-type ginsenosides.

Here, we report the biotransformation of 20(R)-CK, 20(R)-Rh2,
and 20(R)-F2 from 20(R)-PPD and 20(R)-F1, 20(R)-Rg1 from 20(R)-
PPT through Escherichia coli expressing relevant UGT genes.

2. Materials and methods

2.1. Bacterial strains, vectors, and substrates

E. coli DH5a was utilized to propagate all the plasmids. BL21star
(DE3)was used as a host cell for ginsenosideproduction. ThepETM6,
an ePathBrick vector and a kind gift from Professor Koffas (Rensse-
laer Polytechnic Institute, Troy, NY, USA), was used to create the
expression constructs. The substrates used in this study were pur-
chased fromChengduBiopurifyPhytochemicals Ltd. (Sichuan,China),
and their structures were confirmed by NMR analyses (Fig. S1).

2.2. Gene selection, codon optimization, and synthesis

SevenUGTgenes (Table 1) originating fromdifferent species were
selected according to the functional property of enzymes and
chemical profiles of the species [26,27]. Five (1e5) of them (Table 1)
were codon-optimized and synthesized by Life Technologies
(Shanghai, China): GT71syn, GT73syn, GT74syn, GT82syn, GT95syn. The
other two genes, GTK1 and GTC1, were cloned from Bacillus subtilis
using PlantDirect polymerase chain reaction (PCR) kit (HeroGen
Biotech, Shanghai, China)with correspondingprimers (TableS1). PCR
mixtures contained 2.5 mL of DNA sample, 10 mmol/L of each primer,
and25mLof2�DirectPCRmix in50mL.Amplificationwasperformed
under the following program: 94�C for 5min; 30 cycles of 94�C for 30
s, 59�C for 30 s, and 72�C for 45 s; and a hold at 72�C for 10 min.

2.3. Ginsenoside pathway construction with ePathBrick vector

All plasmids were constructed using standard molecular cloning
protocols. Six basic (Table 2, 2e8) and one double gene (9)
ginsenoside ePathBrick plasmid (Table 2) were constructed ac-
cording to the literature [28]. Plasmid with an additional copy of
GT95syn (p2GT95syn) was also constructed accordingly [29].

2.4. Heterologous expression of the UGT genes in E. coli BL21star
(DE3)

The heterologous expression of individual UGT genes in E. coli
was analyzed with 8% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE). Recombinant E. coli BL21* strains were
grown in 1 � M9 medium at 37�C to an absorbance at 600 nm
(OD600) of 0.6. Then, exogenous proteins were induced to express
with isopropyl-b-D-thioglactopyranoside (IPTG) at a final concen-
tration of 1mM for 3 h at 30�C prior to centrifugation (4,800 g for 15
min). Cells were harvested and resuspended in lysis buffer, and
proteins were extracted through ultrasonication. Finally, the cell
lysis was centrifuged at 13,000 g for 15 min. The supernatant and
cell debris was used for SDS-PAGE analysis as water-soluble and
dissoluble proteins, respectively.

2.5. Biotransformation procedure of recombinant E. coli BL21star
(DE3)

The recombinant E. coli BL21* strain containing individual
construct was used to do the biotransformation according to Zhao
et al. [29]. Briefly, a single colony of E. coli was inoculated in Luria-
Bertani (LB) liquid mediumwith 100 mg/mL ampicillin and cultured
at 37�C, 215 g for 14e16 h. Then, it was subcultured into 1 � M9
medium and grew at 37�C, 215 g in a horizontal shaker until the
OD600 reached 0.6e0.8. Then, 1mM IPTG was added and cultured at
30�C, 215 g for another 3 h. The cell culture was concentrated by
centrifugation and resuspended as a high-density culture with an
OD600 of about 15 in 1 � M9 medium containing 1mM IPTG, 100
mg/L ampicillin, and 0.3 mg substrate and cultured at 30�C, 215 g
for 2 d. To obtain the yield of the products in the medium, the
biotransformation broth was extractedwith n-butyl alcohol at a 1:1
ratio three times, and the n-butyl alcohol layer was collected and
evaporated for UPLC-electrospray ionization(ESI)-MS analysis.
E. coli BL21* with pETM6 vector served as negative control.

2.6. Concentration calculation and UPLC-ESI-MS analysis

The ginsenosides used as substrates were dissolved in dimethyl
sulfoxide as stock solution of 10 mg/mL, and 30 mL of the substrate
solution was added in 1 mL medium as a supersaturated solution
for cell cultures. To calculate the concentration of substrates, the
medium was then centrifuged at 13,000 g for 15 min, and the su-
pernatant was used for UPLC-ESI-MS analysis. The conversion rate
of each substrate with the corresponding enzyme was calculated
according to the following formula:



Table 2
Strains and vectors used in this study

Number Strain or vector Relevant properties Reference

S1 Escherichia coli DH5a F�, 480d lacZDM15, D(lacZYA-argF)U169, recA1, endA1, hsdR17(rk�, mkþ),
phoA,supE44l�, thi�1, gyrA96, relA1

[28]

S2 E. coli BL21 Star (DE3) F�ompT gal dcm rne131 lon hsdSB (rB_mB
_) l(DE3) [28]

1 pETM6 ColE1 ori, AmpR [28]
2 BL21*-pGT71syn BL21*-pETM6 carrying GT71syn This study
3 BL21*-pGT73syn BL21*-pETM6 carrying GT73syn This study
4 BL21*-pGT74syn BL21*-pETM6 carrying GT74syn This study
5 BL21*-pGT82syn BL21*-pETM6 carrying GT82syn This study
6 BL21*-pGT95syn

BL21*-p2GT95syn
BL21*-pETM6 carrying GT95syn

BL21*-pETM6 carrying GT95syn-GT95syn
This study

7 BL21*-pGTK1 BL21*-pETM6 carrying GTK1 This study
8 BL21*-pGTC1 BL21*-pETM6 carrying GTC1 This study
9 BL21*-p2GT95synK1 BL21*-pETM6 carrying GT95syn-GT95syn-GTK1 This study
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Conversion rate ¼ wp/ws � 100% (1)

where wp is the amount of product and ws is the amount of sub-
strate dissolved in the medium.

Biotransformation broth was analyzed with an Agilent 1290 se-
ries UPLC and an Agilent 6410 Triple Quadrupolemass spectrometer
equipped with an ESI source (Agilent Technologies, Waldbronn,
Germany). Chemical identification and concentration assay were
performed with an ACQUITY UPLC BEH C18 column
(50 mm � 2.1 mm i.d., 1.7 mm;Waters, Massachusetts, USA) at 55�C
using a mobile phase of 0.1% formic acid (A) and acetonitrile (B) at a
flow rate of 0.4mL/min. The gradient elution (B)was as follows: 0e1
min (20e25%), 1e4 min (25e34%), 4e6 min (34e52%), 6e6.1 min
(52e95%), and 6.1e8 min (95%). As reported, C-18 column was
practicable to separate the (R) and (S) configuration of ginsenosides
[30]. To do the chirality assay of related compounds, an optimized
condition with Ultimate UHPLC XB-C18 column [100 mm � 2.1 mm
(i.d.),1.8mm;Welch,Massachusetts, USA]was establishedusing0.1%
formic acid (A) and acetonitrile (B) at a flow rate of 0.3 mL/min at
45�C. The gradient elution (B) was as follows: 0e2min (2e8%), 2e5
min (8e18%), 5e9 min (18e28%), 9e14 min (28e60%), 14e19 min
(60e90%), and 19e25 min 90%. Mass spectrometric analysis was
performed in the negative ion multiple reaction monitoring mode
with 3.4-kV capillary voltage for all experiments except for PPD
analysis, which uses the positive ion multiple reaction monitoring
mode. The transitions were set at m/z 425.4 / 217 for PPD, at m/z
475.4 / 391.4 for PPT, at m/z 621.3 / 161.1 for CK and Rh2, at m/z
829.3 / 621.4 for F2, at m/z 637.5 / 475.5 for F1, at m/z 845.5 /

637.4 for Rg1, and at m/z 945.5 / 783.3 for Rd, respectively.

3. Results and discussion

3.1. Glycosylation of the C20 hydroxyl of PPD/PPT- and PPD/PPT-
type ginsenosides

Among the seven UGTs, GT95syn showed the highest activity in
glycosylation of 20(R)-PPD and PPD-type ginsenosides with a free
C20 hydroxyl in E. coli. When 20(R)-PPD was used as substrate,
BL21*-pGT95syn produced 20(R)-CK as monitored by UPLC-ESI-MS
(Fig. 1). 20(R)-CK was accumulated in the biotransformation broth
at 0.49 mg/L. The concentration of 20(R)-CK increased to 0.57 mg/L
when using E. coli containing construct with additional copies of
GT95syn(BL21*-p2GT95syn). Thus, BL21*-p2GT95syn was selected for
further studies. BL21*-p2GT95syn could also convert 20(R)-PPT into
20(R)-F1 and a small amount of 20(R)-Rg1 (Fig. 1) when using
20(R)-PPT as substrate.

Current reports about UGTs mostly focus on the glycosylation of
20(S)-PPD, and some UGTs can only catalyze 20(S)-PPD-type
substrates [25,31,32]. This study demonstrated that GT95syn gly-
cosylated both 20(S)- and 20(R)-PPD. It could also utilize 20(S)-PPT,
the stereoisomer of 20(R)-PPT, as substrate and formed 20(S)-F1.

To investigate whether GT95syn had the site-specific selectivity
to the free hydroxyl, we performed biotransformation with four
different structure ginsenosidesd20(S)-Rg3, 20(S)-Rh2, 20(S)-CK,
and 20(S)-F2das substrates. All four compounds are PPD-type
ginsenosides but with different groups at C20 and C3 positions.
Both 20(S)-Rg3 and 20(S)-Rh2 have a free hydroxyl at C20 site, and
20(S)-Rg3 possesses two glucosyl groups at C3 site whereas 20(S)-
Rh2 has one at C3 site. The C20 sites of both 20(S)-CK and 20(S)-F2
are occupied by a glucosyl group. 20(S)-CK has a free hydroxyl at C3
site and 20(S)-F2 has a glucosyl group at C3 site. When incubation
of BL21*-p2GT95synwith these compounds individually, only 20(S)-
Rg3 and 20(S)-Rh2 were transformed into their corresponding
glycosylated products, 20(S)-Rd and 20(S)-F2 (Fig. 2).

Taken together, these results indicate that GT95syn can specif-
ically glycosylate the 20(S) and 20(R)-stereo configuration PPD- and
PPD-type ginsenosides with a free hydroxyl at C20 site, and the
glycosylation reaction is not affected by the glucosyl groups at C3
site, even though the water-soluble protein of this enzyme was not
obvious in the SDS-PAGE profiles (Fig. S2). When the C20 site is
already linked with glucosyl groups, GT95syn could not glycosylate
the free hydroxyl at the C3 site instead or assemble additional
glucosyl group into the glucosyl groups already linked with the PPD
core structure.

Two other UGTs from Panax ginseng, UGTPg1 and UGT71A27,
were reported to have a similar catalytic property to GT95syn.
UGT71A27, which has 94.74% identity with GT95syn at the amino
acid level (Fig. S3B), could only convert 20(S)-PPD into 20(S)-CK
[32], and UGTPg1 had a specificity to glycosylate the hydroxyl at
C20 site of 20(S)-PPD but not 20(R)-PPD [25]. In addition, UGTPg1
only glycosylated the C20eOH, but not the C6eOH of 20(S)-PPT. As
shown above, GT95syn glycosylated the C20eOH of PPD and both
the C6- and C20eOH of PPT. UGTPg1 had high homology (98.11%
identity) with GT95syn (Fig. S3A). We attempted to construct the
molecular models of UGTPg1 and GT95syn using the SWISS-MODEL
homology modeling software (Swiss Institute of Bioinformatics,
Basel, Switzerland; https://www.swissmodel.expasy.org) to
explain the formation of stereospecific ginsenosides. Yet, the ho-
mology modeling report showed that the templates of the two
UGTs were the same one, namely, triterpene uridine diphosphate
(UDP)-glucosyl transferase UGT71G1 (PDB: 2ACV, Fig. S4). There-
fore, the primary structures of UGTPg1 and GT95syn were compared
with each other to explain the difference between the two en-
zymes. As displayed in Fig. S3A, only eight amino acid residues
were different between them, which were T71, Q110, S281, K324,
S355, K410, D411, N438, and A455 in UGTPg1 corresponding to S71,

https://www.swissmodel.expasy.org


Fig. 1. Typical UPLC-MS chromatograms. Reference substance: (A) ginsenoside CK; (B) ginsenoside F1; (C) ginsenoside Rg1; (D) BL21*-p2GT95syn converts 20(R)-PPD into 20(R)-CK;
(E) BL21*-p2GT95syn converts 20(R)-PPT into 20(R)-Rg1; and (F) 20(R)-F1. CK, compound K; PPD, protopanaxadiol; PPT, protopanaxatriol.
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R110, T281, E324, A355, N410, E411, K438, and L455 in GT95,
respectively. It is possible that these eight amino acids cooperated
together and determined the substrate stereospecific and free hy-
droxyl site-specific properties of these UTGs.

The E. coli engineered with constructs containing the other in-
dividual UGT genesdGT71syn, GT73syn, GT74syn, and GT82synddid
not produce any glycosylated products with either PPD or PPT as
substrates. As shown in typical SDS-PAGE profiles (Fig. S5), all five
genes were expressed at high level as inclusion bodies (Fig. S5B),
whereas only GT71 and GT73 were also expressed as water-soluble
proteins and the water-soluble proteins of GT74, GT82, and GT95
were undetectable with SDS-PAGE (Fig. S5A); even all the se-
quences had been codon-optimized. Despite this, GT95 still
exhibited the highest glycosylation activity toward PPD and PPT in
E. coli. The amino acid alignment of the UGTs used in this study is
listed in Fig. S6. The different amino acid residuesmay contribute to
the divergent expression property and catalytic activity in E. coli
host cells.

3.2. Glycosylation of the C3 hydroxyl of PPD- and PPD-type
ginsenosides

UGTs were reported to exist widely in nature, and two UGTs
(YojK1 and YjiC1) from B. subtilis were identified to have catalytic
activity toward 20(S)-Rh1, which is a PPT-type ginsenoside. The
PPD-type ginsenosides, another primary group of saponins in



Fig. 2. Typical UPLC-MS chromatograms. Reference substance: (A) ginsenoside F2; (B) ginsenoside Rd; (C) BL21*-p2GT95syn converts 20(S)-Rg3 into 20(S)-Rd; and (D) BL21*-
p2GT95syn converts 20(S)-Rh2 into 20(S)-F2.
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P. notoginseng, were not studied in that work [27]. To explore the
catalytic activity toward PPD and PPD-type ginsenosides, two re-
combinant E. coli strains containing either YojK1 (GTK1) or YjiC1
(GTC1) genes were constructed to do the biotransformation.

As monitored by UPLC-ESI-MS, both GTK1 and GTC1 glycosy-
lated the C3eOH of 20(R)-PPD to 20(R)-Rh2 (Fig. 3). However,
neither of them could catalyze the free C3eOH of 20(R)-PPT, which
could be regarded as a C6 hydroxylated product of 20(R)-PPD. It
appeared that the hydroxyl at C6 site of 20(R)-PPT affected either
the catalytic activity or the substrate affinity of GTK1 and GTC1 to
some extent. Moreover, these two UGTs also catalyzed 20(S)-PPD to
form 20(S)-Rh2. The site-specific selectivity of GTK1 and GTC1 to
the free hydroxyl was also studied. Out of the four different gin-
senosides tested, PPD, CK, Rh2, and F2, BL21*-pGTK1, and BL21*-
pGTC1 converted PPD and CK to Rh2 and F2, respectively, but
neither could further utilize Rh2 or F2 as substrates.

As depicted above, these ginsenosides have different groups at
C20 and C3 positions. These results suggested that the two UGTs
could also catalyze PPD- and PPD-type ginsenosides, and only
specifically glycosylate the C3eOH, but not the C20eOH, of the
substrates. UPLC-ESI-MS analysis also showed that GTK1 had
higher conversion efficiency compared with GTC1, as listed in
Table 3. Taking these factors together, we used GTK1 for the next
studies.

3.3. Glycosylation of both C3 and C20 hydroxyl of PPD

Considering that GT95syn could convert PPD to form CK and
GTK1 could catalyze CK to form F2, we constructed p2GT95synK1, an
ePathBrick expression vector harboring two copies of GT95syn and
one copy of GTK1 gene, with the aim of recreating a two-step
glycosylation pathway from 20(R)-PPD to CK then to 20(R)-F2, or
from 20(R)-PPD to 20(R)-Rh2 then to 20(R)-F2 (Fig. 4). As deter-
mined with UPLC-ESI-MS, E. coli BL21* engineered with
p2GT95synK1 (BL21*-p2GT95synK1) yielded 20(R)-F2 when using
20(R)-PPD as substrate (Fig. 3). However, only CK was detected as
the intermediate product but not Rh2. This result demonstrated
that this recreated two-step pathway worked as expected, simul-
taneously glycosylating 20(R)-PPD to CK then to 20(R)-F2 in the
engineered E. coli. Similar to BL21*-p2GT95syn and BL21*-pGTK1,
BL21*-p2GT95synK1 also exhibited the ability to convert 20(S)-
PPD to 20(S)-F2 (Table 3).

To investigate whether GT95syn would change the chirality at C-
20 site of the ginsenosides, the biotransformation products of
GT95syn were analyzed with UPLC-ESI-MS under an optimized
condition separately using 20(S)- and 20(R)-PPD as substrates. As
shown (Fig. 5), GT95syn converted 20(S)-PPD into 20(S)-CK and
20(R)-PPD into 20(R)-CK, respectively, demonstrating that GT95syn

did not change the chirality of C-20 site. Similar results were
observed in GTK1. When 20(R)-PPD was used as a substrate, GTK1
converted 20(R)-PPD to 20(R)-Rh2 (Fig. S7), proving the CTK1 also
did not change the chirality of C-20 of ginsenosides.

At present, most studies on UGTs are concentrated on the
catalyzing capability using purified recombinant proteins with the
much more expensive active UDP-glucose as substrate in vitro
[23,28]. By taking advantage of the host E. coli cells to synthesize
the active UDP-glucose with its own UDP and supplemented
glucose, PPD or PPT could be converted into the corresponding



Fig. 3. Typical UPLC-MS chromatograms. Reference substance: (A) 20(R)-ginsenoside Rh2; (B) 20(S)-ginsenoside F2; (C) BL21*-pGTK1 converts 20(R)-PPD into 20(R)-Rh2; (D)
BL21*-pGTC1 converts 20(R)-PPD into 20(R)-Rh2; and (E) BL21*-p2GT95synK1 converts 20(R)-PPD into 20(R)-F2. PPD, protopanaxadiol; PPT, protopanaxatriol.

Table 3
Production of ginsenosides in four genetically engineered strains

Substrate (concentration in
medium, mg/L)

Products (yield, mg/L and conversion, w/w%)

BL21*-p2GT95 BL21*-pGTK1 BL21*-pGTC1 BL21*-p2GT95K1

20(R)-PPD (3.64 � 0.32) 20(R)-CK (0.57 � 0.04, 15.7%) 20(R)-Rh2 (0.13 � 0.007, 3.6%) 20(R)-Rh2 (0.06 � 0.01, 1.6%) 20(R)-CK (0.44 � 0.04, 12.1%)
20(R)-F2 (0.06 � 0.01, 1.6%)

20(R)-Rh23) 20(R)-F2 (1.08 � 0.21) �1) e �2)

20(R)-Rg34) 20(R)-Rd (0.01) e e d

20(R)-PPT (19.53 � 0.68) 20(R)-F1 (6.48 � 0.03, 33.2%)
20(R)-Rg1 (0.2 � 0.01, 1.0%)

e e e

20(S)-PPD (3.64 � 0.29) 20(S)-CK (0.36 � 0.07, 9.9%) 20(S)-Rh2 (0.77 � 0.02, 21.2%) 20(S)-Rh2 (0.3 � 0.03, 8.2%) 20(S)-CK (0.61 � 0.06, 16.8%)
20(S)-F2 (0.36 � 0.01, 9.9%)

20(S)-Rh25) 20(S)-F2 (1.46 � 0.12) e e d

20(S)-Rg3 (6.71 � 0.11) 20(S)-Rd (0.36 � 0.04, 5.4%) e e d

20(S)-PPT (23.31 � 0.43) 20(S)-F1 (6.34 � 0.18, 27.2%)
20(S)-Rg1 (0.23 � 0.01, 1.0%)

e e d

20(S)-CK (5.47 � 0.20) e 20(S)-F2 (0.62 � 0.12, 11.3%) 20(S)-F2 (0.36 � 0.03, 6.6%) d

CK, compound K; ESI, electrospray ionization; PPD, protopanaxadiol; PPT, protopanaxatriol; UPLC, ultra performance liquid chromatography.
1) e, not produced.
2) d, the experiment was not implemented.
3)e5) These substrates had low solubility in water, which was not detected by (UPLC-ESI-MS).
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glycosylated products with UGT-modified E. coli in vivo, which
provides a much more convenient and economical method to
explore the activity of UGTs.

Biotransformation optimization experiments had been con-
ducted to improve the yield of products, including the concentra-
tion of IPTG, the induction temperature, pH value, and
fermentation time, which showed that biotransformation with
1mM IPTG, pH value ranging from 6.5 to 7.0 at 30 �C was optimal
except that the production of 20(S)-CK from 3 d was slightly better
than that from 2 d (Fig. S8). Taking these factors together, we car-
ried out the biotransformation of other substrates and enzymes
with 1mM IPTG, pH 7.0 at 30 �C for 2 d. The poor water solubility of
these substrates may lead to the relatively low production of gin-
senosides. To improve the solubility of these ginsenosides, several
efforts have been attempted such as adding 0.1e2% Tween-80 in
themedium and by applying cyclodextrin camplexation techniques
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for PPD. Yet, no positive results were obtained (data not shown).
Moreover, excess substrates were added in the medium in order to
promote the biotransformation reaction, and the yield of product
increased with the increasing amount of the substrate fed in the
medium (data not shown). Structural modifications for these sub-
strates to increase the water solubility may be helpful to increase
the production of ginsenosides.

In addition, the specific catalytic activities of UGTs reported here
provided candidate genes to produce specific ginsenosides through
engineering of ginsenoside biosynthetic pathway when combined
with other biosynthetic genes in microorganisms, plants, or other
organisms, as shown in this study (i.e., when GT95syn and GTK1
were combined, a 2-step pathway worked as expected).

4. Conclusion

In general, the present study demonstrated that GT95syn could
glycosylate the C20eOH of PPD, and the C20eOH and C6eOH of
PPT in E. coli host cells. We also proved that GTK1 could glycosylate
the C3eOH of PPD, and the recreated two-step glycosylation
pathway via combination of GT95syn and GTK1 implemented the
biosynthesis of F2 from PPD in E. coli. Both GT95syn and GTK1 could
catalyze 20(S)- and 20(R)-configuration substrates to the corre-
sponding rare 20(S)- and 20(R)-ginsenosides.

These results implied that rare ginsenosides could be produced
through E. coli engineered with recreated exogenous biosynthetic
pathway with ordinary substrates such as PPD and PPT.
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