
����������
�������

Citation: Yuan, T.; Huang, Y.; Zhang,

T.; Wang, X.; Li, Y. Change in Micro-

Morphology and Micro-Mechanical

Properties of Thermally Modified

Moso Bamboo. Polymers 2022, 14, 646.

https://doi.org/10.3390/

polym14030646

Academic Editor: Antonios N.

Papadopoulos

Received: 19 January 2022

Accepted: 6 February 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Change in Micro-Morphology and Micro-Mechanical Properties
of Thermally Modified Moso Bamboo
Tiancheng Yuan 1,2, Yaqian Huang 1,2, Tao Zhang 1,2, Xinzhou Wang 1,2 and Yanjun Li 1,2,*

1 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Nanjing Forestry University, Nanjing 210037, China; ytc_njfu@163.com (T.Y.);
huangyaqian1997@163.com (Y.H.); zt@njfu.edu.cn (T.Z.); xzwang@njfu.edu.cn (X.W.)

2 Bamboo Engineering and Technology Research Center, State Forestry and Grassland Administration,
Nanjing 210037, China

* Correspondence: lalyj@njfu.edu.cn

Abstract: In recent years, saturated steam heat treatment has been considered as an environmentally
friendly and cost-effective modification method compared with traditional heat treatment media.
In this study, bamboo was treated by saturated steam, and the change in chemical composition,
cellulose crystallinity index, micro-morphology, and micromechanical properties were analyzed by
a wet chemistry method, Fourier transform infrared (FTIR), scanning electron microscopy (SEM),
X-ray diffraction (XRD), nanoindentation, and so on. Results illustrated that the parenchyma cell
walls were distorted due to the decomposition of hemicellulose and cellulose in bamboo samples. As
expected, the hemicellulose and cellulose content decreased, whereas the lignin content increased
significantly. In addition, the cellulose crystallinity index and thus the micromechanical properties of
bamboo cell walls increased. For example, the hardness increased from 0.69 GPa to 0.84 GPa owing
to the enhanced crystallinity index and lignin content.

Keywords: bamboo; saturated steam; nanoindentation; micro-mechanical properties

1. Introduction

Due to global climate change, there is an urgent need to find a woody material that
can replace wood and thus reduce the deforestation of native trees and the loss of forest
resources [1,2]. It is necessary to find alternative woody materials which are low cost, have
excellent mechanical properties, and are easy to harvest, versatile, and renewable, to solve
the above problem [3–7]. In recent years, bamboo has gained more attention due to its
abundance, sustainability, excellent physical properties, and ease of harvest. The basic
composition of bamboo is hemicellulose, lignin, cellulose, tannins, waxes, resins, and so on.
When grown in an outdoor setting, bamboo is prone to being attacked by fungi and insects
due to its abundance of nutrients. Several modification methods have been applied to decrease
the hygroscopicity and increase the durability of bamboo and bamboo-based products, such
as chemical modification, acetylation, and thermal modification [8–11]. Thermal modification
is a useful approach for increasing mechanical properties and dimensional stability [12,13].

When the heat energy is transferred, the key factor in the heat treatment process
is the heat treatment medium. Conventional heat treatment media are usually oil, hot
water, hot air, and heating is conducted at a high frequency, which does not provide a mild
heat treatment condition for bamboo and wood. The surface of the bamboo or wood is
heavily cracked after conventional heat treatment due to the loss of moisture. However,
through visits to a number of companies, we have found that saturated steam is now a
common heat treatment medium in factories. Saturated steam heat treatment has distinct
superiority because it is eco-friendly, cost-effective, a simple operation, and does not require
chemical agents among the several modification methods. In addition, the presence of
water in the saturated steam modification process can accelerate the transfer of heat. The
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combination of pressure and steam promotes the decomposition of the hemicellulose in
bamboo and bamboo-based products. Decomposition of hemicellulose begins when the
treatment temperature reaches 120 ◦C, but significant decomposition with positive influence
occurs above 160 ◦C. Unfortunately, some physical properties of bamboo are decreased
due to the disruption of hydrogen bonds when the treatment temperature is above 180 ◦C.
Changes in chemical composition, density, EMC, and mechanical properties of thermally
modified wood have been intensely investigated at the macro scale [14–16]. In addition,
micro-morphology and nanomechanical properties of thermally modified bamboo have
been less intensely analyzed at the nano-scale. The nanoindentation (NI) technique is a
successful approach for measuring the micro-mechanical properties of woody materials
on the nano-scale. However, literature on how saturated steam heat treatment affects the
creep ratio of bamboo at the nano-scale has not been reported yet.

The objective of this paper is to analyze the effect of saturated steam treatment tem-
perature on the micro-morphology and micro-mechanical properties of thermally modified
Moso bamboo cell walls. Aiming toward a deep and comprehensive understanding,
changes in micro-morphology, micro-mechanical properties, crystallinity index, and chemi-
cal composition were investigated via scanning electron microscope (SEM), X-ray diffraction
(XRD), Fourier transform infrared (FTIR), and nanoindentation (NI).

2. Materials and Methods
2.1. Materials

Six-year-old Moso bamboo (Phyllostachys edulis) without obvious defects was col-
lected from Gaoan City, JiangXi Province, China. Then, the bamboo was processed into
1050 mm long bamboo culms. Finally, the bamboo culms were transferred to saturated
steam equipment for thermal modification at different temperatures (160 ◦C, 170 ◦C, 180 ◦C)
and the same duration (15 min). After saturated steam heat treatment, the untreated bam-
boo samples and treated bamboo samples were obtained. A0, A1, A2, and A3 represent
the treated bamboo, treated at 160 ◦C, 170 ◦C, 180 ◦C, respectively. Bamboo culms were
not dried after the treatment. The moisture content of the bamboo after processing was
between 80 and 100%.

2.2. X-ray Diffraction (XRD)

The above-mentioned bamboo fiber powders were sieved through a 0.075 mm (200 mesh)
sieve, in an attempt to obtain bamboo fiber powders with a particle size of less than
0.075 mm. The bamboo fiber bundles were tested with an X-ray diffractometer (XRD)
(Ultima IV, Rigaku Corporation, Japan): target type Cu, radiation Cu-Kα, voltage 40 kV,
and current 25 mA; continuous scanning, scanning step 0.02◦, scanning speed 5◦-min−1.
The scanning range was 2θ = 5◦ − 40◦. The crystallinity degree of cellulose can be calculated
as follows:

CrI = (I002 − Iam)/I002 × 100% (1)

where CrI represents the crystallinity index, Iam represents the minimum intensity of the
amorphous material, and I002 represents the maximum intensity of the diffraction.

2.3. The Measurement of Oven-Dried Density and Thickness Shrinkage

Firstly, bamboo samples with dimensions of 10 mm × 10 mm × thickness (mm) were
prepared from treated bamboo culms. The prepared bamboo blocks were then tested
for to obtain their oven-dried density. Before putting the bamboo blocks into the oven
(103 ◦C), we recorded the initial mass and volume. The change in mass was recorded
every two hours and when the weight remained the same, we considered the moisture
content of the bamboo samples to be 0%. The oven-dried density can be calculated via
the mentioned method. Both ends of the bamboo culms were marked with 6 separate test
points. A micrometer screw was used for measuring the thickness of the bamboo culms
before and after saturated steam heat treatment so that the average thickness shrinkage
could be obtained.
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2.4. Fourier Transform Infrared (FTIR)

Treated bamboo powder of 200 mg was tested with a range of 500–4000 cm−1 on
a VERTEX 80 V FTIR spectrometer (Bruker Corporation, Karlsruhe, Germany). Fourier
transform infrared (FTIR) was applied for analyzing the changes of chemical groups in
bamboo samples after treatment.

2.5. Measurement of Chemical Compositions in Bamboo Specimens

The treated bamboo samples were ground and screened into powders with size
40–80 mesh (0.075 mm–0.178 mm) for chemical composition analysis. The main chemical
composition (cellulose, hemicellulose, and lignin) of the samples was tested according to
NREL’S LAPS [17–20].

2.6. Nanoindentation (NI)

The specimens left for cross-sectional morphological analysis were adopted as test
samples, and the surface of these samples was polished with an ultra-thin slicer equipped
with a diamond knife, in order to obtain areas of fibers with a surface roughness of less
than 10 nm. The cell areas were imaged with an AFM built into a nanoindenter (Ti800,
Hysitron Inc., Irvine, CA, USA), as shown in Figure 1. The test location was chosen at
the secondary wall layer of the cell wall and six cells were randomly selected on each
specimen for testing. The test was performed in a three-stage constant rate loading and
unloading mode (loading/holding/unloading for 5 s) with a maximum load of 400 µN.
The test location was rescanned at the end of the test to obtain indentation images and
30 valid indentation points were selected. The loading–displacement curves of these valid
points were statistically analyzed according to the Oliver and Pharr method [21,22]. The
modulus of elasticity of bamboo cell walls can be calculated as below:

H =
Pmax

A
(2)

where Pmax is the peak load, and A is the projected contact space of the indents at peak load.
The hardness of different treated bamboo specimens can be calculated as follows:

Er =
√

π

2β

S√
A

(3)

where Er is the combined elastic modulus of both the sample and indenter; S is initial
unloading stiffness; and β is a correction factor correlated to indenter geometry (β = 1.034).

Samples were loaded within 5 s, holding time was 5 s, and samples were unloaded
within 5 s. The peak load (400 µN) was applied on all indents. Creep behavior can be
calculated as follows:

CIT(%) =
h2 − h1

h1
× 100 (4)

where h2 and h1 represent the final and first penetration depth of the segment, respectively.

2.7. Statistical Analysis

Tukey’s tests were used to distinguish the differences between the untreated bamboo
samples and treated groups via statistical analysis software SPSS. In addition, 12 replicates
were used to measure means for oven-dried density, thickness shrinkage, modulus of
elasticity, and hardness. Three replicates were used for cellulose crystallinity degree, main
chemical component, and chemical groups in bamboo samples. The images in this article
were drawn using Origin v9.0. Different capital letters represent the significant differences
between heat treatment groups (p < 0.05).



Polymers 2022, 14, 646 4 of 10Polymers 2022, 14, x FOR PEER REVIEW 4 of 11 
 

 

 

Figure 1. (A) Test location of treated bamboo cell walls; (B) AFM images of tested bamboo cell walls 

during the nanoindentation test; (C) nanoindentation load-depth curve of the bamboo sample; (D) 

The nanoindentation depth–time curve of bamboo specimens. 

2.7. Statistical Analysis 

Tukey’s tests were used to distinguish the differences between the untreated bamboo 

samples and treated groups via statistical analysis software SPSS. In addition, 12 replicates 

were used to measure means for oven-dried density, thickness shrinkage, modulus of 

elasticity, and hardness. Three replicates were used for cellulose crystallinity degree, main 

chemical component, and chemical groups in bamboo samples. The images in this article 

were drawn using Origin v9.0. Different capital letters represent the significant differences 

between heat treatment groups (p < 0.05). 

3. Results  

3.1. SEM Analysis 

Figure 2 presents a cross-section of bamboo cell walls at different size scales. For un-

treated bamboo specimens (Figure 2(A1–A3)), the cross-sectional images exhibit intact 

vascular bundles and parenchyma cells. Scanning electron microscopy observation re-

vealed the deformations of bamboo cell walls after thermal modification. The degradation 

of chemical components in bamboo cell walls may result in the deformation of bamboo 

cell walls during the thermal modification process [23]. The change of chemical composi-

tion needs to be further explored. 

Figure 1. (A) Test location of treated bamboo cell walls; (B) AFM images of tested bamboo cell
walls during the nanoindentation test; (C) nanoindentation load-depth curve of the bamboo sample;
(D) The nanoindentation depth–time curve of bamboo specimens.

3. Results
3.1. SEM Analysis

Figure 2 presents a cross-section of bamboo cell walls at different size scales. For
untreated bamboo specimens (Figure 2A(1–3)), the cross-sectional images exhibit intact
vascular bundles and parenchyma cells. Scanning electron microscopy observation revealed
the deformations of bamboo cell walls after thermal modification. The degradation of
chemical components in bamboo cell walls may result in the deformation of bamboo cell
walls during the thermal modification process [23]. The change of chemical composition
needs to be further explored.

3.2. Density and Thickness Shrinkage

Figure 3 presents the density and thickness shrinkage of thermally modified bamboo
samples. As shown in Figure 3A, the oven-dried density of bamboo samples increased
and then decreased with the increment of treatment temperature. For A1, the bamboo
cell walls shrank because of the pressure and the plasticization of materials due to the
saturated steam. After the thermal modification, the bamboo cells compacted so that the
density of the bamboo increased in comparison with the untreated sample. However, the
density of the bamboo showed a downward tendency when the treatment temperature
was enhanced. This can be attributed to the hydrolysis and pyrolysis process during the
thermal modification, and the chemical composition may change significantly at 180 ◦C.
Results from statistical analysis showed that with the increasing treatment temperature, the
shrinkage in the thickness of the bamboo samples increased statistically significantly. This
was due to the decomposition of chemical compositions in bamboo cell walls, resulting in
the decrement of thermally modified bamboo density [24,25].



Polymers 2022, 14, 646 5 of 10Polymers 2022, 14, x FOR PEER REVIEW 5 of 11 
 

 

 

Figure 2. The cross-section images of differently treated bamboo samples: (A) A0; (B) A1; (C) A2; 

(D) A3. 

3.2. Density and Thickness Shrinkage 

Figure 3 presents the density and thickness shrinkage of thermally modified bamboo 

samples. As shown in Figure 3A, the oven-dried density of bamboo samples increased 

and then decreased with the increment of treatment temperature. For A1, the bamboo cell 

walls shrank because of the pressure and the plasticization of materials due to the satu-

rated steam. After the thermal modification, the bamboo cells compacted so that the den-

sity of the bamboo increased in comparison with the untreated sample. However, the den-

sity of the bamboo showed a downward tendency when the treatment temperature was 

enhanced. This can be attributed to the hydrolysis and pyrolysis process during the ther-

mal modification, and the chemical composition may change significantly at 180 °C. Re-

sults from statistical analysis showed that with the increasing treatment temperature, the 

shrinkage in the thickness of the bamboo samples increased statistically significantly. This 

was due to the decomposition of chemical compositions in bamboo cell walls, resulting in 

the decrement of thermally modified bamboo density [24,25]. 

Figure 2. The cross-section images of differently treated bamboo samples: A(1–3): A0; B(1–3): A1;
C(1–3): A2; D(1–3): A3.

Polymers 2022, 14, x FOR PEER REVIEW 6 of 11 
 

 

 

Figure 3. The (A) oven-density and (B) thickness shrinkage of different bamboo specimens. Differ-

ent capital letters represent the significant differences between heat treatment groups (p < 0.05). The 

error bar in the picture represents the standard deviation. 

3.3. Chemical Composition, XRD, and FTIR Analysis 

As shown in Figure 4A, the relative contents of cellulose, hemicellulose, and lignin 

in untreated bamboo specimens were 40.1% (39.90 mg/92.27 mg), 26.6% (24.54 mg/92.27 

mg), and 19.3% (17.80 mg/92.27 mg), respectively. It can be seen from Figure 4A that the 

saturated steam heat treatment has a significant effect on the relative content of cellulose, 

hemicellulose, and lignin in bamboo samples. The relative content of hemicellulose and 

cellulose decreased in comparison with the control. In addition, the hemicellulose and 

cellulose decreased continuously with the increase in treatment temperature. For exam-

ple, the hemicellulose content decreased by 14.3% after treatment with the temperature at 

180 °C. The volatilization of small molecular decomposition products is the main reason 

for the decrement of cellulose content. The hemicellulose is easily decreased because of its 

easy pyrolysis and poor thermal stability. Furthermore, xylose and arabinose are two key 

components in hemicellulose. However, xylose is easy to hydrolyze and pyrolyze due to 

its unstable branched structure. Fortunately, hemicellulose easily absorbs moisture in 

comparison with lignin and cellulose. Therefore, the decomposition of hemicellulose can 

enhance dimensional stability. Different from the decrement of hemicellulose and cellu-

lose content, the lignin content increased as a function of treatment temperature. For ex-

ample, the relative content of lignin increased significantly from 19.3% to 26.9%, which is 

co.19.3% enhancement. It can be attributed to the lignin condensation reaction with the 

by-products formed by the degradation of hemicellulose during the saturated steam heat 

treatment. Moreover, the degradation of cellulose and hemicellulose content is another 

reason for relative lignin content increment [26–30]. 

XRD curves of the different thermal modified bamboo samples are shown in Figure 4B. 

As shown in Figure 4B, the XRD curves of the untreated bamboo and saturated steam 

treated bamboo are basically the same, and showed two main diffraction peaks. The rela-

tive crystallinity index of bamboo specimens can be calculated by Equation (1). As ex-

pected, the relative degree crystallinity index of untreated bamboo (37.5%) is lower than 

that of treated bamboo samples. The crystallinity index of bamboo samples increased as a 

function of treatment temperature (Figure 4C). It can be analyzed by the decrement of the 

amorphous material in hemicellulose and cellulose. Additionally, the several acids 

formed by the thermal modification can diffuse in the para-crystalline part of cellulose, 

resulting in its decomposition, causing the crystallinity index of bamboo samples to in-

crease further. Meanwhile, the acids can catalyze the decomposition of hemicellulose re-

sulting in the pyrolysis of the amorphous part of the bamboo which can increase the cel-

lulose crystallinity degree [31–35].  

Figure 4D presents the FTIR curves of different bamboo samples. It can be seen from 

Figure 4D that the absorbance band is at 3400 cm−1 which corresponds to hydroxyl. The 

Figure 3. The (A) oven-density and (B) thickness shrinkage of different bamboo specimens. Different
capital letters represent the significant differences between heat treatment groups (p < 0.05). The error
bar in the picture represents the standard deviation.



Polymers 2022, 14, 646 6 of 10

3.3. Chemical Composition, XRD, and FTIR Analysis

As shown in Figure 4A, the relative contents of cellulose, hemicellulose, and lignin in
untreated bamboo specimens were 40.1% (39.90 mg/92.27 mg), 26.6% (24.54 mg/92.27 mg),
and 19.3% (17.80 mg/92.27 mg), respectively. It can be seen from Figure 4A that the
saturated steam heat treatment has a significant effect on the relative content of cellulose,
hemicellulose, and lignin in bamboo samples. The relative content of hemicellulose and
cellulose decreased in comparison with the control. In addition, the hemicellulose and
cellulose decreased continuously with the increase in treatment temperature. For example,
the hemicellulose content decreased by 14.3% after treatment with the temperature at
180 ◦C. The volatilization of small molecular decomposition products is the main reason
for the decrement of cellulose content. The hemicellulose is easily decreased because of
its easy pyrolysis and poor thermal stability. Furthermore, xylose and arabinose are two
key components in hemicellulose. However, xylose is easy to hydrolyze and pyrolyze due
to its unstable branched structure. Fortunately, hemicellulose easily absorbs moisture in
comparison with lignin and cellulose. Therefore, the decomposition of hemicellulose can
enhance dimensional stability. Different from the decrement of hemicellulose and cellulose
content, the lignin content increased as a function of treatment temperature. For example,
the relative content of lignin increased significantly from 19.3% to 26.9%, which is co.19.3%
enhancement. It can be attributed to the lignin condensation reaction with the by-products
formed by the degradation of hemicellulose during the saturated steam heat treatment.
Moreover, the degradation of cellulose and hemicellulose content is another reason for
relative lignin content increment [26–30].
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XRD curves of the different thermal modified bamboo samples are shown in Figure 4B.
As shown in Figure 4B, the XRD curves of the untreated bamboo and saturated steam
treated bamboo are basically the same, and showed two main diffraction peaks. The
relative crystallinity index of bamboo specimens can be calculated by Equation (1). As
expected, the relative degree crystallinity index of untreated bamboo (37.5%) is lower than
that of treated bamboo samples. The crystallinity index of bamboo samples increased as
a function of treatment temperature (Figure 4C). It can be analyzed by the decrement of
the amorphous material in hemicellulose and cellulose. Additionally, the several acids
formed by the thermal modification can diffuse in the para-crystalline part of cellulose,
resulting in its decomposition, causing the crystallinity index of bamboo samples to increase
further. Meanwhile, the acids can catalyze the decomposition of hemicellulose resulting
in the pyrolysis of the amorphous part of the bamboo which can increase the cellulose
crystallinity degree [31–35].

Figure 4D presents the FTIR curves of different bamboo samples. It can be seen from
Figure 4D that the absorbance band is at 3400 cm−1 which corresponds to hydroxyl. The
decrement of this absorbance band represents the number of hydroxyl groups oxidized in
the hemicellulose. The aldehyde, ketone, and carboxyl groups are formed by the free hy-
droxyl polymerization. Thus, with the hemicellulose and cellulose decreased, the hydroxyl
group decreased. The absorbance bands at 1730 cm−1 and 1590 cm−1 correspond to the
non-conjugated C=O stretching vibrations and aromatic skeletal vibrations (Figure 4D).
The intensity of this absorbance peak decreased, confirming the decomposition of hemicel-
lulose. Additionally, the intensity of the absorbance peak at 1420 cm−1 changed slightly,
illustrating the loss of C=O groups in aromatic skeletal vibration. According to previous
literature [31–33], the absorbance peak at 1420 cm−1 is to be considered unchanged during
the thermal modification process. The increment of the spectral region between 1328 cm−1

corresponded to a C-O stretching vibration due to the increment of lignin content. The ab-
sorption peak at 1163 cm−1 (C-O-C stretching vibrations in the amorphous part of cellulose)
and 895 cm−1 (C-H in cellulose). The intensity of these two peaks decreased due to the
degradation of amorphous cellulose. The analysis of the change in chemical composition
groups confirmed the decomposition of hemicellulose and cellulose.

3.4. Micro-Mechanical Properties of Bamboo Cell Walls

In Figure 5, the average hardness and elastic modulus of untreated bamboo cell walls
were 0.69 GPa and 15.3 GPa, respectively. Treatment temperature contributed positively to
the micromechanical properties of treated bamboo specimens. For instance, the average
hardness increased significantly from 0.69 GPa to 0.84 GPa after saturated steam heat
treatment. The micromechanical mechanics of bamboo cell walls were usually affected by
cellulose crystallinity degree, chemical composition, moisture content, density, and lignin
content. In this study, the modulus of elasticity showed the same increasing tendency.
It can be attributed to the change of matrix and arrangement of cellulose microfibrils in
the bamboo cell walls [36,37]. Nanoindentation is a useful technology for measuring the
polymers’ hardness and modulus of elasticity. Meanwhile, bamboo specimens exhibit creep
behavior during the process of the load–unload indentation test. As shown in Figure 5C,
the higher the treatment temperature, the smaller the creep ratio of all bamboo specimens.
In other words, thermal modification temperature positively contributed to decreasing
creep ratio. As we know, hemicellulose is an important component of cell wall plasticity.
After saturated steam heat treatment, the relative hemicellulose content decreased, as did
the stiffness and rigidness of bamboo cell walls. Thus, the resistance to creep of treated
bamboo cell walls was enhanced due to the degradation of polymers in cell walls. In
addition, the recondensation of lignin and increased cellulose crystallinity index may also
have contributed to this observation [38–41].
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3.5. Proposed Mechanism

In Figure 5D, we have illustrated the thermal modification mechanism of the changes
in the main composition of bamboo after saturated steam heat treatment. During the
thermal modification process, the acetic acid formed from the acetyl groups accelerated
the decomposition of the hemicellulose in bamboo cell walls. For lignin, the β-o−4 bonds
were cleaved, resulting in the loosening of the intermolecular linkages in lignin. In addi-
tion, the ferulic acid has also been broken, which plays an important role in connecting
hemicellulose and cellulose. Therefore, the intact structure of the cell walls decomposed.
On the macroscale, the distorted parenchymal cell and decreased water-absorbing ability
confirmed this observation. Due to the decrement of hemicellulose in cell walls, the number
of O-H bonds decreased at the same time, and thus the dimensional stability of bamboo
samples increased.

4. Conclusions

In this study, saturated steam heat treatment enhanced the dimensional stability
of bamboo samples due to the decomposition of hemicellulose. Results showed that
parenchyma cells deformed due to the degradation of chemical composition in bamboo
cell walls. The lignin content showed an increasing tendency whereas the hemicellulose
and cellulose decreased with increasing treatment temperature. However, the modulus of
elasticity and hardness of thermally modified bamboo cell walls increased by nearly 21%
and 35%, respectively. Reduced hemicellulose resulted in a decreased creep ratio. Likewise,
the resistance to creep of bamboo cell walls increased due to the increased crystallinity
index. Furthermore, these results can help the reader to deeply understand the change
in micro-morphology and micro-mechanical properties of bamboo after saturated steam
heat treatment.
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