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Melanoma is one of the most aggressive cancer types whose prognosis is determined
by both the tumor cell-intrinsic and -extrinsic features as well as their interactions.
In this study, we performed systematic and unbiased analysis using The Cancer
Genome Atlas (TCGA) melanoma RNA-seq data and identified two gene signatures
that captured the intrinsic and extrinsic features, respectively. Specifically, we selected
genes that best reflected the expression signals from tumor cells and immune infiltrate
cells. Then, we applied an AutoEncoder-based method to decompose the expression
of these genes into a small number of representative nodes. Many of these nodes
were found to be significantly associated with patient prognosis. From them, we
selected two most prognostic nodes and defined a tumor-intrinsic (TI) signature and
a tumor-extrinsic (TE) signature. Pathway analysis confirmed that the TE signature
recapitulated cytotoxic immune cell related pathways while the TI signature reflected
MYC pathway activity. We leveraged these two signatures to investigate six independent
melanoma microarray datasets and found that they were able to predict the prognosis
of patients under standard care. Furthermore, we showed that the TE signature was
also positively associated with patients’ response to immunotherapies, including tumor
vaccine therapy and checkpoint blockade immunotherapy. This study developed a
novel computational framework to capture the tumor-intrinsic and -extrinsic features
and identified robust prognostic and predictive biomarkers in melanoma.

Keywords: biomarker, gene expression profile, SKCM, tumor microenvironment, immunotherapy

INTRODUCTION

Melanoma is one of the most aggressive tumors, with about 160,000 newly diagnosed cases
worldwide each year (Schadendorf et al., 2015; Torre et al., 2015). Although the 5-year overall
survival of metastatic melanoma patients has increased up to over 50% with checkpoint blockade
immunotherapy (CBI) (Larkin et al., 2019), there are still about half of the patients who do not
respond to current immunotherapy whose prognosis remain poor (Khair et al., 2019). Thus,
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identifying comprehensive gene signatures that predict
the responses to immunotherapy and melanoma patients’
overall survival would facilitate the clinical practices of
melanoma patients.

Both the tumor cell-intrinsic and cell-extrinsic factors
influence the progression and regression of cancer. Extrinsically,
immune cell infiltration is a hallmark of melanoma (Li et al.,
2016; Thorsson et al., 2018). Four molecular subtypes of
metastatic melanoma patients based on the gene expression
have been identified and the immune subtype patients had
significantly prolonged overall survival (Jönsson et al., 2010).
This tumor immune microenvironment can be largely affected
by tumor intrinsic features (L. Yang et al., 2019). Several studies
reported the positive association between the number of non-
synonymous somatic mutations and the abundance of tumor-
infiltrating immune cells (Li et al., 2016; Varn et al., 2017).
On the contrary, copy number variation (CNV) presented a
negative association with immune cell infiltration in the tumor
microenvironment across multiple cancer types (Davoli et al.,
2017; Zhao et al., 2019). In addition to the genomic features, the
tumor oncogenic pathways play a profound role in regulating
the immunosuppressive tumor microenvironment and immune
evasion (Hanahan and Weinberg, 2011). MYC, as an important
transcription factor, has been reported to cooperate with Ras
to exclude the infiltration of immune cells (L. Yang et al.,
2019). In line with these findings, it has been shown that
melanoma patients with high somatic mutation burden, low
CNV, or low oncogenic activation are more likely to benefit from
immunotherapy (Snyder et al., 2014; Van Allen et al., 2015; Davoli
et al., 2017; Lauss et al., 2017).

In order to comprehensively characterize these cell-extrinsic
and cell-intrinsic factors in patients, linear regression-based
models have been widely used to identify gene signatures in
patients. Zhao et al. identified 25 immune-associated genes to
depict the abundance of tumor-infiltrating immune cells (Zhao
et al., 2019), and Liao et al. combined the expression of two
immune genes, CCL8 and DEFB1, for prognosis prediction (Liao
et al., 2020). However, the algorithms based on linear regression
ignored the complicated nonlinear relationships and correlations
among genes. Currently, only few methods designed nonlinear
models to capture the tumor-infiltrating immune cells in the
microenvironment but mostly focused on the function of specific
immune cell populations (Yoshihara et al., 2013; Varn et al.,
2016). Thus, in this study, we proposed an Autoencoder-based
computational framework to extract both the tumor-intrinsic and
-extrinsic features from gene expression of melanoma samples.
By applying this framework to the TCGA metastatic melanoma
RNA-seq dataset, we identified a number of interrelated nodes.
Many of these nodes are found to be significantly associated
with patients’ prognosis. We selected two most prognostic nodes
and defined a tumor-intrinsic (TI) signature and a tumor-
extrinsic (TE) signature. Using benchmarked experimental data,
we validated that the TE signature reflected the immune
cell cytotoxicity pathway while the TI signature captured the
MYC oncogenic pathway activity. Both signatures were strong
predictors for metastatic melanoma patients’ overall survival,
even after adjusting for several clinical factors. Moreover, the

TE signature could predict the patients’ response to MAGE-
A3 and anti-CTLA4 immunotherapy. Our results provided a
generic computational framework for tumor-intrinsic and -
extrinsic feature extraction and identified potential biomarkers
for predicting clinical outcome in melanoma.

RESULTS

Overview of the Study
We extracted the tumor-intrinsic and -extrinsic signals from the
gene expression data of metastatic melanoma patients in TCGA
and identified a number of interrelated modules (Figure 1).
Among these modules, we identified two representatives
associated with tumor-extrinsic (TE) and -intrinsic (TI) features,
respectively. We further validated that the TE signature reflected
the immune cell cytotoxicity pathway while the TI signature
indicated the MYC oncogenic pathway activity. Subsequently,
we systematically investigated the function of the extrinsic
and intrinsic features in melanoma patients’ prognosis and
response to immunotherapy, which could be summarized as
(1) illustrating the prognostic value of the TE signature and
TI signature in metastatic and stage III melanoma patients;
(2) developing an integrative model to predict patients’ overall
survival; (3) examining the prediction power of the TE signature
in immunotherapy; and (4) identifying the association between
the TI signature and anticancer drugs.

Association of the TI and TE Signatures
With Molecular and Immunological
Features
In total, 40 nodes were acquired (20 nodes from TE-associated
modules and 20 from TI-associated modules). An additional
feature selection process was performed to select the most
clinically relevant nodes. We first examined the prognostic value
of each node in the training data (metastatic TCGA SKCM)
and chose the TE-signature (H17) and TI-signature (L7) nodes
as the representatives for tumor-extrinsic and -intrinsic features
given their performances in predicting prognosis (Methods,
Figure 2A).

As mentioned in Figure 1, we only chose the genes that were
correlated with lymphocyte abundance as the input for training.
Therefore, we further validated that the TE signature and the TI
signature are associated with lymphocyte abundance (p < 2e-16,
Figure 2B; p = 9e-08, Figure 2C). Additional correlation analyses
with immune-stimulatory and inhibitory genes confirmed that
the TE signature and TI signature were correlated with the
immune microenvironment in the tumor with TE signature
presenting a positive correlation and TI signature presenting
a negative correlation (Figure 2D). Those evidences showed
that the TE signature and TI signature maintained the original
correlation structure with the lymphocyte score.

Next, we aimed to explore the pathways that the TE signature
and TI signature represent to unravel their biological indications.
Based on the pre-ranked GSEA results of the TE signature
(Supplementary Table 2), we hypothesized that the TE signature
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FIGURE 1 | Schematic overview of present study. The TCGA-SKCM metastatic RNA-seq dataset was used to screen out the immune cell and tumor cell related
genes. (A) The RNA-seq dataset was further split into immune cell related genes expression dataset and tumor cell related gene expression dataset for AutoEncoder
decomposition models training. (B) Node TE-signature and TI-signature were chosen as the representatives of the immune cell and tumor cell gene expression
datasets. (C) The trained models were further applied into the independent melanoma gene expression dataset for decomposition. Node TE-signature and
TI-signature were then examined for predicting prognosis and immune therapy response.

was associated with immune cell cytotoxicity-related pathways.
To test this, the pathway activity for each patient was identified
using the TCGA metastatic SKCM patients’ expression data of
the genes in each pathway of the MsigDB C2 pathway database.
The pathway activity of all the pathways in the MsigDB C2
database was then correlated with the TE-signature score for
each patient. Shown in Figure 2E, the TE-signature score was
correlated with the pathway activity of Graft Versus Host Disease
(GVHD), mediated by pro-inflammatory immune components
(Henden and Hill, 2015; Kuba and Raida, 2018). The hypothesis
was further supported by a strong correlation between the TE-
signature score and the cytolytic activity (CYT) index in TCGA
metastatic melanoma patients (Rho = 0.91, Figure 2E). To

gain insights on the immune cell subtype contributing to this
cytolytic activity, the infiltration levels of six major immune
subtypes (NK cell, naive B cell, memory B cell, CD8+ T cell,
CD4+ T cell, and monocytes) were correlated with the TE-
signature score, which showed that the NK cells having the
highest correlation (Figure 2G).

We also explored if the TI-signature score captured similar
immune profiles. We found strong negative correlations
between the TI signature with the CYT index as well as the
infiltration of the six immune cell subtypes (Rho = −0.54,
Figures 2E,G), indicating that the TI signature could rather
associate with the tumor-intrinsic but not -extrinsic pathways
in the TME. Interestingly, the TI-signature score presented a
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FIGURE 2 | Association of TI and TE signatures with molecular and immunological features. (A) Bar plot showing the –log10 (p-value) of each node in the TCGA
metastatic melanoma dataset. (B,C) Boxplot showing the association between TE-signature score and lymphocyte score in (B) and between TI-signature score and
lymphocyte score in (C). P-value was calculated by ANOVA. (D) Heat map showing the correlation between immune stimulatory or immune inhibitory gene
expression and TE-signature or TI-signature scores. (E) Scatterplot showing the correlation between GVHD pathway activity and TE-signature score (left panel) or
showing the correlation between CYT index and TE-signature or TI-signature scores (right panel). (F) Scatterplot showing the correlation between MYC oncogene
pathway activity and TI-signature score. Boxplot indicating the TI-signature scores difference between MYCamp or MYCNamp or MYCLamp and WT. P-values were
calculated by Wilcoxon rank-sum test. (G) Heat map showing the correlation between TE-signature or TI-signature scores and immune cell abundance.
(H) Scatterplot showing the correlation between Mutation burden and TE-signature (left panel) or TI-signature (right panel) scores. (I) Scatterplot showing the
correlation between CNV burden and TE-signature (left panel) or TI-signature (right panel) scores. In all scatterplots, the rho was calculated by Spearman correlation.

consistent positive correlation with multiple MYC oncogene-
related pathways (Figure 2F and Supplementary Table 3).
MYC, MYCL, or MYCN amplification-induced MYC pathway
activation was reported through many studies (Schaub et al.,
2018). Thus, the association between the TI-signature and

MYC/MYCL/MYCN amplification status were examined and the
results indicated that the TI-signature score represented the MYC
pathway in the tumor cells.

Evidences above suggested that the TE signature was
associated with immune cell cytotoxicity while the TI signature
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was associated with MYC pathway activation. These tumor cell-
intrinsic and -extrinsic features were largely affected by tumor
mutation burden and copy number variation burden (Hanahan
and Weinberg, 2011; Chalmers et al., 2017; Taylor et al., 2018).
Thus, we further correlated tumor mutation burden and copy
number variation burden with both signatures and found that
the tumor mutation burden only correlated with the TI-signature
score with Rho = 0.17 while the tumor copy number variation
burden correlated with both the TE-signature and the TI-
signature scores with Rho = −0.57 and Rho = 0.48, respectively
(Figures 2H,I).

TE and TI Signatures Were Predictive of
Prognosis in Metastatic Melanoma
Aforementioned, the TE and TI signatures were chosen based
on their prognostic values for metastatic melanoma patients
from TCGA, where the TE-signature score associated with better
prognosis, yet the TI-signature associated with poor prognosis.
The prognosis values of both signatures were further expanded to
four other independent metastatic melanoma datasets (GSE8401,
GSE65904, GSE19234, and GSE22155). Consistent with the
results in the TCGA dataset, patients with higher TE-signature
scores had significantly better survival outcomes, while the
patients with higher TI-signature scores had worse overall
survival (Figures 3A,B). Importantly, the distinctive prognostic
values of the TE and TI signature were stable across all the
datasets, although each dataset had different patient numbers
and collection criteria. To further investigate whether the TE
signature and TI signature added additional prognostic values
to well-established clinical factors, we applied a multivariate Cox
regression model and found that both signatures maintained as
predictors for patients’ overall survival even after adjusting for
clinical covariates (e.g., tumor pathological stage at diagnosis,
patients age and gender) (Figures 3C,D).

TE Signature Predicted Prognosis in
Stage III Melanoma Patients
Metastatic melanoma includes distant (stage IV) and regional
lymph node metastasis (stage III). After validating that the
TE and TI signatures were predictors for stage IV melanoma
patients as above, we investigated their prognostic values in
stage III melanoma patients. We isolated the stage III SKCM
samples in TCGA based on the metastatic regions. We found
that the distribution of TE-signature and TI-signature scores
are highly different. The stage III samples got the highest TE-
signature score while the distal metastatic samples got the highest
TI-signature score (Figures 4A,B). Then, we calculated the
TE-signature and TI-signature scores of samples in two stage
III datasets—GSE53118 and GSE54467—and examined their
prognostic roles. We found a significant protective association
of the TE-signature score with survival (HR = 0.46, P = 0.002,
Figure 4C) in GSE53118. Adjusting for clinical covariates,
including pathological stage at diagnosis, age, and sex, did not
substantially change the significant prognostic value of the TE
signature we observed (P = 0.02, Figure 4D). We were able to
repeat this finding in the GSE54467 dataset with the TE signature

(HR = 0.38, P = 0.003, Figure 4E, P = 0.003, Figure 4F). On
the contrary, the predictive performance of TI signature was
not significant. Therefore, only the TE signature can be used to
predict the prognosis of patients with stage III melanoma.

TE and TI Signatures Provided Additional
Prognostic Values Than Clinical Factors
Taking into consideration the distinctive associations of the
TE signature and TI signature with patients’ prognosis, we
proposed that the integration of TE signature and TI signature
could separate patients much better in terms of overall survival.
As a result, we examined the predictive performance of TE
signature and TI signature and clinical information on the
survival outcome of metastatic melanoma patients. First, we
separated the samples in the TCGA SKCM datasets into four
groups including TE-signature score-Low and TI-signature
score-High, TI-signature score-Low and TE-signature score-
High, TE-signature score-Low and TI-signature score-Low, and
TE-signature score-High and TI-signature score-High. We found
that the survival probability of the four groups of samples was
significantly different as shown in Figure 5A. As we expected, the
group with high TE-signature and low TI-signature scores had
the best survival outcome, and the group with low TE-signature
and high TI-signature score shaved the worst survival outcome
(P = 2E-5, Figure 5A). This pattern could still be observed after
adjusting for important clinical factors (Figure 5B), highlighting
the potential of developing clinical applicable model.

Driven by this, we further conducted a multivariate
Cox regression analysis on the TCGA cohort to explore
the prediction power differences among TE signature, TI
signature, and clinical factors and subsequently developed a
prognostic prediction model. Shown in Figure 5C, the model
combined all clinical information with TE signature and
TI signature achieving the highest prediction performance,
measured by C-index. We further quantified the model’s
performance on another five independent stage III and stage
IV melanoma datasets. The combined model outperformed
other models in each independent dataset with the highest
C-index = 0.84 being observed in GSE8401 (Figure 5D). As
expected, the combined model could significantly improve
the prediction of patient’s survival outcome (P = 0.05,
Figure 5E).

The TE-Signature Predicted Patients’
Response to Immunotherapy
Various immunotherapy strategies have been developed to save
metastatic melanoma patients’ lives, yet many patients do
not respond to current immunotherapies. Precisely predicting
that the patient cohort may potentially respond to a certain
immunotherapy could maximize the benefit of the therapy
to the responding patients while minimizing the risks of
severe side effects of immunotherapy for the nonresponding
patients. MAGE-A3 anti-gen-specific cancer immunotherapy
is a tumor vaccine therapy that has been tested in multiple
clinical trials (Daud, 2018; Pol et al., 2019). Therefore, we first
investigated whether the TE signature can predict the response
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FIGURE 3 | TE signature and TI signature are prognostic in metastatic melanoma. (A,B) Kaplan–Meier plots depicting the survival distribution for patients with high
(red) and low (blue) TE-signature or TI-signature scores. In Kaplan–Meier plots, p-values were calculated using the log-rank test and vertical hash marks indicate
censored data. (C,D) Forest plot showing hazard ratios and p-values of TE-signature score (C) or TI-signature score (D) and several clinical variables estimated by a
multivariate Cox regression model. In all forest plots, HR was presented as the 95% confidence interval, the dotted lines indicate the null association, and the Wald’s
test was used to determine statistical significance.

of patients with metastatic melanoma to this tumor antigen
vaccine therapy. We calculated the TE-signature score and
compared its difference between the patients who responded
or did not respond to the MAGE-A3 immunotherapy. As
shown in Figure 6A, there was a significant difference in
TE-signature score between two groups of patients (P = 7E-
4, Figure 6A). Patients who benefited from the MAGE-A3
immunotherapy had significantly higher TE-signature score. An
AUC = 0.76 was observed by using the TE-signature score as the
predictor (Figure 6B).

In addition to antigen-specific immunotherapy, CBI has
achieved great success in treating metastatic melanoma patients

(Li et al., 2016; Larkin et al., 2019). We additionally analyzed
the association between the TE signature and response to
anti-CTLA4 therapy. Using the RECIST criteria, patients were
labeled as no response (NR), long survival (LS), and complete
response (CR). Shown in Figure 6C, both CR and LS patients
had significantly higher TE-signature scores compared to no
response patients (P = 0.01, CR vs. NR; P = 0.01, LS vs. NR).
Furthermore, it is not surprising that the TE signature predicted
the overall survival in patients treated with anti-CTLA4 therapy
and the prediction power remained significant after controlling
for clinical factors (P = 0.004, HR = 0.53, Figure 6D; P = 0.009,
Figure 6E).
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FIGURE 4 | TE signature predicts prognosis in stage III melanoma patients. (A,B). Boxplots indicating the difference of TE-signature or TI-signature scores across
different metastatic regions. P-values were calculated by the Wilcoxon rank-sum test. (C) Kaplan–Meier plots depicting the survival distribution for patients with high
(red) and low (blue) TE-signature or TI-signature scores. (D) Forest plot showing hazard ratios and p-values of TE-signature scores and several clinical variables
estimated by a multivariate Cox regression model. (E) Kaplan–Meier plots depicting the survival distribution for patients with high (red) and low (blue) TE-signature or
TI-signature scores. (F) Forest plot showing hazard ratios and p-values of TI-signature score and several clinical variables estimated by a multivariate Cox regression
model. In Kaplan–Meier plots, p-values were calculated using the log-rank test and vertical hash marks indicate censored data. In all forest plots, HR was presented
as the 95% confidence interval, the dotted lines indicate the null association, and the Wald’s test was used to determine statistical significance.

The TI Signature Was Associated With
Cancer Cell Line Sensitivity to Inhibitors
of the MYC Pathway
Given that the TI signature reflected poor clinical outcomes
of metastatic melanoma patients (Figures 3, 6), we sought for
potential drugs that could inhibit the function of the genes
in the TI signature which was annotated as the MYC-related
pathway (Figure 2). Using the GDSC database, we examined
the association between anticancer drugs and the TI-signature
score (Supplementary Table 4). The top three highly correlated
anticancer drugs are presented in Figure 6F. Interestingly, all
those drugs are reported to be kinase inhibitors and have a certain
degree of inhibition on the signaling pathway activated by MYC.
Erlotinib and Midostaurin were both FDA-approved tyrosine
kinase inhibitors and found to inhibit MYC activity (Suenaga
et al., 2013; Basit et al., 2018; Allen-Petersen and Sears, 2019).
GSK650394 is a novel serum and glucocorticoid-inducible kinase
(SGK) inhibitor and has been reported in treating melanoma
cancer in some preclinical studies (Scortegagna et al., 2015).

DISCUSSION

In this study, we have built a deep-learning-based computational
framework to extract tumor-intrinsic features and extrinsic
features from the melanoma gene expression data and define
a tumor-intrinsic (TI) signature and a tumor-extrinsic (TE)
signature. Then, we systematically investigated how TI and TE

signatures affect melanoma patients’ prognosis and response
to different therapies. To interpret the two signatures, we
determined the relative contribution of each gene (bottom node)
to them (see Methods). Following that, pathway analyses were
performed to identify the underlying pathways. Our results
first indicated that the TE signature captured the cytotoxic
infiltrating immune cell abundance while the TI signature
captured MYC oncogenic pathway activity (Figures 2B–F). Next,
we examined the prognostic role of the TE signature and
TI signature in metastatic melanoma patients and stage III
melanoma patients, respectively (Figures 2–4). Patients with high
TE-signature scores would present a better survival outcome
in metastatic and stage III melanoma while patients with high
TI-signature scores would present a worse survival outcome
in metastatic melanoma (Figures 3, 4). Driven by this, we
further constructed different prediction models to quantify
the prognostic power of the TE signature, TI signature, and
clinical factors. As a result, we found the integrative model
using the TE signature; the TI signature with a clinical factor
achieved a significantly better performance compared with
clinical factor-only model (Figure 5). In addition, we showed
that the TE signature was predictive of immunotherapy while
the TI signature was associated with tyrosine and Ser/Thr kinase
inhibitor sensitivity (Figure 6).

While many computational methods have been published
to capture the immune cell-associated features in the tumor
microenvironment, most of them utilized the linear regression-
formulized model to characterize the relationship of immune
cell-related genes. Given the complicated gene–gene interactions

Frontiers in Genetics | www.frontiersin.org 7 May 2021 | Volume 12 | Article 665065

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665065 May 27, 2021 Time: 11:48 # 8

Zhao et al. Biomarkers Identification in Metastatic Melanoma

FIGURE 5 | Integration of TE signature and TI signature outperforms prognosis prediction than clinical factors. (A) Kaplan–Meier plots depicting the survival
distribution for patients in each group. In Kaplan–Meier plots, p-values were calculated using the log-rank test, and vertical hash marks indicate censored data.
(B) Forest plot showing hazard ratios and p-values of TE-signature score and several clinical variables estimated by a multivariate Cox regression model. In all forest
plots, HR was presented as the 95% confidence interval, the dotted lines indicate the null association, and the Wald’s test was used to determine statistical
significance. (C) Barplot showing the C-index distribution of using Clinical factors, TI-signature scores, TE-signature scores, combination of TI-signature and
TE-signature scores, and combination of all features in predicting prognosis in TCGA data. (D) Heat map showing the C-index distribution of features listed in (C)
across different datasets. (E) Boxplot showing the C-index difference between combined prognostic model and clinical factor-derived prognostic model. P-value
was calculated by the Wilcoxon rank-sum test.

in the tumors, our method utilized deep learning, integrating
both the linear and nonlinear associations between genes,
to capture the function of the tumor-extrinsic features
(Figures 1, 2). By choosing IHC-measured lymphocyte score

positively associated genes, we decomposed the immune
microenvironment into 20 nodes which covered different states
or types of immune cells. In our analyses, we only chose the
most prognostic node, defined as TE signature, to perform the
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FIGURE 6 | The TE and TI signatures are predictive of drug response. (A) Dot plot indicating the TE-signature score difference between responder and
non-responder. P-value was calculated by Wilcoxon rank-sum test. (B) Receiver operating characteristic (ROC) curves for MAGE-A3 therapy response prediction in
melanoma patients using the TE-signature score as the predictor. (C) Boxplot depicting the TE-signature score difference between different response groups treated
with Anti-CTLA4 therapy. P-value was calculated by Wilcoxon rank-sum test. (D) Kaplan–Meier plots depicting the survival distribution for patients with high (red) and
low (blue) TE-signature scores. In Kaplan–Meier plots, p-values were calculated using the log-rank test and vertical hash marks indicate censored data. (E) Forest
plot showing hazard ratios and p-values of TE-signature scores and several clinical variables estimated by a multivariate Cox regression model. In all forest plots, HR
was presented as the 95% confidence interval, the dotted lines indicate the null association, and the Wald’s test was used to determine statistical significance.
(F) Scatterplot showing the correlation between TI-signature score and Erlotinib, GSK650394, or Midostaurin drug sensitivity. In all scatterplots, the rho was
calculated by spearman correlation.

downstream analyses due to its clinical potential (Figure 2).
However, the more comprehensive analysis of characterizing
other nodes will be interesting in the future.

We performed a similar analysis to capture the tumor-
intrinsic feature by using IHC-measured lymphocyte score
negatively associated genes. It is interesting to observe that
the TI-signature score, which reflects MYC oncogene pathway
activity, is strongly associated with prognosis. MYC, known
as an important oncogenic regulator, has a high fraction of
amplification events in melanoma samples, contributing to the
overactivation of the MYC oncogenic pathway (Schaub et al.,
2018; Schaafsma et al., 2020). As a result, high MYC activity
induces melanoma tumor growth, further leading to metastasis.
More importantly, MYC also regulates the immune cell function
in the tumor microenvironment. MYC could either directly
or cooperate with other oncogenes to regulate the expression
of PD-L1 to inhibit the function of immune cells or remodel
the tumor microenvironment by recruiting macrophages that
promote angiogenesis and reduce T cell infiltration (Casey
et al., 2018). It is not surprising that MYC activity is negatively
associated with the infiltration level of different immune cells
(Figure 2G). Our study highlighted the significance of MYC
in melanoma progression from both tumor-intrinsic and -
extrinsic perspectives.

The prognostic value of immune cells in metastatic melanoma
has been reported many times, and several-immune-cell-based
prognostic biomarkers have been proposed. In this work, we
selected genes that best reflected the expression of tumor
cells and infiltrating immune cells, respectively. These genes
were input into autoencoders to extract tumor-intrinsic and
-extrinsic features in the form of bottleneck nodes. From
them, we selected two representative nodes and defined a TE
signature and a TI signature for prognostic prediction. We
first validated the prognostic role of TE signature. Surprisingly,
our results indicated that the integration of the TE signature
and TI signature could further stratify patients into different
risk groups. Patients with high TI-signature and low TE-
signature scores had the best survival outcome while patients
with high TI-signature and low TE-signature scores had the worst
survival outcome. The combination prognostic model, which
integrates the TE signature, TI signature, and clinical factors,
significantly improved the prediction power of clinical factors
derived model (Figure 5). These results validated the capability
of Autoencoders in denoising and reducing dimensionality for
defining prognostic signatures.

Our current model utilized the median score as the cutoff
for predicting prognosis because the gene expression profiles
from the preclinical cohorts have different scales. To facilitate
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the clinical application in the future, we could rescale the
expression profiles from those preclinical cohorts to build a
cohort-independent threshold for clinical practice. One thing
to be noted is that the model prediction power was limited by
the clinical information that was provided in the public data.
In addition to patients’ stage, gender, and Breslow Depth, the
surgery information and other treatment information also impact
the prognosis in melanoma patients (Bhatia et al., 2015). In the
future, with more patient information available, we would like
to integrate different clinical information to further improve the
prediction accuracy of the combined model.

Targeted immunotherapies have been increasingly used in
clinical practice of treating metastatic melanoma patients.
MAGE-A3 therapy, a tumor vaccine-based immunotherapy, is
still undergoing different clinical trials (Pol et al., 2019). However,
several previous clinical trials revealed that MAGE-A3 did not
reach the endpoint criteria (Kruit et al., 2005; Dreno et al., 2018).
Our results indicated that the TE signature was predictive of
MAGE-A3 clinical benefits, which could be further used to guide
the design of future clinical trials (Figures 6A,B). In addition
to tumor vaccine therapy, immune checkpoint blockade therapy
has revolutionarily changed immunotherapy and significantly
improved overall survival (Larkin et al., 2019). In our results,
TE signature could predict anti-CTLA4 response (Figure 6C).
Patients with high TE-signature scores were more likely to be
responders and had a better survival outcome (Figure 6D).
This result raised the potential of using the TE-signature
score as a biomarker for anti-CTLA4 response prediction.
In our current analysis, only regular clinical information,
including patients’ age, gender, and stage, was provided.
The efficacy of immunotherapy was also affected by other
treatment strategies. For example, chemotherapy administered
after immunotherapy might improve the immunotherapy
response (Fridlender et al., 2010; Peng et al., 2015). In
the future, with such treatment information being released,
the prediction accuracy of using the TE signature could be
further enhanced.

In the previous section, we mentioned the importance of MYC
from both tumor-extrinsic and -intrinsic sides. Inhibiting MYC
in melanoma will bring a reduction in tumor proliferation and
potentially remodel the tumor microenvironment into immune
hot, leading to the increased sensitivity of immunotherapy.
Using the GDSC database, we identified that Erlotinib and
Midostaurin have inhibitory roles for MYC pathway activity
(Figure 6F). Erlotinib and Midostaurin were both FDA-approved
tyrosine kinase inhibitors and found to repress MYC activity
(Suenaga et al., 2013; Basit et al., 2018; Allen-Petersen and Sears,
2019). Interestingly, several clinical trials are ongoing for testing
the efficacy of Erlotinib combined with immune-checkpoint
blockade therapy (Liang et al., 2018). Our analysis highlighted the
potential clinical usage of MYC inhibitors in treating metastatic
melanoma patients (Singleton et al., 2017).

In summary, we developed a computational framework to
capture the tumor-extrinsic and -intrinsic features in melanoma
patients. The two TE- and TI-signature scores we calculated
as the representatives of tumor cell feature and immune cell
feature are powerful in predicting patient prognosis and response

to different treatments. The computational framework could be
readily extended to other cancer types.

MATERIALS AND METHODS

Dataset Collection
The TCGA melanoma RNA-seq data were downloaded from
Firehose1 (Supplementary Table 1), containing gene expression
profiles of 358 metastatic patients. Gene expression values were
calculated and normalized by using the RNA-Seq by Expectation-
Maximization (RSEM) Algorithm (Li and Dewey, 2011). The
clinical information of TCGA melanoma samples was also
retrieved from Firehose (see text footnote 1). The information
included the patients’ age, gender, pathological stage at diagnosis,
location of the metastatic tumor, Breslow thickness, lymph node
stage, and metastatic stage.

Six additional microarray data sets were used for metastatic
melanoma and stage III melanoma prognosis analysis. These
data were downloaded from the Gene Expression Omnibus
(GEO) database with accession numbers GSE65904 (n = 214),
GSE54467 (n = 79), GSE53118 (n = 79), GSE22155 (n = 54),
GSE8401 (n = 47), and GSE19234 (n = 44) (Xu et al., 2008;
Bogunovic et al., 2009; Jönsson et al., 2010; Mann et al., 2013;
Cirenajwis et al., 2015; Jayawardana et al., 2015). GSE65904 and
GSE19234 contained disease-specific survival time (DSS) and
survival time information after recurrence, respectively, while
TCGA-SKCM, GSE54467, GSE53118, GSE22155, and GSE8401
data sets contained overall survival time (OS) information.
GSE53118 and GSE54467 provided the survival information for
patients with stage III melanoma.

Two datasets were used for immunotherapy response analysis.
The treatment information of MAGE-A3 immunotherapy is
included in the GSE35640 dataset. It provided the gene
expression profiles of a total of 56 patients, among which 34 had
no responses and 22 had clinical benefits (Ulloa-Montoya et al.,
2013). The anti-CTLA4 immune checkpoint blockade therapy
dataset was downloaded from the Database of Genotypes and
Phenotypes (dbGaP) under accession number phs000452 (Van
Allen et al., 2015). Raw read files were aligned to the GRCh37
human genome assembly using the TopHat v2.1.0 (Kim et al.,
2013), and the gene expression was calculated using the Cufflinks
v2.2.1 (Trapnell et al., 2012). In total, 42 treatment-naive tumor
sample patients were sequenced.

The Genomics of Drug Sensitivity in Cancer (GDSC) dataset
was downloaded from the GDSC database2 for anticancer drug
sensitivity testing (W. Yang et al., 2013). It provided a baseline
gene expression for a total of 987 cell lines, including with 38
melanoma cell lines, with the corresponding sensitivity to 251
drugs. Drug sensitivity was represented as Area Under the Curve
for the fitted model (AUC), with lower values indicating higher
sensitivity to a drug (i.e., lower IC50 values).

The genomic characteristics of TCGA melanoma samples
were calculated based on the MAF file and DNA sequencing

1http://gdac.broadinstitute.org/
2https://www.cancerrxgene.org
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map downloaded from Firehose (see text footnote 1). Specifically,
tumor mutation burden (TMB) was represented as the total
number of non-silent somatic mutations in a given TCGA
melanoma sample. The copy number variation burden (CNV
burden) was calculated using the following equation:

CNV − burden =

∑m
j=1 |log2

(
cj
2

)
∗ fj|

N
(1)

where Cj and fj represent the copy number and the size of
the DNA fragment j in the sample; m is the total number of
abnormal fragments in the genome, and N is the size of the
human genome. For a normal diploid genome, the CNV burden
is zero. A higher CNV burden indicates a higher level of copy
number variation of the genome.

Gene Expression Decomposition Based
on Autoencoder
We applied an autoencoder model to decompose gene expression
data for metastatic melanoma samples using the RNA-seq
from TCGA. An autoencoder is a type of artificial neural
network consisting of two components: an encoder that gradually
reduces the input gene expression data into a small number
of representative nodes and a decoder that reconstructs the
original input (Chen et al., 2018; Way and Greene, 2018;
Supplementary Figure 1). The configuration of the Autoencoder
is shown in Supplementary Figure 1; we used two layers
for Encoder and Decoder with each layer containing 400 and
100 nodes, respectively. By minimizing the deviation between
the reconstructured and the input data, Autoencoder achieves
dimensionality reduction using the 20 representative nodes while
filtering out noises (Supplementary Figure 1). As shown in
Figure 1, the main steps are elaborated below.

First, TCGA metastatic melanoma RNA-seq data were log
transformed and converted into z-scores by subtracting the mean
and then dividing the standard deviations of genes across all
samples. In order to capture both tumor cell-intrinsic and -
extrinsic signals, we selected the top 1000 genes that had the
highest positive correlations with lymphocyte infiltration scores
(G
′

H) and the top 1000 genes that had the highest negative
correlations (G

′

L). Lymphocyte infiltration scores were calculated
based on IHC staining results from TCGA (Cancer Genome Atlas
Network, 2015).

Second, for both of the two gene expression sub-matrices
(G
′

H and G
′

L), an Autoencoder model was used to identify
20 informative “hidden” nodes that best capture the whole
expression sub-matrices. Autoencoder could integrate both
linear and nonlinear structures in the gene expression data
and therefore more correctly capture complex gene–gene
interactions. Specifically, the configuration of the AutoEncoder
model is shown in Supplementary Figure 1. There were 1000
nodes of the input layer, corresponding to the gene expression
after screening, and then compressed to 400, 100, and 20 nodes
in the following layers, and then gradually reconstructed. Each
layer of the model is fully connected, and each hidden layer is

followed by a rectified linear unit (ReLU) activation function,
which is defined as follows.

ReLU (x) =

{
x if x ≥ 0
0 if x < 0

(2)

In order to train the model, we chose the regularized square loss
as the objective function, as shown in equation 5.

L =
n∑

i=1

ε (i)+ ||w||2 =
1
2

n∑
i=1

||x− Dθ(Eθ(x))||2 + λ||w||2,

(3)
where n denotes the number of samples and Eθ and Dθ represent
the encode and decode functions, respectively. w represents
the learnable weight of the AutoEncoder model. λ is the
hyperparameter controlling the proportion of the regularization
term. We chose a stochastic gradient descent (SGD) optimization
method to train the model and to obtain the optimal weight w.
The compressed features FH and FL corresponding to G

′

H and G
′

L
can be obtained by the two well-trained AutoEncoder models, as
shown in equations 6 and 7.

FH = Eφ1(G
′

H) (4)

FL = Eφ2(G
′

L) (5)

where FH and FL are two matrices with 20 columns; each
row represents a sample, and each column represents a feature
compressed by the AutoEncoder model. The performance of the
autoencoder model was measured by the R square between the
fitted gene expression and the real gene expression. We also tried
different numbers of nodes in the bottleneck layer and found the
comparable performance.

Finally, from the compressed features FH and FL, we selected
a feature that best correlated with patient prognosis in TCGA
metastatic melanoma samples. Since the two selected features,
respectively, capture tumor cell-intrinsic and -extrinsic features,
we denoted them as tumor-intrinsic (TI) and tumor-extrinsic
(TE) signatures.

Calculation of TE- and TI-Signature
Scores in Tumor Samples
For a given melanoma gene expression dataset, we first utilized
a Z-score transformation to convert the expression profile to
a relative expression profile. We then separated the relative
expression profile into two profiles, containing G

′

H and G
′

L genes,
respectively. For each patient in the relative expression profile,
we applied the Autoencoder models trained in the TCGA-SKCM
metastatic dataset and acquired the corresponding TE- and TI-
signature scores according to equations 4 and 5.

Survival Analysis
Cox proportional hazard models were used to investigate the
association between signature scores (calculated based on the
TE signature or TI) and patient prognosis. Patient samples were
dichotomized into two groups by using the median score as
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the cutoff value. Univariate Cox regression models were used to
determine the association between the dichotomized scores and
patient survival. To compare survival between the two groups,
Kaplan–Meier plots were used for visualization. The difference
between the survival times of different groups was compared by
a log-rank test. The multivariate Cox regression model was used
to estimate the association between signature scores and patient
survival while considering important clinical variables such as
age, sex, Breslow score, and tumor stages.

The Kaplan–Meier estimator was implemented in the survival
R package. Specifically, the “coxph” function was used to
construct Cox proportional hazard models. The “survfit”
function was used to generate Kaplan–Meier survival curves.
The “survdiff” function was used to statistically compare the
difference between survival curves.

Gene Weight Calculation
After model training, we obtained the weights of each layer in TE
and TI signature-associated Autoencoder models. The genes with
more contributions to the signature tend to have higher weights.
The weighted sum of all the possible combinations between each
gene and the corresponding signature node (the TE signature-
17th node in the FH and the TI signature-7th node in FL) can be
viewed as the contribution score. The score is defined as follows.

GWH (i) =
∑

j = 1 : 400
k = 1 : 100

w(1)
i,j · w

(2)
jk · w

(3)
k,17 (6)

GWL (i) =
∑

j = 1 : 400
k = 1 : 100

w(1)
i,j · w

(2)
jk · w

(3)
k,7 (7)

where w(c)
a,b represents the weight between the bth node of the cth

hidden layer and the ath node of the prior layer. So GWH (i) and
GWL (i) represent the importance score of the ith gene in the TE
and TI signature, respectively.

Pathway Analysis
Based on the weight profile that each gene contributes to the
node, we performed pre-rank Gene Set Enrichment Analysis

using the fgsea R package (Korotkevich et al., 2019). For
calculating the specific pathway activity in melanoma patients,
Gene Set Variation Analysis was used for integrating the
expression profile with the MsigDB C2 pathway database
(Subramanian et al., 2005) through GSVA R package
(Hänzelmann et al., 2013).
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