Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{(*E*)-2-Bromo-4-chloro-6-[3-(dimethylammonio)propyliminomethyl]phenolato}dichloridozinc(II)

Li-Juan Ye^a* and Zhonglu You^b

^aDepartment of Chemistry and Life Sciences, Xiangnan University, Chenzhou 423000, People's Republic of China, and ^bDepartment of Chemistry, Liaoning Teachers' University, Dalian 116029, People's Republic of China Correspondence e-mail: lijuan_ye@163.com

Received 27 May 2008; accepted 29 May 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.049; wR factor = 0.127; data-to-parameter ratio = 19.5.

The title compound, $[ZnCl_2(C_{12}H_{16}BrClN_2O)]$, is a mononuclear zinc(II) complex. The Zn^{II} atom is four-coordinate in a tetrahedral geometry, binding to the phenolate O and imine N atoms of the zwitterionic Schiff base ligand and to two Clions. In the crystal structure, molecules are linked through intermolecular N-H···Cl hydrogen bonds to form chains running along the *a* axis.

Related literature

For related structures, see: Ali et al. (2008); Wang (2007); You (2005). For our recent investigations of metal complex systems, see: Ye & You (2007*a*,*b*,*c*).

Experimental

Crystal data

[ZnCl₂(C₁₂H₁₆BrClN₂O)] $M_r = 455.90$ Monoclinic, $P2_1/c$ a = 7.522 (4) Å b = 26.808 (15) Åc = 8.354 (4) Å $\beta = 90.921 \ (9)^{\circ}$

V = 1684.3 (16) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 4.30 \text{ mm}^{-1}$ T = 298 (2) K $0.32 \times 0.30 \times 0.30 \text{ mm}$ $R_{\rm int} = 0.037$

9470 measured reflections

3633 independent reflections 2283 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.261, \ T_{\max} = 0.275$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.126$	independent and constrained
S = 1.04	refinement
3633 reflections	$\Delta \rho_{\rm max} = 0.58 \text{ e} \text{ Å}^{-3}$
186 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	1.931 (4)	Zn1-Cl2	2.2303 (19)
Zn1-N1	1.999 (4)	Zn1-Cl3	2.2489 (19)
D1 - Zn1 - N1	95.48 (17)	O1-Zn1-Cl3	110.85 (13)
D1 - Zn1 - Cl2	112.60 (13)	N1-Zn1-Cl3	114.71 (13)
N1 - Zn1 - Cl2	112.04 (14)	Cl2-Zn1-Cl3	110.45 (8)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2\cdots Cl3^i$	0.91 (5)	2.37 (3)	3.190 (5)	152 (5)

Symmetry code: (i) x + 1, y, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Financial support from the Hunan Provincial Natural Sciences Foundation of China (grant No. 03JJY3019) and the Hunan Provincial Educational Ministry Foundation of China (grant No. 05 C627) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2511).

References

Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, S.-X. (2007). Acta Cryst. E63, m706-m707.

Ye, L.-J. & You, Z. (2007a). Acta Cryst. E63, m523-m525.

Ye, L.-J. & You, Z. (2007b). Acta Cryst. E63, m1837.

Ye, L.-J. & You, Z. (2007c). Acta Cryst. E63, m3137.

You, Z.-L. (2005). Acta Cryst. E61, m2416-m2418.

supplementary materials

Acta Cryst. (2008). E64, m869 [doi:10.1107/S1600536808016255]

$\{(E) - 2 - Bromo - 4 - chloro - 6 - [3 - (dimethylammonio) propyliminomethyl] phenolato \} dichloridozinc (II)$

L.-J. Ye and Z. You

Comment

Recently, we have reported thiocyanate coordinated zinc(II) (Ye & You, 2007*a*), and copper(II) complexes (Ye & You, 2007*b*), and a chlorido-bridged polynuclear copper(II) complex (Ye & You, 2007*c*). As an extension of the work on the crystal structures of such complexes, we report herein the crystal structure of the title compound, (I), Fig. 1.

Compound (I) is a mononuclear zinc(II) complex. The Zn^{II} atom is four-coordinate in a tetrahedral geometry, binding to the phenolate O and imine N atoms of the zwitterionic Schiff base ligand and two Cl⁻ ions. The coordinate bond values (Table 1) are comparable to those reported in other similar zinc(II) complexes (Wang, 2007; Ali *et al.*, 2008; You, 2005).

In the crystal structure, molecules are linked through intermolecular N–H···Cl hydrogen bonds, Table 2, to form chains running along the *a* axis (Fig. 2).

Experimental

3-Bromo-5-chlorosalicylaldehyde (0.1 mmol, 23.5 mg), *N*,*N*-dimethylpropane-1,3-diamine (0.1 mmol, 10.2 mg), and zinc(II) chloride (0.1 mmol, 13.6 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 30 min to give a clear colorless solution. Crystals of the compound were formed by slow evaporation of the solvent over a week at room temperature.

Refinement

Atom H2 on the amine N2 atom was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with $U_{iso}(H)$ fixed at 0.08 Å². The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. Molecular packing of (I). Intermolecular hydrogen bonds are shown as dashed lines.

{(E)-2-Bromo-4-chloro-6-[3- (dimethylammonio)propyliminomethyl]phenolato}dichloridozinc(II)

Crystal data	
[ZnCl ₂ (C ₁₂ H ₁₆ BrClN ₂ O)]	$F_{000} = 904$
$M_r = 455.90$	$D_{\rm x} = 1.798 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1372 reflections
a = 7.522 (4) Å	$\theta = 2.3 - 25.3^{\circ}$
b = 26.808 (15) Å	$\mu = 4.30 \text{ mm}^{-1}$
c = 8.354 (4) Å	T = 298 (2) K
$\beta = 90.921 \ (9)^{\circ}$	Block, colorless
$V = 1684.3 (16) \text{ Å}^3$	$0.32 \times 0.30 \times 0.30 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	3633 independent reflections
Radiation source: fine-focus sealed tube	2283 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 298(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.261, \ T_{\max} = 0.275$	$k = -32 \rightarrow 34$
9470 measured reflections	$l = -10 \rightarrow 7$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0506P)^2 + 2.1641P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
3633 reflections	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$

186 parameters

 $\Delta\rho_{min} = -0.36 \text{ e} \text{ Å}^{-3}$

1 restraint

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	z	Uiso*/Ueq
Zn1	0.25129 (8)	0.59843 (2)	0.53367 (8)	0.0531 (2)
Br1	-0.09048 (7)	0.73965 (3)	0.73104 (8)	0.0691 (2)
Cl1	0.4472 (2)	0.86120 (6)	0.5360 (2)	0.0868 (6)
C12	0.1025 (2)	0.56893 (7)	0.32087 (19)	0.0748 (5)
C13	0.2609 (2)	0.54111 (6)	0.7302 (2)	0.0718 (4)
01	0.1550 (5)	0.66062 (14)	0.6102 (5)	0.0592 (10)
N1	0.4876 (5)	0.62653 (18)	0.4750 (5)	0.0485 (10)
N2	0.8671 (7)	0.5717 (2)	0.8271 (6)	0.0708 (15)
C1	0.3975 (6)	0.7126 (2)	0.5273 (6)	0.0465 (12)
C2	0.2268 (6)	0.7039 (2)	0.5936 (6)	0.0464 (12)
C3	0.1364 (6)	0.7472 (2)	0.6440 (6)	0.0499 (13)
C4	0.2038 (7)	0.7947 (2)	0.6301 (6)	0.0554 (14)
H4	0.1408	0.8221	0.6675	0.066*
C5	0.3661 (7)	0.8009 (2)	0.5599 (7)	0.0561 (14)
C6	0.4609 (7)	0.7608 (2)	0.5106 (7)	0.0545 (14)
H6	0.5712	0.7658	0.4645	0.065*
C7	0.5140 (6)	0.6730 (2)	0.4739 (6)	0.0501 (13)
H7	0.6226	0.6832	0.4335	0.060*
C8	0.6332 (7)	0.5932 (2)	0.4223 (7)	0.0566 (14)
H8A	0.7281	0.6131	0.3776	0.068*
H8B	0.5886	0.5709	0.3394	0.068*
C9	0.7047 (7)	0.5631 (2)	0.5607 (7)	0.0562 (14)
H9A	0.8007	0.5420	0.5245	0.067*
H9B	0.6115	0.5418	0.6012	0.067*
C10	0.7721 (7)	0.5967 (2)	0.6924 (6)	0.0557 (14)
H10A	0.8515	0.6211	0.6462	0.067*
H10B	0.6717	0.6147	0.7353	0.067*
C11	0.9452 (10)	0.6088 (3)	0.9358 (8)	0.094 (2)
H11A	1.0131	0.6323	0.8755	0.140*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^2)

supplementary materials

H11B	1.0216	0.5924	1.0125	0.140*
H11C	0.8522	0.6259	0.9906	0.140*
C12	0.7535 (10)	0.5353 (3)	0.9111 (9)	0.092 (2)
H12A	0.8145	0.5236	1.0058	0.137*
H12B	0.7283	0.5075	0.8417	0.137*
H12C	0.6442	0.5510	0.9404	0.137*
H2	0.957 (6)	0.5538 (19)	0.785 (7)	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0387 (3)	0.0640 (4)	0.0565 (4)	0.0016 (3)	0.0037 (3)	0.0026 (3)
Br1	0.0423 (3)	0.0841 (5)	0.0814 (5)	0.0067 (3)	0.0171 (3)	-0.0044 (4)
Cl1	0.0821 (12)	0.0638 (10)	0.1152 (15)	-0.0146 (9)	0.0261 (10)	0.0035 (10)
Cl2	0.0598 (9)	0.1019 (13)	0.0625 (10)	-0.0042 (9)	-0.0082 (7)	-0.0015 (9)
C13	0.0628 (9)	0.0818 (11)	0.0713 (10)	0.0011 (8)	0.0118 (7)	0.0115 (9)
01	0.045 (2)	0.056 (2)	0.077 (3)	0.0007 (18)	0.0174 (18)	0.005 (2)
N1	0.033 (2)	0.062 (3)	0.051 (3)	0.009 (2)	0.0019 (18)	0.003 (2)
N2	0.057 (3)	0.095 (4)	0.061 (3)	0.035 (3)	0.007 (2)	0.016 (3)
C1	0.033 (2)	0.064 (3)	0.042 (3)	0.002 (2)	-0.002 (2)	0.001 (3)
C2	0.034 (2)	0.062 (4)	0.043 (3)	0.006 (2)	-0.002 (2)	0.005 (3)
C3	0.036 (3)	0.067 (4)	0.046 (3)	0.006 (2)	0.000 (2)	0.006 (3)
C4	0.056 (3)	0.058 (4)	0.052 (3)	0.009 (3)	-0.004 (3)	-0.001 (3)
C5	0.050 (3)	0.060 (4)	0.058 (4)	-0.002 (3)	0.001 (3)	0.004 (3)
C6	0.039 (3)	0.070 (4)	0.055 (3)	-0.003 (3)	-0.002 (2)	0.004 (3)
C7	0.032 (2)	0.077 (4)	0.041 (3)	0.008 (3)	0.006 (2)	0.008 (3)
C8	0.040 (3)	0.072 (4)	0.058 (4)	0.014 (3)	0.006 (2)	-0.004 (3)
C9	0.040 (3)	0.061 (3)	0.068 (4)	0.014 (3)	0.011 (3)	0.000 (3)
C10	0.041 (3)	0.072 (4)	0.054 (3)	0.011 (3)	0.002 (2)	0.012 (3)
C11	0.081 (5)	0.155 (7)	0.044 (4)	0.008 (5)	-0.010 (3)	-0.003 (4)
C12	0.109 (6)	0.084 (5)	0.083 (5)	0.028 (4)	0.034 (4)	0.031 (4)

Geometric parameters (Å, °)

Zn1—O1	1.931 (4)	C4—H4	0.9300
Zn1—N1	1.999 (4)	C5—C6	1.359 (8)
Zn1—Cl2	2.2303 (19)	С6—Н6	0.9300
Zn1—Cl3	2.2489 (19)	С7—Н7	0.9300
Br1—C3	1.877 (5)	C8—C9	1.502 (8)
Cl1—C5	1.740 (6)	C8—H8A	0.9700
O1—C2	1.288 (6)	С8—Н8В	0.9700
N1—C7	1.261 (7)	C9—C10	1.504 (8)
N1—C8	1.485 (6)	С9—Н9А	0.9700
N2—C11	1.464 (9)	С9—Н9В	0.9700
N2—C12	1.482 (8)	C10—H10A	0.9700
N2—C10	1.483 (7)	C10—H10B	0.9700
N2—H2	0.91 (5)	C11—H11A	0.9600
C1—C6	1.385 (8)	C11—H11B	0.9600
C1—C2	1.425 (7)	C11—H11C	0.9600
Br1C3 Cl1C5 O1C2 N1C7 N1C8 N2C11 N2C12 N2C10 N2H2 C1C6 C1C2	1.877 (5) 1.740 (6) 1.288 (6) 1.261 (7) 1.485 (6) 1.464 (9) 1.482 (8) 1.483 (7) 0.91 (5) 1.385 (8) 1.425 (7)	C8—C9 C8—H8A C8—H8B C9—C10 C9—H9A C9—H9B C10—H10A C10—H10B C11—H11A C11—H11B C11—H11B	1.502 (8) 0.9700 0.9700 1.504 (8) 0.9700 0.9700 0.9700 0.9700 0.9600 0.9600 0.9600

C1—C7	1.451 (7)	C12—H12A	0.9600
C2—C3	1.413 (7)	С12—Н12В	0.9600
C3—C4	1.375 (8)	C12—H12C	0.9600
C4—C5	1.372 (8)		
O1—Zn1—N1	95.48 (17)	N1—C7—C1	128.6 (5)
O1—Zn1—Cl2	112.60 (13)	N1—C7—H7	115.7
N1—Zn1—Cl2	112.04 (14)	С1—С7—Н7	115.7
O1—Zn1—Cl3	110.85 (13)	N1—C8—C9	110.6 (4)
N1—Zn1—Cl3	114.71 (13)	N1—C8—H8A	109.5
Cl2—Zn1—Cl3	110.45 (8)	С9—С8—Н8А	109.5
C2—O1—Zn1	125.6 (3)	N1—C8—H8B	109.5
C7—N1—C8	118.4 (4)	С9—С8—Н8В	109.5
C7—N1—Zn1	121.0 (3)	H8A—C8—H8B	108.1
C8—N1—Zn1	120.6 (4)	C8—C9—C10	110.7 (5)
C11—N2—C12	112.5 (6)	С8—С9—Н9А	109.5
C11—N2—C10	110.3 (5)	С10—С9—Н9А	109.5
C12—N2—C10	112.5 (5)	С8—С9—Н9В	109.5
C11—N2—H2	108 (4)	С10—С9—Н9В	109.5
C12—N2—H2	106 (4)	Н9А—С9—Н9В	108.1
C10—N2—H2	107 (4)	N2—C10—C9	115.9 (5)
C6—C1—C2	120.3 (5)	N2-C10-H10A	108.3
C6—C1—C7	116.1 (5)	С9—С10—Н10А	108.3
C2—C1—C7	123.6 (5)	N2-C10-H10B	108.3
O1—C2—C3	120.3 (4)	С9—С10—Н10В	108.3
O1—C2—C1	124.7 (5)	H10A—C10—H10B	107.4
C3—C2—C1	115.0 (5)	N2-C11-H11A	109.5
C4—C3—C2	123.7 (5)	N2-C11-H11B	109.5
C4—C3—Br1	118.2 (4)	H11A—C11—H11B	109.5
C2—C3—Br1	118.1 (4)	N2-C11-H11C	109.5
C5—C4—C3	118.7 (5)	H11A—C11—H11C	109.5
С5—С4—Н4	120.7	H11B—C11—H11C	109.5
C3—C4—H4	120.7	N2-C12-H12A	109.5
C6—C5—C4	120.5 (5)	N2-C12-H12B	109.5
C6—C5—C11	121.0 (4)	H12A—C12—H12B	109.5
C4—C5—Cl1	118.5 (5)	N2-C12-H12C	109.5
C5—C6—C1	121.7 (5)	H12A—C12—H12C	109.5
С5—С6—Н6	119.2	H12B—C12—H12C	109.5
С1—С6—Н6	119.2		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2···Cl3 ⁱ	0.91 (5)	2.37 (3)	3.190 (5)	152 (5)
Symmetry codes: (i) $x+1, y, z$.				

Fig. 2