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1  | INTRODUC TION

Global aging, attributed to advancements in health care and so‐
cioeconomic factors, represents one of the great achievements of 
the 21st century. However, older age associates with chronic dis‐
eases, which could share similar pathophysiology and risk factors; 
understanding and elucidation of those common mechanisms have 
enabled the development of geroscience. Musculoskeletal diseases, 
in particular, represent a significant burden in older persons and a 
major cost to health systems worldwide. Of those, osteopenia/oste‐
oporosis (characterized by low bone mass) increases with age along‐
side the number of osteoporotic fractures,1 while sarcopenia (low 
muscle mass and function) confers a high risk of falls and disability in 

older persons.2 Together, these diseases form a geriatric syndrome 
known as “osteosarcopenia,”3 which associates with an increased 
risk of falls, fractures, and hospitalizations in older persons.4,5 Not 
only does osteosarcopenia induce billions in health‐care expenditure 
but it also greatly impairs an older person's quality of life.3,6

The prevalence of osteosarcopenia in community‐dwelling older 
adults ranges from 4.7% in Japan,7 to 13% in China8 and 28% in 
Germany,9 with the highest rates observed in Australia (40%)3 and 
Iran (34%) (N. Fahimfar, unpublished data, June 2019). A study of 
older Koreans with hip fractures also found that 27.2% were osteo‐
sarcopenic.10 The varied prevalence is likely due to heterogenous 
populations or a non‐unified diagnostic criterion for this syndrome, 
with various screening tools being utilized for low muscle mass 
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Abstract
Many older persons lose their mobility and independence due to multiple diseases 
occurring simultaneously. Geroscience is aimed at developing innovative approaches 
to better identify relationships among the biological processes of aging. Osteoporosis 
and sarcopenia are two of the most prevalent chronic diseases in older people, with 
both conditions sharing overlapping risk factors and pathogenesis. When occurring 
together, these diseases form a geriatric syndrome termed “osteosarcopenia,” which 
increases the risk of frailty, hospitalizations, and death. Findings from basic and clini‐
cal sciences aiming to understand osteosarcopenia have provided evidence of this 
syndrome as a case of geroscience. Genetic, endocrine, and mechanical stimuli, in ad‐
dition to fat infiltration, sedentarism, and nutritional deficiencies, affect muscle and 
bone homeostasis to characterize this syndrome. However, research is in its infancy 
regarding accurate diagnostic markers and effective treatments with dual effects on 
muscle and bone. To date, resistance exercise remains the most promising strategy to 
increase muscle and bone mass, while sufficient quantities of protein, vitamin D, cal‐
cium, and creatine may preserve these tissues with aging. More recent findings, from 
rodent models, suggest treating ectopic fat in muscle and bone marrow as a possible 
avenue to curb osteosarcopenia, although this needs testing in human clinical trials.
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and function (sarcopenia), a key component of osteosarcopenia. 
Irrespective of this, osteosarcopenia confers alarming health‐care 
costs, which are projected to rise.

Muscle and bone are two highly malleable tissues adapting to en‐
vironmental stimuli across the life span. Indeed, both tissues develop 
during adolescence with peak density occurring in the third decade 
of life, which is largely maintained up until pre‐menopause, and de‐
clines thereafter.11,12 The interaction and cross talk between mus‐
cle and bone have been an increasing area of research in health and 
disease. These two organs are connected anatomically, as well as 
through biochemical and biomechanical pathways, and share com‐
mon risk factors in osteosarcopenia, including epigenetic, endocrine, 
and mechanical factors.6

Given the rapid growth of the aging population, which has led to 
13% of the global population aged 65 years and older,13 it is critical 
that those in the field of geroscience appreciate the pathophysio‐
logical processes underpinning osteosarcopenia, in order to develop, 
test, and validate therapeutic strategies targeting both tissues simul‐
taneously. In light of this, we discuss the age‐related alterations to 
the musculoskeletal system focusing on those “pillars of aging”14 
that lead to the manifestation of osteosarcopenia (Figure 1).

2  | PATHOPHYSIOLOGY: PILL ARS OF 
AGING AND OSTEOSARCOPENIA

2.1 | Muscle and bone mechanics

Muscle attaches to the human skeleton, enabling locomotion, and is 
a primary source of mechanical stimuli, which generates the strain 
needed to maintain bone health. This stems from early work indicat‐
ing that muscle mass accrues more rapidly than bone mass during 
adolescence, suggesting muscle contraction acts as a stimulus for 
increases in bone mineral density.15 In support, increasing lean (mus‐
cle) mass is protective against bone loss and risk of vertebral frac‐
tures.16 Physical activity also increases muscle and bone volume,17,18 
while disuse induces atrophy of both tissues.19 Moreover, in most 
but not all studies, muscle and bone mass correlate in aging.20 For 
instance, a 4‐year follow‐up of older Japanese adults found that the 
prevalence of sarcopenia was high in those with osteoporosis and 
vice versa.7 In the same population, sarcopenic individuals tended 
to have lower bone density, and those with osteoporosis displayed 
lower muscle mass and functional capacity.7 Interestingly, the pres‐
ence of osteoporosis was predictive of future risk of sarcopenia 
(odds ratio, 2.99; 95% confidence interval, 1.46‐6.12), although the 
opposite relationship was not observed over this 4‐year period.7 
This finding highlights the need for additional longitudinal trials to 
investigate if one disease is predictive of the other. This, in turn, will 
enable further interpretation of the mechanical alterations underly‐
ing osteosarcopenia.

As mentioned, in response to environmental stresses, such 
as loading or unloading, muscle and bone adapt their density and 
strength.21 Due to this biomechanical nature, physical inactivity, 
along with advancing age, is a primary risk factor for osteoporosis 

and sarcopenia,22 and thus of osteosarcopenia. More recent work in 
this area has focused on the interactions among genetic, metabolic, 
and endocrine factors in muscle and bone in the hope of identifying 
overlapping risk factors for osteosarcopenia.

2.2 | Genetics and epigenetics

Research into the shared genetic etiology of osteoporosis and sarco‐
penia shows that approximately 60%‐70% of the risk factors under‐
lying these diseases are heritable,23 with both tissues sharing genetic 
determinants that exert pleiotropic effects. This is due to osteogenic 
and myogenic cells differentiating from the same mesenchymal pre‐
cursor. Indeed, young monozygotic twins display a 30%‐45% genetic 
correlation between lean (muscle) and bone mass at both distal and 
proximal sites.24 Moreover, a recent genetic variant analysis of over 
10 000 pediatrics individuals found pleiotropic effects of the sterol 
regulatory element binding transcription factor 1 (SREBF1), which 
regulates fat metabolism, is expressed in osteoblasts and myoblasts, 
and associates with lean mass and bone mineral density.25 Several 
other genetic polymorphisms have been linked to osteosarcopenia, 
including the genes GLYAT, methyltransferase‐like 21C (METTL21C), 
myostatin, α‐actinin 3, proliferator‐activated receptor gamma coac‐
tivator 1‐alpha (PGC‐1α), and myocyte enhancer factor 2C (MEF‐2C).6

Thanks to the study of model organisms, epigenetic alterations 
(including the loss of heterochromatin and core histone proteins), 
genome instability, DNA methylation, and altered RNA expression 
have been attributed to cellular senescence.26 Epigenetic factors, 
representing a link between individual genetic aspects and envi‐
ronmental influences, are involved in muscle and bone biology.27 
Bone and muscle metabolism are under the control of epigenetic 
mechanisms involving histone deacetylases and microRNAs.28,29 
Some microRNAs play key roles in the regulation of Wnt signaling 
in mesenchymal stem cell (MSC) differentiation into myocytes, os‐
teoblasts, and adipocytes.30 Most of the current evidence looking 
at the role of epigenetic mechanisms in muscle and bone develop‐
ment and maintenance has been generated by investigating those 
tissues separately. Whether epigenetic mechanisms are involved in 
the pathogenesis of osteosarcopenia, or whether they could become 
robust biomarkers for this syndrome, is a subject of intense research.

2.3 | Metabolism

In muscle, protein metabolism is governed by the net balance be‐
tween protein synthesis and degradation. In the postprandial state, 
protein synthesis exceeds degradation, while the opposite occurs 
during periods of energy restriction.31 Similarly, bone turnover is 
regulated by the delicate equilibrium between bone‐forming (osteo‐
blasts) and bone‐resorbing (osteoclasts) cells.32 With advancing age, 
the metabolism of both tissues deteriorates and in situations of inac‐
tivity, disuse, or trauma, proteolysis and matrix loss is further exacer‐
bated.33 If this imbalance persists and reaches a threshold whereby 
there is a synergistic loss of bone density, as well as muscle mass, 
strength, and function, osteosarcopenia occurs.3
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In parallel with the aging population, the obesity epidemic has re‐
sulted in a greater number of older persons with high fat mass. When 
osteosarcopenia is diagnosed in the presence of obesity, a hazard‐
ous duet termed “osteosarcopenic obesity” occurs, which increases 
the risk of a range of adverse health outcomes.34 Independently 
of the presence of obesity, localized fat infiltration of muscle and 
bone marrow is now considered a hallmark of aging,35,36 degrading 
surrounding cells, nerves, and capillaries via the secretion of fatty 
acids and adipokines, which negatively interfere with the cross talk 
of these organs and subsequently increases fracture risk.36

Other pathological conditions, such as diabetes and hyperthy‐
roidism, exacerbate muscle and bone loss. In diabetic states, impaired 
anabolic signaling is accentuated. In aged muscle, this presents as 
type II fiber atrophy, insulin resistance, lipotoxicity, decreased gly‐
cogen synthesis, and mitochondrial dysfunction.37,38 Diabetes is 
also a secondary cause of osteoporosis and increases fracture risk 
in osteopenic patients.39 Causes include chronic hyperglycemia, ad‐
vanced glycation end products (AGEs), and oxidative stress, all of 
which may decrease bone formation.39 Moreover, AGEs are known 
to suppress differentiation of myogenic genes and induce apop‐
tosis,40 and others have shown that osteoglycin inhibition impairs 
myoblast proliferation,41 suggesting a shared mechanism via mus‐
cle‐bone interactions. Just recently, administration of exogenous in‐
sulin‐like growth factor‐1 (IGF‐1) attenuated the detrimental effects 
of AGEs in myoblastic cells,40 perhaps representing a single muscle‐
bone‐unit treatment strategy, which warrants further investigation.

Hyperthyroidism also associates with accelerated bone re‐
modeling, reduced bone density, and increased fracture risk.42,43 
Hyperthyroid patients also present with muscle weakness and im‐
paired Ca2+ cycling,44 which may explain the increased fatigability 
observed in hyperthyroid mice.45 We have also shown that elevated 
parathyroid hormone levels associate with poor physical perfor‐
mance and balance in older persons,46 which may increase falls risk 
and is associated with osteosarcopenia.47 Glucocorticoid treatment 
for autoimmune disorders is also common in older patients, but 

decreases bone remodeling and muscle protein synthesis rates via 
the ubiquitin/proteasome pathway.48 Other risk factors for osteo‐
sarcopenia include malnutrition and hyperlipidemia, as well as ab‐
normal hormonal profiles,6 which adversely increase or decrease 
with age.

Other factors influencing muscle and bone metabolism include 
deficiencies in protein, calcium, and vitamin D, which affect the qual‐
ity of these tissues.49 Low protein intake is associated with low (lean) 
muscle and bone mass in both cross‐sectional and longitudinal stud‐
ies.50-52 Bone also contains the largest storage site of calcium (~99%) 
in the form of hydroxyapatite; thus, it is unsurprising that appropri‐
ate calcium intake remains a widely promoted strategy to prevent 
osteoporosis.53 However, the role of this nutrient in the preservation 
of bone mass and reduced fracture risk is controversial, with some 
trials showing benefits54,55 and some not.56 Calcium also plays a role 
in cross‐bridge cycling in muscle, with an impairment in Ca2+ kinetics 
linked to a reduction in excitability in sarcopenia,57 although it is un‐
known if low calcium intake influences neuromuscular function via 
this mechanism.

The role of vitamin D in bone preservation is well established,55 
and the link between low vitamin D status and muscle wasting and 
impaired neuromuscular functioning is emerging.58,59 Patients with 
insufficient vitamin D levels exhibit low muscle and bone mass,60 and 
older adults with osteoporosis show type II fiber atrophy,61 whereas 
supplementing with this nutrient is linked to enhancements of lean 
body mass, strength, and function in sarcopenic older adults.62

In vivo work has focused on the vitamin D receptor (expressed 
in muscle and bone) as a possible mechanism relating to the atro‐
phy of both tissues, with a recent study documenting a reduction 
in muscle mass and function upon deletion of the vitamin D recep‐
tor in myocytes.63 An earlier study, again in rodents, also showed 
that vitamin D deficiency induces muscle wasting and decreased 
muscle gene markers,58 suggesting a role of vitamin D in myogene‐
sis, which may account for the previous findings. Magnesium is an‐
other nutrient that has received less attention in musculoskeletal 

F I G U R E  1   Mechanisms of aging and 
the development of osteosarcopenia



150  |     KIRK et al.

health, despite its role in regulating enzymes involved in calcium 
metabolism,64 a key feature in bone remodeling as well as func‐
tioning of the neuromuscular junction. The largest prospective 
study conducted to date suggests a protective effect of magne‐
sium on osteoporotic fractures;65 however, its role in osteosarco‐
penia warrants further investigation.

2.4 | Stem cells regeneration and exhaustion

Mesenchymal stem cells are precursors of muscle and bone regen‐
eration and their intrinsic plasticity alters with senescence. Indeed, 
satellite cell content is reduced in type II myofibers of aged muscle,66 
and proliferation rates are slowed in comparison to younger mus‐
cle.67 Observing age‐related changes in myogenesis using electron 
microscopy demonstrates a decline in myonuclear numbers in older 
persons.68 Furthermore, aged satellite cells are known to translocate 
across the basal lamina in which they reside at an attenuated rate to 
initiate myogenesis, a consequence of the age‐related thickening of 
the extracellular wall.68 As such, satellite stem cells are considered a 
hallmark of sarcopenia by impairing regeneration of myofibers.

On the other hand, bone formation is dependent on the num‐
ber and activity of osteoblasts during remodeling. Osteoblasts are 
derived from osteoprogenitor stem cells, residing in the bone mar‐
row. With aging, the proliferation of bone‐marrow stem cells is im‐
paired whereas improving the differentiation of these cells improves 
bone‐marrow adipogenesis.69 Stromal cells from older, compared 
to younger, rodents show diminished osteogenesis.70 Likewise, the 
osteoblastic effects of adipose‐derived stem cells from older and 
younger women show impaired differentiation in the former pop‐
ulation.67 As described, stem cells senescence and exhaustion is an 
overlapping feature of both sarcopenia and osteoporosis, thus of 
osteosarcopenia, with purported mechanisms including telomere 
shortening, increased reactive oxygen species, and reduced tran‐
scriptional control.71

2.5 | Cross talking between muscle and bone

Historically, the muscle‐bone connection was considered mechani‐
cal; however, evidence showing increases in distal, non‐weight‐bear‐
ing bones along with muscle mass in response to exercise suggests 
an endocrine interaction.72 This is further evidenced by eloquent 
work demonstrating an acceleration of healing in bone fractures 
by placing muscle tissue over the surrounding lesion.73 Since these 
findings, along with other work in this area,33 muscle and bone have 
been established as endocrine organs secreting multiple growth 
factors and anabolic and catabolic molecules, which may influence 
both tissues.19 Collectively, the role of myokines, osteokines, and 
adipokines in bone and muscle cross talk is of increasing interest in 
the pathogenesis of osteosarcopenia (Figure 2).6

The musculoskeletal system interacts via autocrine, paracrine, 
and endocrine signaling, and multiple communication pathways 
in the muscle‐bone unit have been identified. Bone receives ana‐
bolic signals from muscle and vice versa. A number of myokines, 

upregulated by muscle contraction, play roles in bone formation and 
resorption.72 For instance, myostatin, a member of the transforming 
growth factor superfamily, inhibits muscle growth via inhibition of 
myoblast proliferation.74 In both animal and human models, myosta‐
tin absence or deficiency increases muscle mass and function,75,76 
whereas administering myostatin induces muscle atrophy via a 
downregulation of gene expression.77 Myostatin gene deficiency 
also increases osteogenic differentiation of stromal cells, enhancing 
bone repair and density.78 In addition, systemic administration of a 
myostatin decoy receptor (ACVR2B‐Fc) increases muscle and bone 
mass.48

More growth factors secreted by myotubes, notably IGF‐1 and 
fibroblast growth factor‐2 (FGF‐2), are anabolic to not only muscle, 
but also bone.48,79 In vivo and in vitro models indicate IGF‐1 and 
FGF‐2, localized in the periosteum, stimulate osteoblastogenesis and 
bone remodelling.80 Moreover, interleukin (IL)‐6, another myokine, 
upregulates bone resorption during chronic low‐grade inflammation 
released by immune cells and hepatocytes.81 Several other myok‐
ines, including osteoglycin, irisin, osteonectin, and IL‐15, play roles in 
muscle‐bone cross talk.82

In the opposite direction, bone secretes growth factors known to 
influence muscle. Of those, osteocalcin, a key player in bone ener‐
getics, upregulates pancreatic β‐cells and insulin secretion in muscle, 
correlating with leg strength in older women.83 However, a recent 
cross‐sectional study79 of middle‐aged and older adults found that 
serum IGF‐1, but not sclerostin or osteocalcin, was associated with 
muscle mass and function as well as bone metabolism in this cohort. 
Stromal cells in bone marrow also stimulate myoblast proliferation 
via the paracrine release of vascular endothelial growth factor,84 
providing further evidence of endocrine cross talk between these 
organs.

Recent advancements in the field have deciphered the role of 
fatty infiltration in metabolically active tissues.85 We6,35,36,86 and 
others37 have documented the detrimental effects of intramuscular 
and bone marrow fat, which are toxic to myocytes, osteoblasts and 
osteocytes in the vicinity, driven by the secretion of inflammatory 
cytokines. In humans, elevated circulating concentrations of pro‐
inflammatory adipocytokines, notably IL‐6, tumor necrosis factor 
alpha, adiponectin, and leptin, have been found in sarcopenic and 
osteopenic populations,87,88 and are associated with systemic and 
local lipotoxicity.89

Among the fatty acids released from adipocytes, palmitic acid 
(PA) is the most prevalent in marrow adipocytes in vitro and in 
vivo.90,91 We previously reported the lipotoxic effects of PA, which 
compromised osteoblast,92,93and osteocyte,94 function, and survival. 
Interestingly, a similar lipotoxic effect of PA has been observed in 
myotubes,95 which led us to investigate the effects of PA inhibitors. 
Indeed, we treated ovariectomized mice with cerulenin, an inhibitor 
of fatty acid synthase, and found it rescued osteoblasts from apopto‐
sis while recovering their bone‐forming potential.96 In another study, 
we incubated human osteoblasts with rapamycin—a macrolide com‐
pound that regulates the mammalian target of rapamycin (mTOR) 
signaling pathway and has been proposed as an important regulator 
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of aging in the geroscience field97in the presence of lipotoxic PA, and 
found that rapamycin attenuated PA‐induced apoptosis,98 thus sug‐
gesting that rapamycin administration could potentially be utilized as 
a bone‐protecting strategy in osteoporotic bone. Whether the same 
effect is observed in muscle is a subject of ongoing research.

3  | TR ANSL ATIONAL GEROSCIENCE AND 
OSTEOSARCOPENIA

Recently, the American Geriatrics Society highlighted the impor‐
tance of translational geroscience as an integrated approach to 
several age‐related diseases.99 The consensus concluded that “the 
study of geroscience therapeutics is mostly in early‐stage, first‐in‐
human, or proof‐of‐concept clinical trials.”

Although a similar case is occurring regarding pharmacological 
approaches to osteosarcopenia, where a combined pharmacological 
approach is still missing,15,100 there are current non‐pharmacological 
approaches and potential therapeutic targets that offer a promis‐
sory future to the field.

3.1 | Non‐pharmaceutical treatments

Resistive‐based exercise remains the most promising strategy to 
combat osteosarcopenia. In sarcopenic populations, resistance 
exercise (RE) increases muscle mass, strength, and function,101-103 
while Cochrane reviews highlight small but clinically relevant in‐
creases in bone density following impact exercise in osteoporotic 
patients.104 The efficacy of RE in preventing falls in older persons 
is also established105 and in obese adolescents, exercise prescrip‐
tion reduced ectopic fat in muscle and bone marrow,106 although 

these effects need clarifying in osteosarcopenic elders. Preserving 
muscular strength is protective against all‐cause mortality too, in‐
cluding incidence of cancer107 and heart disease.108 At present, 
the International Clinical Practice Guidelines for Sarcopenia 
recommend RE as a primary treatment option109 and consensus 
groups promote impact exercise as a safe and effective way to 
avert bone loss.104

In relation to nutritional status, a higher intake of protein (includ‐
ing leucine and its end products, such as beta‐hydroxy‐beta‐meth‐
ylbutyrate) is needed to offset declining protein synthesis rates in 
sarcopenic muscle.31 Indeed, chronic protein supplementation aug‐
ments the beneficial effects of RE18 and the PROT‐AGE study group 
advocates at least 1.2‐1.5 g/kg/d of protein (with 2.5‐3 g of leucine 
per meal) for sarcopenic individuals110 with no adverse effects re‐
ported. Cross‐sectional data support a higher intake of protein for 
the preservation of bone mass as well,54 particularly under condi‐
tions of adequate calcium intake.111 However, recent prospective 
studies show conflicting findings,112,113 highlighting the need for 
further randomized clinical trials.

With aging, vitamin D bioavailability declines. This, explained by 
a combination of lack of sunlight exposure, cultural factors, dietary 
habits, and alterations in the expression of the vitamin D receptor, 
increases the risk of osteosarcopenia. Current guidelines suggest 
800 IU (20 μg) of vitamin D from all dietary sources is required to 
offset falls in older adults.49 Higher doses of calcium associate with 
greater bone mineral density too,114 and given bone is the largest 
depot of calcium in the body, it seems imperative to maintain suf‐
ficient intake with age, despite the debate of this micronutrient 
in lowering fracture risk.115 Creatine is another nutrient that has 
consistently been shown to enhance muscle mass, strength, and 
function116,117 and may be a promising strategy to preserve bone 

F I G U R E  2   Risk factors, muscle‐bone 
cross talk, and the pathophysiology 
of osteosarcopenia. FGF‐2, fibroblast 
growth factor‐2; IGF‐1, insulin‐like growth 
factor‐1; VEGF, vascular endothelial 
growth factor
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microarchitecture and strength,118 although investigations have 
largely been conducted in healthy older adults.

Given these findings, there is sufficient evidence to recommend 
adequate protein, vitamin D, calcium, and creatine intake as the 
first line of treatment for osteosarcopenia. However, a clear draw‐
back of current research is the limited number of trials examining 
the effect of dual therapies in osteosarcopenic patients. Moreover, 
the synergistic effects of exercise and nutrition on circulating hor‐
mones, growth factors, and inflammatory cytokines, which are im‐
plicated in the pathophysiology of osteosarcopenia, require further 
investigation.

4  | PHARMACOLOGIC AL APPROACH: 
TARGETING THE PILL ARS OF AGING IN 
OSTEOSARCOPENIA

With the increasing understanding of the mechanisms of osteo‐
sarcopenia, new therapeutic approaches or repurposing of current 
compounds is translating into phase II and III trials (as summarized in 
Fatima et al119 and Zanker and Duque120). 

4.1 | Denosumab

Denosumab is a humanized monoclonal antibody to receptor activa‐
tor of nuclear factor‐κB ligand (RANKL). The binding of RANKL to 
the RANK receptor on osteoclast is responsible for its activation, 
differentiation, and osteoclastic action. By blocking RANKL, deno‐
sumab blocks the activation of osteoclasts, thus protecting bone 
from resorption and increasing bone mass.

Interestingly, results from the FREEDOM trial,121 which demon‐
strated an effect of denosumab on fracture prevention, also indi‐
cated that the denosumab‐treated group experienced fewer falls 
(4.5%) compared to the untreated group (5.7%; P  =  .02). A recent 
study by Bonnet et al122 tested the effect of denosumab on animals 
and humans (postmenopausal women). The authors report that 
RANKL deteriorates, while its inhibitor improves, muscle strength 
and insulin sensitivity in osteoporotic mice and humans, and con‐
clude that in addition to its role as a treatment for osteoporosis, 
denosumab could represent a novel therapeutic approach for sar‐
copenia and thus for osteosarcopenia. Further studies looking at the 
direct effect of denosumab on muscle mass and function are still 
needed.

4.2 | Testosterone and selective androgen 
receptor modulators

As previously mentioned, testosterone levels decrease with age and 
are considered an important cause of osteosarcopenia. Although 
results from clinical trials testing the effect of testosterone admin‐
istration on bone and muscle mass and on reduction of adverse 
events (ie, falls and fractures) have been mostly disappointing, se‐
lective androgen receptor modulators (SARMs), which could have 

an effect on sarcopenia,123 could also have a synchronic effect on 
osteoporotic bone. In a recent phase II trial, VK5211, an oral non‐
steroid SARM, showed a significant increase in lean muscle mass and 
non‐significant improvement in 6‐minute walk test in the treatment 
group at 12  weeks (R. Ristic, V. Harhaji and V. Sirbu, unpublished 
data, September 2018). Additionally, the treatment group showed a 
significant improvement in procollagen type 1 N propeptide (P1NP), 
a marker of bone formation, suggesting a dual effect on bone and 
muscle; this is an exciting possibility for the potential treatment of 
osteosarcopenia. In addition, two major trials—“The Testosterone 
Trial in Older Men” (www.clini​caltr​ials.gov) and “T4DM” (www.t4dm.
org.au)—are underway and aim to clarify the role of testosterone in 
the management of osteosarcopenia.

4.3 | Anti‐myostatin antibodies

Although anti‐myostatin antibodies have been proposed as the 
“Holy Grail” for muscle, bone, and fat, the results of clinical trials 
have not been encouraging.124 In aged mice, anti‐myostatin antibod‐
ies increased muscle mass and strength.125 A phase II trial in older 
adults (aged ≥75 years) with a history of fall showed that anti‐my‐
ostatin antibodies increased the lean body mass and mildly improved 
functional measures associated with muscle strength.126 Regarding 
the role of myostatin antibodies in improving bone health, data from 
animal studies indicate that in combination with resistant exercise, 
myostatin antibodies improved bone mass;127 however, whether the 
same effect is also observed in humans still requires future clinical 
trials.

4.4 | Rapamycin and regulation of mTOR

As mentioned above, IGF‐1 and IL‐6 play important roles in the 
muscle‐bone cross talk. These are important regulators of the Akt/
mTOR pathway, which regulates mRNA translation and protein syn‐
thesis in skeletal muscle while also regulating bone remodeling.128 
Therefore, pharmacological modulation of the Akt/mTOR pathway 
could become a novel approach to osteosarcopenia. Considering 
that rapamycin is a natural product that inhibits mTOR with high 
specificity while also regulating other age‐affected processes, such 
as autophagy and apoptosis, which are also highly prevalent in os‐
teoporosis and sarcopenia, it could become an attractive therapeu‐
tic approach to osteosarcopenia. By demonstrating that rapamycin 
affects palmitate‐induced lipotoxicity in osteoblasts by modulating 
apoptosis and autophagy in vitro,98 we then proposed that rapamy‐
cin‐associated therapies could, potentially, be targeted for specific 
roles in osteoporosis and sarcopenia. Future animal studies will be 
required before progressing into clinical trials.

4.5 | Go for the fat: Targeting adipocyte products to 
treat osteosarcopenia

Fat infiltration of muscle and bone is one of the hallmarks in osteo‐
sarcopenia. Increasing the number of local adipocytes within the 

http://www.clinicaltrials.gov
http://www.t4dm.org.au
http://www.t4dm.org.au
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bone marrow and within and between muscle fibers (a phenom‐
enon that is independent of body mass index36) results in secretion 
of lipotoxic factors (mostly PA), which has a toxic effect on cells 
in their vicinity.36 Based on this evidence, we hypothesized that 
inhibition of fatty acid synthase would have a beneficial effect on 
bone and muscle in vivo. Osteoporotic mice treated with cerulenin 
showed a recovery in their bone mass associated with higher lev‐
els of bone formation,96 probably due to a less lipotoxic environ‐
ment within the bone marrow. Similar findings have been obtained 
in muscle cells treated with palmitate and cerulenin in vitro and 
in sarcopenic mice in vivo (A. Al Saedi and G. Duque, unpublished 
data, August 2019). However, further experiments specifically tar‐
geting fatty acid synthase in muscle and bone adipocytes are still 
required.

5  | SUMMARY

Osteosarcopenia is a prevalent musculoskeletal syndrome con‐
ferring an increased risk of falls, fractures, and hospitalizations. 
Findings from basic and clinical sciences suggest that osteosarco‐
penia is an optimal target for translational geroscience research 
since multiple pathways illustrating cross talk among these tissues 
and involving the pillars of aging have been identified. At present, 
resistance exercise, as well as dietary protein, vitamin D, calcium, 
and creatine intake are the only evidence‐based strategies to miti‐
gate osteosarcopenia. However, individuals suffering from chronic 
diseases are often resistant to exercise and dietary interventions. 
In these cases, pharmaceutical treatments with dual effects on 
muscle and bone are required. Current (ie, denosumab, SARMs) 
and future (ie, anti‐myostatin antibodies, rapamycin, fatty acid 
synthase inhibitors) compounds have shown promissory dual ef‐
fects on muscle and bone that deserve further exploration. Finally, 
development of robust biomarkers for osteosarcopenia with the 
capacity to diagnose this syndrome, predict adverse outcomes, 
and monitor treatment response are highly needed.
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