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Insight of Captagon Abuse by 
Chemogenomics Knowledgebase-
guided Systems Pharmacology 
Target Mapping Analyses
Nan Wu1,2,3,4, Zhiwei Feng1,2,3,4, Xibing He1,2,3,4, William Kwon1,2,3,4, Junmei Wang1,2,3,4 & 
Xiang-Qun Xie1,2,3,4

Captagon, known by its genetic name Fenethylline, is an addictive drug that complicates the War 
on Drugs. Captagon has a strong CNS stimulating effect than its primary metabolite, Amphetamine. 
However, multi-targets issues associated with the drug and metabolites as well as its underlying 
mechanisms have not been fully defined. In the present work, we applied our established drug-abuse 
chemogenomics-knowledgebase systems pharmacology approach to conduct targets/off-targets 
mapping (SP-Targets) investigation of Captagon and its metabolites for hallucination addiction, and 
also analyzed the cell signaling pathways for both Amphetamine and Theophylline with data mining of 
available literature. Of note, Amphetamine, an agonist for trace amine-associated receptor 1 (TAAR1) 
with enhancing dopamine signaling (increase of irritability, aggression, etc.), is the main cause of 
Captagon addiction; Theophylline, an antagonist that blocks adenosine receptors (e.g. A2aR) in the 
brain responsible for restlessness and painlessness, may attenuate the behavioral sensitization caused 
by Amphetamine. We uncovered that Theophylline’s metabolism and elimination could be retarded 
due to competition and/or blockage of the CYP2D6 enzyme by Amphetamine; We also found that the 
synergies between these two metabolites cause Captagon’s psychoactive effects to act faster and far 
more potently than those of Amphetamine alone. We carried out further molecular docking modeling 
and molecular dynamics simulation to explore the molecular interactions between Amphetamine and 
Theophylline and their important GPCRs targets, including TAAR1 and adenosine receptors. All of 
the systems pharmacology analyses and results will shed light insight into a better understanding of 
Captagon addiction and future drug abuse prevention.

Captagon, the trademark name for the synthetic stimulant Fenethylline1–6, was first reported by a German phar-
macist in 1961 for the potential treatment of hyperactivity, depression and narcolepsy1. However, due to its 
addictive and hallucinogenic properties, it was listed as a controlled substance by the United States (1981) and 
the World Health Organization (1986), making it illegal to buy or sell Captagon in most countries. Captagon 
has been reported to be a central nervous system (CNS) stimulator with stronger and longer lasting effects 
on fighting aggression, detachment, cognitive enhancement, and alertness than one of its main metabolites, 
Amphetamine.

Captagon is metabolized into Amphetamine (24.5% of oral dose) and Theophylline (13.7% of oral dose), as 
shown in Fig. 1. Thus, the pharmacological effect of Captagon is considered the result of the combined action of 
these two metabolites3,6. Amphetamine, the main metabolite of Captagon, is a CNS stimulator that can increase 
alertness, boost concentration/physical performance, and provide a feeling of well-being, confidence, and 
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aggression. It can be used for the treatment of obesity, narcolepsy, and attention deficit hyperactive disorder 
(ADHD)7. Amphetamine is reportedly an agonist on central 5-HT receptors8–10 and may inhibit monoamine 
oxidase (MAO)11, possibly causing hallucinations, violent behavior, loss of appetite, and more. Theophylline, 
another metabolite of Captagon, is a weak stimulator resembling caffeine12. Theophylline has a narrow thera-
peutic window due to its unwanted side effects including cardia dysrhythmia seizures, gastrointestinal distur-
bances, and drug-drug interactions13. Captagon was considered a co-drug (or mutual prodrug) of Amphetamine 
and Theophylline. However, the effects of Fenethylline is different from those of Amphetamine qualitatively and 
quantitatively. First, previous literature6,14 reported that Captagon is more lipophilic than both Theophylline 
and Amphetamine, resulting in easier absorption into the CNS and a faster stimulating effect than either drug2. 
Second, according to a recent report by Wenthur and co-workers2, “the penetration of Amphetamine into brain 
tissue following release from Fenethylline lags behind that of directly administered Amphetamine” which may 
explain why Captagon is less addictive than Amphetamine, i.e. because Fenethylline-sourced Amphetamine is 
less likely to accumulate in the brain. Third, unlike vasoconstrictors such as Amphetamines, Captagon does not 
increase the patient’s blood pressure because Theophylline possesses vasodilating properties, allowing its use by 
those with cardiovascular disorders6. More available information regarding Captagon/Fenethylline can be found 
in a recent minireview paper published by Katselou and co-workers6.

Captagon is an addictive drug that fuels conflicts in the Middle East4. Fighters on Captagon or Amphetamines 
may feel a sense of well-being, euphoria and invincibility. It is clear that these drugs are favored to suppress pain 
and increase aggression in soldiers. The use of these drugs is not limited to soldiers but also to the civilian popula-
tion in areas of prevailing hopelessness or helplessness. Due to its great profitability, many Captagon seizure cases 
occur in the Middle East and Europe according to the United Nations Office on Drugs and Crime (UNODC). 
For example, Al-Imam and co-workers wrote in their article, “11,000 Captagon tablets were seized in the city of 
Al-Nasiryia, a city to the southeast of the Iraqi capital Baghdad.” And they also mentioned in their article that 
“illegal Captagon was seized by fighters of the Islamic State in Iraq and other militant groups in Syria (more than 
1.4 million tablets), in Turky (107.5 kilograms of drug) and in Egypt (8.8 million pills)”15. Furthermore, in 2013 
Dubai authorities seized 4.6 million Captagon pills. In May 2017, French authorities reported confiscating about 
300 pounds of Captagon, seizing 750,000 pills worth an estimated $1.7 million.

Although Captagon was first synthesized in 1961, its underlying addictive mechanism, potential drug-drug 
interactions with Amphetamine and Theophylline, side effects such as hallucination, and detailed interactions 
between Captagon/Amphetamine/Theophylline and their targets have been relatively ignored by academic 
research and industrial studies for over 56 years.

To address the above questions, we performed computational systems pharmacology analyses for Captagon 
and its metabolites, Amphetamine and Theophylline. First, we analyzed the signaling pathways for both 
Amphetamine and Theophylline. We found that Amphetamine is the main cause for Captagon addiction, and 
Theophylline can block adenosine receptors in the brain, attenuating Amphetamine’s behavior. Subsequently, 
we docked Amphetamine/Theophylline into their reported targets to explore their detailed interactions at 
a molecular level. Finally, to study the side effects of Amphetamine and Captagon, we carried out off-target 
predictions using our established hallucinogen-related chemogenomics knowledgebase and in-house compu-
tational chemogenomics tools. Overall, such drug-drug combinations could potentially be used to treat drug 
abuse and addiction. Our studies provided a detailed insight into the addiction mechanism of Captagon and 
its metabolites.

Materials and Methods
Homology Modeling of TAAR1 and Adenosine A2b Receptor.  In this study, we built two GPCR 
models including trace amine-associated receptor 1 (TAAR1) and adenosine A2b receptor (A2bR). First, we 
used a β1AR crystal structure (PDB ID: 2Y00, Resolution: 2.5 Å)16 as the template to build the homology model 
of TAAR1 and found the sequence identity between the two proteins is about 35%. Then, a homology model of 

Figure 1.  Metabolic scheme of Captagon (Fenethylline). Captagon when orally dosed will go through 
the oxidative metabolism via cytochrome P450 (CYP450) enzyme, and in final be metabolized into 24.5% 
Amphetamine and 13.7% Theophylline. Amphetamine is the main cause of addiction, while Theophylline 
reduces the behavioral sensitization to repeated Amphetamine exposure, thus explain the less addictiveness of 
Fenethylline than Amphetamine.
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the adenosine A2b receptor was built using the crystal structure of the adenosine A2a receptor (PDB ID: 3RFM, 
Resolution: 3.6 Å)17 as the template, finding the sequence identity between the two proteins to be about 66%. 
These crystal structures were downloaded from the Protein Data Bank (http://www.pdb.org/pdb/). SYBYL-X 
1.318 was used to repair all residues and minimize energy.

The full sequences of human TAAR1 receptor (TAAR1_HUMAN, 339 residues) and adenosine A2b receptor 
(AA2BR_HUMAN or P29275, 332 residues) were retrieved from UniProtKB/Swiss-Prot (http://www.uniprot.
org/uniprot/). We then truncated the residues according to their templates for sequence alignment and homol-
ogy modeling using our reported protocol19. The disulfide bridge(s) was also patched for each homology model.

Modeller 9.1820 was used to construct these homology models. Once the 3D models were generated, SYBYL-X 
1.3 was used to perform the energy minimizations. Briefly, the parameters defined in SYBYL are: Gradient set 
to 0.5 kcal/mol, Max iterations set to 5000, force field set to MMFF94, and charge method set to MMFF94. 
All of these settings are the same as in our previous works21–25. Then, proSA-web Z-scores26 and PROCHECK 
Ramachandran plots27 were used to validate the models.

Docking Study of Ligand-Receptors.  We used the MOLCAD module implemented in SYBYL-X 1.3 to 
explore the potential binding pocket for GPCR receptors. The docking program Surflex-Dock GeomX (SFXC) in 
SYBYL-X 1.3 was applied to construct receptor-ligand complexes in which the docking scores were expressed in −
log10 (Kd)28. The main protocols or parameters of docking were addressed in our previous publications21–25. Briefly, 
the docking parameters used were: (a) number of starting conformations per ligand set to 10, max conformations 
per fragment set to 20; (b) maximum number of rotatable bonds per molecule set to 100; (c) flags were turned on 
at pre-dock minimization, post-dock minimization, molecule fragmentation, and soft grid treatment; (d) activate 
spin alignment method with density of search set to 9.0; and (e) number of spins per alignment set to 12.

Hallucinogen-Specific Chemogenomics Knowledgebase and Systems Pharmacology Analysis.  
We have constructed a Hallucinogen-Specific Chemogenomics Database29 that can be used for target, off-target, or 
additional identification and network systems pharmacology analysis of small molecules and their potential tar-
gets. Several in-house chemoinformatics tools were also used, including TargetHunter, HTDocking, Blood-Brain 
Barrier (BBB) Predictor, and more30,31. HallucinogenPlatform (http://www.cbligand.org/hallucinogen/)  
collected 144 hallucinogen-related target proteins and 145 chemical compounds associated with these targets in 
6,721 assays and 23,598 references.

In our work, we applied our HallucinogenPlatform and established chemoinformatics tools such as 
HTDocking to perform network systems pharmacological analysis on Amphetamine and Captagon. First, 
Amphetamine and Captagon were docked into the target proteins’ pockets. We then matched these predicted tar-
get proteins to Amphetamine and Captagon according to their docking scores. Targets with higher docking scores 
may have higher binding affinities and therefore a greater chance of interacting with Amphetamine/Captagon. 
Next, we mapped out a pharmacological network of interactions between drug compounds and target proteins at 
the molecular level32,33. Cytoscape 3.4.034 was used to generate, analyze and visualize the network of targets and 
drugs/compounds as described previously33.

Molecular Dynamics (MD) Simulation.  Two systems were set up for molecular dynamics simulations 
using the web-based tool CHARMM-GUI35,36. For the TAAR1 receptor complexed with Amphetamine, the sys-
tem included 256 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids, 22550 water molecules, and 
60 Na+ ions and 69 Cl− ions. For the A2aR receptor complexed with Theophylline, the system included 254 POPC 
lipids, 22427 water molecules, 60 Na+ ions, and 67 Cl− ions. The initial configurations of protein receptors and 
ligands were taken from docking studies. The sizes of the initial simulation boxes were ~100 Å * 100 Å * 117 Å.

The AMBER ff14SB force field37 was applied to proteins and the AMBER Lipid14 force field38 was applied 
to lipids. Water molecules were treated with the TIP3P water model39. The partial atomic charges of ligands 
were derived by the restrained electrostatic potential (RESP) method40 to fit the HF/6–31 G* electrostatic poten-
tials generated using the GAUSSIAN 16 software package41. Other force field parameters came from GAFF in 
AMBER1642. Residue topologies for ligands were prepared using the ANTECHAMBER module43.

The MD simulations were carried out using the PMEMD.mpi and PMEMD.cuda modules in the AMBER1644–46  
package. First, several minimization steps were carried out for the systems to avoid possible steric crashes. Then, 
each system was gradually heated from 0 K to 300 K during the heating stage and kept at 300 K during the follow-
ing equilibrium and production stages. A time step of 1 fs was used for the heating and first part of the equilibrium 
stage, and 2 fs was used for the remaining part of the equilibrium stage and the entire production stage. A periodic 
boundary condition was employed to maintain constant temperature and pressure (NPT) ensembles. Pressure 
was set at 1 atm and controlled by the anisotropic (x−, y−, z−) pressure scaling protocol applied in AMBER with a 
pressure relaxation time of 1 ps. Temperature was regulated using Langevin dynamics with a collision frequency 
of 2 ps−1 47,48. The Particle Mesh Ewald (PME) method49,50 was adopted to handle long-range electrostatics and a 
10 Å cutoff was set to treat real-space interactions. All covalent bonds involving hydrogen atoms were constrained 
with the SHAKE algorithm51. The simulations time for the production stage for each system was 200 ns and the 
coordinates of simulated systems were saved every 100 ps.

For the saved trajectories of MD simulations, Molecular Mechanics/Generalized Born Surface Area (MM/
GBSA) binding free energies were calculated52,53 and free energy decompositions were performed. The interaction 
energies between each residue and ligand were extracted.
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Results
Signaling Pathway Analysis for Amphetamine, a Stimulant with Addiction.  Amphetamine, a 
dopamine inducer, has been reported to not only provide a sense of euphoria but also to contribute to addic-
tion. Addiction to Amphetamine mainly arises from the increased release of dopamine in “the mesoaccumbens 
dopamine pathway, extending from the ventral tegmental area (VTA) of the midbrain to the nucleus accumbens 
(NAc)”54. NAc, also known as the ventral striatum (VS), has been identified to be “the critical shared substrate for 
the reinforcing effect of Amphetamines, cocaine, and other addictive drugs”55.

Amphetamine is reported to be an inhibitor of vesicular monoamine transporter 2 (VMAT2)56, but an agonist 
of Trace amine-associated receptor 1 (TAAR1)57. As shown in Fig. 2, VMAT258 trans-membrane transporter 
mainly delivers neurotransmitters from the cellular cytosol into synaptic vesicles59. TAAR1, a class A GPCR57,60, 
is primarily located in peripheral tissues61, glial cells62, and neurons63 and is responsible for regulating neuro-
transmission in dopamine, norepinephrine, and serotonin neurons in the CNS64. On one hand, the binding of 
Amphetamine to VMAT2 increases the release of dopamine from vesicles63,65. On the other hand, TAAR1 can 
reverse the dopamine transporter (DAT) function by activating protein kinase A (PKA) and protein kinase C 
(PKC), allowing DAT to transport dopamine into the intracellular region and therefore the synaptic cleft63,66. 
This activates the D1 dopamine receptor (D1R) on the post-synaptic neuron. D1R, a D1-like GPCR, can bind to 
G-proteins and increase the cAMP level, phosphorylating cAMP-response element binding protein 1 (CREB1) 
and increasing ΔFosB levels67,68. ΔFosB, a master control protein, governs the activity of several other tran-
scriptional (e.g. AP-1) and epigenetic regulatory proteins and represses the c-Fos gene. c-Fos repression acts as 
a molecular switch that enables the accumulation of ΔFosB in the neuron. As a result, ∆FosB will persistently 
overexpress and accumulate in the D1-type medium spiny neurons that exist in the nucleus accumbens following 
repeated high-dose exposures to Amphetamines, causing the addiction.

Signaling Pathway Analysis for Theophylline, an Antagonist of Adenosine A2a Receptor for 
Drug Abuse.  Theophylline, a weak stimulator chemically and pharmacologically resembling caffeine6, can 
inhibit phosphodiesterase (causing an increase in cAMP levels) and block adenosine receptors.

As shown in Fig. 3, A2aR is a GPCR whose preferred endogenous agonist is adenosine69. A2aR is an attractive 
therapeutic target for cardiac function70, insomnia71, inflammatory response72, pain71, Parkinson’s disease70,73, 
and drug addiction71,74–77. We found that blockage of A2aR by Theophylline inhibits CREB1 phosphorylation. 
Some literature75,76 has reported that “the inactivation/antagonists of adenosine  A2aR selectively  attenuates 
Amphetamine-induced behavioral sensitization,” implying that blockage of A2aR by Theophylline will attenuate 
the addiction of Amphetamine and Captagon. Jiang-Fan Chen et al. administrated the same dose Amphetamine 
in both WT and A2aR KO mice for 7 days, and found that the enhancement of significant locomotion induced 
by amphetamine was shown in the WT rats, in contrast, not in the A2aR KO mice75. Elena Bastia et al. used 
A2aR knockout (A2aR KO) mice model, showing that pairing daily amphetamine doses with their test A2aR 
antagonist (SCH58261 or KW-6002) prevented locomotor sensitization on day 8 in mice76. Although no direct 
pathway showed that Theophylline affects the pathway of Amphetamine addiction, it may affect the accumulation 
of ∆FosB (dash line in Fig. 3, our hypothesis).

Figure 2.  Signaling pathway analysis for Amphetamine, a stimulant with addiction. On one way, Amphetamine 
inhibits the VMAT2 to transport dopamine into synaptic vesicles. On the other, Amphetamine binds with 
TAAR1 and then increase the phosphorylation of DAT, which release more dopamine into the synaptic cleft. 
D1 receptor on the postsynaptic membrane and the following signaling transduction are activated to lead to the 
addiction factor FosB accumulation.
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Interactions of Amphetamine with TAAR1.  Amphetamine directly targets TAAR1 as an agonist. We 
explored in detail the interactions between TAAR1 and Amphetamine. No TAAR1 crystal structure has been 
reported, so we built the homology model using β1AR as a template (PDB ID: 2Y00, Resolution: 2.5 Å)16, with 
a sequence identity of about 35%. Then the model was further validated by energy minimization, proSA-web 
Z-scores26, and PROCHECK Ramachandran plots27.

As shown in Fig. 4, our results showed that the potential binding pocket in TAAR1 is formed by TM3, 
TM5, TM6 and TM7. Several important residues formed strong hydrophobic interactions with Amphetamine, 
including Ile104(3.33) in TM3, Thr194(5.43) in TM5, and Phe268(6.52) in TM6, with a bond distance of 3.6 Å. 
Asp103(3.32) in TM3 and Tyr294(7.42) in TM7 formed strong hydrogen bonds with Amphetamine, with 

Figure 3.  Signaling pathway analysis for Theophylline, an antagonist of adenosine A2a receptor for drug 
abuse. The inhibition of adenosine A2a receptor by theophylline can reduce the expression of CREB1. We 
hypothesized that the crosstalk of the pathway between Amphetamine and Theophylline, that is, the reduced 
expression of CREB1 decreasing the FosB accumulation, will help explain the experimental results that 
Theophylline reduces the behavioral sensitization to repeated amphetamine exposure.

Figure 4.  Detailed interactions between Amphetamine and TAAR1. The key residues on the binding pocket 
of TAAR1 involves Asp103, Tyr294, Ile104, Thr194 and Phe268. Hydrogen bonding interaction will be formed 
between the nitrogen atom belonging to Amphetamine and Asp103 (~2.1 Å) and Tyr294 (~3.2 Å), the other 
hydrogen bond is between Asp103 and Tyr294. While Ile104 (~3.6 Å), Thr194 (~3.6 Å) and Phe268 (~3.6 Å) 
contributed to the hydrophobic interactions with benzene ring of Amphetamine.
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distances of about 2.1 Å and 3.2 Å, respectively. Interestingly, we found an additional hydrogen bond between 
Asp103 and Tyr294, making the previous two hydrogen bonds more stable. All of these residues in our work are 
supported by modeling data reported by Tan et al.78 and docking data calculated by Cichero et al.79. For further 
validation of the binding mode, we also carried out a molecular dynamics (MD) simulation as described below.

Interactions of Theophylline with A2aR and A2bR.  Using the same protocol, we studied interactions 
between A2aR (and A2bR) and Theophylline at a molecular level. The crystal structure of A2aR (PDB ID: 3RFM, 
Resolution: 3.6 Å)17 was used to construct the homology model of A2bR, with a sequence identity of about 66%.

We first docked the reported compound caffeine back to the crystal structure of A2aR as a validation of our 
docking protocol as shown in Supporting Figure S1a. The binding pocket of A2aR is formed by Helices I, II, III, V, 
VI, and VII, and surrounded by important residues including Asn253 (hydrophilic), His278 (hydrophilic), Val84 
(hydrophobic), Phe168 (hydrophobic), Met177 (hydrophobic), Leu249 (hydrophobic), Met270 (hydrophobic, not 
shown), and Ile274(hydrophobic). We found that Asn253 formed strong hydrogen bonding (3.3 Å) with caffeine, 
indicating this residue is very important for ligand recognition. Moreover, six other residues including Val84 
(3.8 Å), Phe168 (3.6 Å), Met177 (3.3 Å), Leu249 (3.8 Å), Met270 (3.9 Å, not shown), and Ile274 (4.1 Å) formed 
strong hydrophobic interactions with caffeine. Moreover, our docking results showed that the docked caffeine 
(yellow sticks) overlapped well with the crystallized compound (cyan) with a root mean square deviation (RMSD) 
of 0.3 Å, indicating our docking protocol is reliable.

We then docked Theophylline into A2aR using the same protocol and compared the binding mode of 
Theophylline (salmon) with that of caffeine (cyan) with their co-crystal structures, as shown in Fig. 5. Our dock-
ing data showed that Theophylline (salmon) overlapped with caffeine (cyan) very well, with an RMSD of 0.15 Å. 
Moreover, these two compounds shared almost the same interactions. Briefly, Asn253 (2.8 Å) formed hydrogen 
bonding interactions with Theophylline (salmon), while Val84, Phe168, Met177, Leu249, Met270, and Ile274 
interacted with Theophylline through strong hydrophobic interactions.

For comparison, we also docked caffeine and Theophylline into A2bR as shown in Supporting Figure S1b. Our 
docking results showed that both caffeine and Theophylline shared similar binding modes and interactions with 
these two receptors.

Molecular Dynamics (MD) Simulation of Amphetamine and Theophylline with Target Receptors.  
To study the dynamics and mechanisms of protein-ligand binding between Amphetamine, Theophylline, 
and related receptors, we carried out 200 ns-MD simulations for the TAAR1-Amphetamine complex and the 
A2aR-Theophylline system.

Detailed interactions after the MD simulations and the RMSDs of the receptors and ligands compared to their 
initial configurations were plotted in Fig. 6. Our MD results showed that the RMSDs of both protein receptors 
were small (around 2.5 Å) during 200 ns simulations, indicating the systems were stable and reasonable. The 

Figure 5.  Detailed interactions between Theophylline and A2aR. The key residues on the binding pocket of 
A2aR involved Asn253, Val84, Phe168, Leu249, Ile274, Met177, and His278. Our docking data showed that 
Theophylline (salmon) overlapped with caffeine (cyan) very well, which indicates the reliability of our docking 
methods. Moreover, these two compounds share almost the same interactions. Briefly, Asn253 on both caffeine 
and Theophylline has the hydrophilic bond with Amphetamine in 3.3 Å and 2.8 Å, while Val84, Phe168 and 
Leu249 formed strong hydrophobic interactions with Theophylline.
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RMSDs of both ligands during the MD simulations were more stable than that of the receptors (less than 1 Å), 
demonstrating that our docking results and poses of the ligands were reliable. Next, Fig. 6a shows the detailed 
interactions between Amphetamine and TAAR1. The data showed that the hydrogen bond between Amphetamine 
and Asp103 was stable (1.8 Å). Importantly, an additional hydrogen bond was formed between Amphetamine and 
Ser107 (2.2 Å). Moreover, Amphetamine interacted with Val184 in the ECL2 (The Extracellular Loop 2) domain 
and Met158 in TM4, forming strong hydrophobic interactions. Finally, Fig. 6b shows that Theophylline had a 
slight rotation during the MD simulation, forming two strong hydrogen bonds with Asn253 (2.7 Å/3.0 Å). The 
hydrophobic interactions kept stable during the simulations.

We further characterized the protein-ligand binding by calculating the interaction energy (IE) between the 
ligand and each residue of the receptor using MM-GB/SA free energy decomposition analysis, as shown in Table 1. 
We found that the MD results correlated very well with our previously described docking studies. For example, 
Asp103 (−5.46 kcal/mol, red in Fig. 6a), Ile104 (−4.19 kcal/mol, red in Fig. 6a), and Val184 (−5.46 kcal/mol,  
light pink in Fig. 6a) in TAAR1 contributed greatly to the binding of Amphetamine, while Asn253 (−6.24 kcal/
mol, red in Fig. 6b), Phe168 (−6.02 kcal/mol, red in Fig. 6b), and Leu249 (−3.00 kcal/mol, white in Fig. 6b) in 
A2aR played important roles in the recognition of Theophylline.

Discussion
Drug-Drug Interactions between Amphetamine and Theophylline.  Some literature reported 
that Theophylline is the substrate of CYP2D680,81, an enzyme involved in many metabolic processes. Moreover, 
Amphetamine is reported to be a substrate and inhibitor of CYP2D681,82. As a result, Theophylline will be elim-
inated more slowly due to competition and/or blockage of CYP2D6 by Amphetamine. Thus, some side effects 
of Theophylline like nausea, diarrhea, and an increase in heart rate may last longer if its plasma concentration is 
high enough. Because Theophylline only constitutes 13.7% of the oral dose of Captagon, we suggest that the risk 
of overdose due to Theophylline is low. Importantly, blockage of A2aR by Theophylline should last longer due to 

Figure 6.  200 ns MD simulation for Amphetamine and Theophylline. (a) MD simulation and binding mode 
of Amphetamine with TAAR1. TAAR1-amphetamine system is stable within 200 ns simulation process and 
an additional hydrogen bond was formed between Amphetamine and Ser107 (2.2 Å). Amphetamine also 
interacted with Val184 in the ECL2 (The Extracellular Loop 2) domain and Met158 in TM4 by hydrophobic 
interactions. (b) MD simulation and binding mode of Theophylline within A2aR. A2aR-theophylline system 
is stable within 200 ns simulation process but shown a small rotation because of the hydrogen bond between 
Theophylline and A2aR.
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this prolonged elimination time. In turn, the effects of Theophylline on decreasing Amphetamine addiction will 
last longer than in a scenario without this competitive elimination.

Knowledgebase-guided Off-target Predictions for Amphetamine/Captagon and Associated 
Side Effects.  Previously, we constructed a Hallucinogen-Specific Chemogenomics Knowledgebase29 that 
can be used for target, off target, or additional identification and network systems pharmacology analysis of small 
molecules and their potential targets. In our current work, we adapted a small but specific dataset with twelve 
5-HT receptors in our knowledgebase to explore the side effects (e.g. hallucinations) for both Amphetamine and 
Captagon. All of these 5-HT or serotonin receptors are GPCRs widely distributed throughout the CNS, reportedly 
associated with depression, anxiety, and drug addiction83. Here, we docked both Amphetamine and Captagon 
into 5-HT receptors to predict potential off-targets.

As shown in Fig. 7, additional potential Amphetamine target proteins were predicted and ranked by their 
docking scores (shown in Table 2) in the form of an interaction network (green one-known target, purple 
one-predicted target). Our results showed that most of the docking scores were not high due to the huge size 
of the binding pocket in the receptor and the small size of the Amphetamine molecule. However, our predicted 

Receptor Residue IE

TAAR1

Asp103 −5.46

Ile104 −4.19

Ser107 −1.60

Met158 −1.28

Val184 −2.56

Thr194 −1.07

Phe267 −1.32

Phe268 −0.57

A2aR

Val84 −0.93

Phe168 −6.02

Met177 −1.28

Leu249 −3.00

Asn253 −6.24

Met270 −1.35

Ile274 −2.31

Table 1.  Key residues of TAAR1 binding to Amphetamine and A2aR binding to Theophylline. IE (interaction 
energy) was calculated by MM-GB/SA (kcal/mol).

Figure 7.  Network systems pharmacology analysis of Amphetamine and the predicted targets. Serotonin 
or 5-hydroxytryptamine (5-HT) receptor family has been linked to the regulation of mood and a series of 
physical behaviors like hallucination and reward. We predicted Amphetamine can also target at this kind of 
receptors (shown in purple) with different affinity using our established knowledgebase and HTDocking target 
identification program. Plus, we found there has been experimental affinity data about 5-HT1a, 5-HT2a and 
5-HT2c (shown in green).
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results correlated well with the known therapeutic targets of Amphetamine. For example, the docking scores of 
Amphetamines with 5-HT2a and 5-HT2c were 4.97 and 5.14, which is well correlated with their experimental 
data. The docking score of Amphetamine with 5-HT1a is 5.12 with experimental data of 7.66 µM. Importantly, we 
predicted two potential targets for Amphetamine, including 5-HT1f (docking score of 5.26) and 5-HT1e (docking 
score of 6.14), as shown in Table 2.

In terms of Captagon lipophilicity6,14, we also calculated the docking scores of Captagon before metabolism 
within these 5-HT receptors, as shown in Table 2. All the docking scores of target proteins for Captagon were 
higher than those of Amphetamine, due to the latter’s more flexible structure and stronger interactions with the 
receptor. In our present work, we showed the detailed interaction of Captagon with its most probable target, 
5-HT7. For comparison, we aligned the predicted binding mode of Amphetamine (purple) and Captagon (slate) 
with 5-HT7, as shown in Fig. 8. Our docking data showed that Amphetamine and Captagon overlapped very well 
and that Asp162 (D3.32) formed strong hydrogen bonds with ligands. For further validation, we will carry out 
future experiments.

Protein Score (Amphetamine) Score (Fenethylline)
Experimental data of 
Amphetamine Gene name

5-HT1a 5.21 7.56 7.66 µM HTR1A

5-HT1b 4.81 7.74 HTR1B

5-HT1d 4.16 8.20 HTR1D

5-HT1e 6.14 7.22 HTR1E

5-HT1f 5.26 7.69 HTR1F

5-HT2a 4.97 8.81 >10 µM HTR2A

5-HT2b 5.00 6.84 HTR2B

5-HT2c 5.14 8.84 >10 µM HTR2C

5-HT4 4.90 8.75 HTR4

5-HT5a 5.04 8.91 HTR5A

5-HT6 4.40 8.31 HTR6

5-HT7 4.72 9.93 HTR7

Table 2.  The predicted protein targets for Amphetamine/Captagon using HTDocking program (docking score 
represents −logKd).

Figure 8.  Predicted binding mode of Amphetamine (purple) and Captagon (slate) within 5HT7. Our docking 
result showed that Amphetamine and Captagon overlapped very well and that Asp162 (D3.32) formed strong 
hydrogen bonds with both Amphetamine (~2.8 Å) and Captagon (~2.8 Å). For further validation, we will carry 
out future experiments.
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Insight into Captagon.  The data analyses are summarized: (1) Captagon when orally dosed will be metabo-
lized into 24.5% Amphetamine and 13.7% Theophylline; (2) Captagon is more lipophilic than both Theophylline 
and Amphetamine, resulting in easier absorption into the CNS; (3) Amphetamine, a TAAR1 agonist that 
enhances dopamine signaling (causing increased irritability, aggression, etc.), is the main cause of Captagon 
addiction; (4) Theophylline, an A2aR antagonist that blocks adenosine receptors in the brain (causing restlessness 
and painlessness), may attenuate the behavioral sensitization caused by Amphetamine; (5) the drug-drug inter-
actions between Amphetamine and Theophylline slow the metabolism and elimination of Theophylline through 
competition and/or blockage of CYP2D6 by Amphetamine; and, (6) Theophylline and Amphetamine act syner-
gistically to augment Captagon’s psychoactive effects beyond those caused by Amphetamines alone.

Moreover, A2aR reportedly has antagonistic interactions with the D2 receptor through heterodimer forma-
tion84. Poleszak E et al. reported that Adenosine A2a receptor antagonist, DMPX (3 and 6 mg/kg ip) can attenuate 
the amphetamine-induced stereotypy in male Wistar rats85,86. This complex exists in neurons found in the nucleus 
accumbens and ventral and dorsal striatopallidal GABAergic neurons, reportedly the main areas involved in 
addiction87. Theophylline, a known A2aR antagonist specifically targets the A2aR protomer, increasing the affin-
ity of dopamine for the D2 receptor and facilitating D2-mediated Gi/o signaling. D2 neurons are associated with 
suppressing addictive drug rewards, opposite to D1-expressing neurons reinforcing rewards88. Thus, the A2aR-D2 
receptor heterodimer theory helps to explain the lessened addictiveness of Captagon versus Amphetamine.

Furthermore, counterfeit Captagon may contain other types of Amphetamines (3,4-methylenedioxymeth 
Amphetamine-MDMA, 3,4-MethylenedioxymethAmphetamine-ecstasy).

On one hand, Amphetamine, the main Captagon metabolite, is an addictive CNS stimulator. On the other 
hand, Theophylline, another Captagon metabolite that blocks A2aR in the brain, may attenuate the behavioral 
sensitization caused by Amphetamine. These metabolites make Captagon more potent but less addictive than 
Amphetamine. The further experiment is on-going, and the data will be published elsewhere.

Conclusion
In our present work, we systematically analyzed the addiction mechanism of Captagon and its metabolites, 
Amphetamine and Theophylline, using our established drug abused chemogenomics knowledgebase sys-
tems pharmacology methods. Our data mining analysis of signaling pathways for both Amphetamine and 
Theophylline, reveals that Amphetamine is the main cause of Captagon addiction and Theophylline can atten-
uate this behavioral sensitization. In addition, we explored the detailed interactions of Amphetamine and 
Theophylline with their reported targets using molecular docking studies and molecular dynamics simulation 
studies. Furthermore, using our established hallucinogen-related chemogenomics knowledgebase and in-house 
computational chemogenomics tools, we studied the side effects of Amphetamine and Captagon through 
off-target prediction. Overall, such potential drug-drug combinations are a promising method for developing 
novel medications to treat drug abuse and addiction.
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