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Abstract: Microplastics (MPs, size < 5 mm) are among the most environmentally challenging pollu-
tants. Their continuous and cumulative inflow or generation in the environment is what makes them
drastically problematic. These pollutants can come from a wide variety of sources; hence, they are
potential vectors that pose extensive risks to environmental and human health. Microfibers (MFs) are
one type of MPs. Among the most well-known types of MFs are those detached from textile articles
from household laundering or industrial processes. Currently, there are many ways to retain the
MFs detached from textile articles. However, as far we know, there are no methods of valorizing
the retained MFs. As such, we propose a novel and sustainable treatment method to immobilize
MFs in a polymeric matrix, turning them into a composite. To determine the mechanical properties
of the expected composites, different proportions of polyester MFs were mixed with low-density
polyethylene, which is the material proposed for the immobilization of MFs. The results show that
the optimum manufacturing composition was 10% (v/v) polyester MFs in the polymeric matrix. This
composition improved some of the tensile mechanical properties of the polymeric matrix. Once the
composites are obtained, these can be used for different purposes.

Keywords: microplastic; microfiber; treatment; textile; contamination; composites

1. Introduction

In recent years, increasing importance has been placed on reducing the pollution
caused by the textile industry. As such, there are numerous studies on the emission of
microplastics and microfibers caused both by industrial textile production and by the
domestic laundry of garments [1–3].

The European Chemical Agency (ECHA) defines microplastics (MPs) as fragments of
chemically modified and/or non-biodegradable polymers with a length < 5 mm [4]. These
pollutants have been encountered in every assessed ecosystem; hence, they are referred
to as ubiquitous [5]. Therefore, MPs have been divided into two main groups: primary
MPs, which are those emitted into the environment in an MP size range, and secondary
MPs, which are those generated in the environment from the fragmentation of larger plastic
debris [6]. Every plastic product is a potential source of MPs. For this reason, the origin of
MPs found in the environment is generally difficult to determine, except in particular cases
such as cellulose acetate, which is mainly attributed to cigarette butts [7].

Microfibers (MFs) are one type of MPs and have a length-to-diameter ratio > 3 and a
maximum length of 15 mm [4]. Textile MFs are among the most well-known MFs as they
have been widely found in the environment. These can be byproducts of the manufacturing,
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usage, cleaning, or final disposal of a textile article [6]. Household laundering and textile
industrial processes detach millions of MFs each year [8–10].

The impacts of MPs have been widely studied; for instance, ingestion across the
trophic chain is now a widely known fact [11–14]. Meanwhile, some effects of MPs on
organisms have been found, such as their retention in the intestinal tract and endocrine
disruption [15–18]. However, such findings may be misleading, as the concentrations used
in the studies differ from those usually found in the environment. Moreover, the MPs used
for laboratory trials are not those that are mostly encountered, as these are MFs [19]. MPs
can also behave as vectors of organisms and hydrophobic toxic compounds [20,21]. The
contamination caused by MPs has also reached products for human consumption and has
polluted the air [22–28]; hence, there are several paths for human exposure to MPs [29].
Nevertheless, the potential risks to human health are still unknown [30–32].

Some solutions have been proposed to retain the MFs detached from washing ma-
chines. There are in-drum accessories that can be used to reduce the generation of MFs
and out-drum filters that are used to retain those generated already [33,34]. However, as
far as we know, there are no existing methods to treat the retained MFs. For example,
Napper et al. (2020) commented that once the filters are cleaned by collecting the MFs,
they can be “thrown into the everyday household waste” [35]. Hence, the MFs could also
end up in the environment. This article aims to present a novel, practical, and sustainable
treatment method for the valorization of the retained MFs detached from textile garments.
As such, to treat the microfibers, we propose to immobilize them into a polymeric recycled
matrix from which they cannot escape. Once inside, MF-based polymeric composites can
be obtained, and these composites can have various applications. The method consists of
making a composite with MFs and a thermoplastic polymeric matrix, in this case, polyester
(PES) and low-density polyethylene (LDPE). PES was selected as it is the most commonly
used fiber in the textile industry [36,37], while LDPE was selected because of its relatively
low fusion temperature. The composites were made by mixing different proportions of PES
and LDPE. In this study, three different proportions of polyester microfibers (5%, 10%, and
15%, v/v) were introduced into a recycled low-density polyethylene matrix. The purpose
was to gain an approximated knowledge of the highest concentration of microfibers that
can be included while still being able to produce a high-quality product. The composites
were subjected to tensile tests to evaluate their mechanical properties, and the morphology
of the fracture’s surface was analyzed using scanning electron microscopy (SEM). The
materials showed very good compatibility since some of the tensile mechanical properties
of the LDPE were improved, because polyester MFs provided reinforcement of the poly-
mer matrix. In light of these findings, we propose a novel and practical method for the
valorization of textile MF pollutants.

2. Materials and Methods
2.1. Composites Manufacturing

The composites were prepared by mixing different proportions of PES-MFs with LDPE.
LDPE (ALCUDIA PE-022, Repsol-YPF, Tarragona, Spain) with a density of 0.915 g/cm3

was used. The mixing was carried out in a CollinW100T two-roll mixer (Dr. Collin, GmbH,
Maitenbeth, Germany). The temperature in both cylinders was set at 130 ◦C. Once the LDPE
was melted, the MFs were introduced and mixed for about 10 min to achieve sufficient
mixing between the polymers. The tested compositions were 5%, 10%, and 15% (v/v) MFs
in the polymeric matrix (LDPE). Higher proportions did not allow for obtaining compact
composites, since more MFs would require more polymeric matrix to coat them all. Once
the mixing was completed, the blend was then consolidated at 100 kN and 140 ◦C for 5 min
in a Collin Mod. P 200E hot plate press machine (Dr. Collin GmbH, Germany, forming
square plates (100 × 100 × 2.5 mm3)). The cooling process was carried out using cool water
for refrigeration. Test samples were properly shaped according to the ASTM-D-412-98
specifications to be used in the tensile test. Plain LDPE without MFs was also treated in the
same way as the filling materials to obtain suitable reference samples.
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2.2. Tensile Test

The tensile strength tests were carried in an Instrom 3366 (Instrom, Buckinghamshire,
UK) universal machine by following the standard ASTM-D-638-14 [38]. The tensile test
speed was set at 1 mm per minute. Young’s modulus, tensile strength, and elongation at
maximum load were calculated using Bluehill version 2 software. Five test specimens per
composite were tested and compared with pure LDPE. The mean and standard deviation
were calculated and used to assess the mechanical behavior of the composites.

2.3. SEM Images

Scanning electron microscopy (SEM) was used to qualitatively examine the fracture
surface of the broken samples from mechanical testing. By observing the environment of
the MFs, it was possible to analyze the adhesion of the fibers to the matrix. Several images
of every composite sample were studied. The microscope used was a Phenom G2 Pro
device (FEI company, Hillsboro, OR, USA), at an accelerating voltage of 15 kV. Prior to the
observations, one sample of each of the composites was prepared by coating them with a
fine layer of gold–palladium alloy to increase their conductivity.

3. Results
3.1. Composites

A picture of the upper surface of the composite with 10% MFs can be seen in Figure 1.
As explained previously, different proportions were used (5%, 10%, and 15%). Visually
speaking, no variation was observed between the different composites. In addition, no MFs
were seen at the composites’ surface, meaning that these were completely trapped inside
the polymeric matrix. This observation was considered a positive outcome, as composites
with MF “limbs” did not appear on the surface. It is important to note that these composites
were composed of discontinuous MFs randomly oriented in a polymer matrix. Hence, the
aim of the work was not to improve the properties of a polymeric material but to get rid of
the MFs that are detached from textile articles. In other words, the purpose of this work
was to treat waste that is currently of concern to the scientific community.
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In Figure 1, square-shaped composites are shown. However, depending on the mold
used in the hot plate press machine, other shapes can be formed. The shape will only
depend on the mold used in the hot plate press machine. Hence, a wide variety of products
can be made, as it will only need a mold to make replications. Additionally, no novel
or unconventional equipment is needed to make the composites. This treatment was
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developed considering the equipment commonly used in polymer recycling plants. In this
sense, depending on the product that would be made, some recycling plants can introduce
MFs into their pre-products without making any significant changes to their processes.

3.2. Tensile Tests Outcomes

Figure 2 shows the stress–strain curves for the different composite specimens and for
pure LDPE. The stress is defined as the ratio of the force to the cross-sectional area of the
specimen and the strain is the axial elongation. As shown in Figure 2, the tensile stress as
well as the Young’s modulus improved when the MFs were inserted into the polymeric
matrix. We are transforming MFs pollutants into feedstock to improve the tensile stress of
the LDPE; hence, the term “garbage” could be substituted for “raw material”. Once again,
it has to be emphasized that we are not dealing with fibers that could be arranged and
prepared to provide a series of better properties to a given polymer, i.e., a grid to insert
inside the polymer. In this case, we are working with “garbage”, MFs obtained from textile
articles that are randomly inserted into the polymer matrix.
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Figure 2. Strain (%) versus tensile stress (MPa) of composites with different compositions of polyester
microfibers (PES-MFs) in the low-density polyethylene matrix (LDPE): (a) 5% PES-MFs; (b) 10%
PES-MFs; (c) 15% PES-MFs; (d) pure LDPE.

As can be seen in Figure 2, in terms of homogeneity, including 10% MFs in the
polymeric matrix yielded the most preferable outcomes. This was elucidated from their
standard deviation regarding the Young’s modulus and the strain: 11 for 5%, 12 for 10%,
and 28 for 15% (standard deviation values for Young’s modulus, see also Figure 3). At a
certain point along the line between 10% and 15% MFs, the standard deviation becomes
larger, which could indicate an inflection point from which the composite begins to lose



Polymers 2022, 14, 2971 5 of 9

some of its homogeneity. However, depending on the application that these composites
could have (i.e., non-structural applications), the 15% MF proportion of composites can be
sufficiently homogeneous if the objective product is not subjected to tensile stress greater
than 8 MPa.
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It has to be mentioned that what is gained in tensile stress is lost in elasticity. In
other words, the composite becomes more prone to rupture without a great deforma-
tion. As can be seen in Figure 2, the strain at maximum load decreases when PES-MFs
content is increased. Additionally, in Figure 3, the calculated average Young’s modulus
is plotted against PES-MFs content, and as can be seen, in all cases, the mean Young’s
modulus increases significantly: from 89.2 ± 6.1 MPa for 100% LDPE to 172.8 ± 11.0 MPa,
200.0 ± 11.9 MPa, and 276.9 ± 28.6 MPa for composites with 5%, 10% and 15% PES, re-
spectively. The most plausible explanation for this outcome is that the Young’s modulus of
the polyester fibers is much higher than that of LDPE [39]. From our experimental data,
the LDPE Young’s modulus is 9 MPa, whereas for PES, the values are between 0.92 and
10 GPa [40–42]. Hence, the contribution of PES microfibers causes an increase in tensile
stress at maximum load compared with pure LDPE.

In addition, tensile stress is lower for the maximum load of LDPE than for compos-
ites but can withstand a longer deformation. With the obtained data, we can apply the
rule of mixtures to estimate the parameter “K” [43] of Equation (1), which is a fiber ef-
ficiency parameter that gives an indication of the contribution of the MFs’ properties to
the composites.

EC = KEFVF + EMVM, (1)
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where:

EC: Young’s modulus of the composite;
EF: Young’s modulus of the polyester MFs (mean between 0.92 to 10 GPa, i.e., 4.64 GPa) [40–42];
VF: volume of MFs included in the matrix;
EM: Young’s modulus of the LDPE (0.09 GPa, experimentally obtained)
VM: volume of LDPE included in the matrix.

Hence, we could estimate the “K” for every measured point, and the evolution of the
“K” parameter is shown in Figure 3. For each average EC experimentally determined (see
Figure 3 for mean EC values), the value of “K” was determined from EF (4.64 GPa), EM
(0.09 GPa), VF (5, 10 or 15%) and VM (95, 90 or 85%). From Figure 3, we can see that, initially,
the “K” parameter decreased from 0.38 to 0.26 when the MFs’ concentration changed from
5% to 10%. However, when the MFs increased to 15%, the “K” parameter also tended to
increase. These changes observed in the “K” parameter may be caused by differences in the
orientation and distribution of the MFs. Hence, when the concentration of MFs is low, the
fibers could be preferentially, randomly, and uniformly distributed within a specific plane
expecting a “K” value of 0.375 (as mentioned in William and Rethwisch (2018) [43]). On the
other hand, the increase in the MFs concentration up to 10% vol. may induce a random
and uniform distribution of the fibers within the three dimensions in the space, thereby
causing a reduction in the “K” parameter.

Continuing on the line between the 10% and 15%, an increase in the “K” parameter
was observed, revealing a change in the composites’ behavior. Hence, with the obtained
equations, we can determine the “inflection” point. As explained previously, this could be
the point at which the standard deviation of the composites’ tensile stress begins to increase,
corroborating the results of the tensile tests shown previously. Setting the derivative
of Equation (2) equal to zero (Equation (3)), the MFs composition corresponding to the
minimum “K” was found to be 11.6 %:

y = 0.003x2 − 0.0698x + 0.6501 (2)

dy/dx = 0 = 0.006x − 0.0698 (3)

where “x” represents the percentage of MFs, and “y” represents the fiber efficiency parame-
ter “K”.

At a concentration of approximately 12% MFs, the composite started to become less
homogeneous. This may have been caused by the MFs filling a significant space of the
composites, thereby lowering the homogeneity. However, more data should be obtained,
and more experimental observations should be conducted in order to arrive at a more
precise conclusion. On the other hand, as can be seen in the SEM images section, the
adhesion of the MFs to the matrix could be improved by introducing other types of MFs
with more asperity (e.g., cotton). In real-world conditions, cotton and other MFs will be
present, as the filters used to retain the MFs do not discriminate between synthetic or
natural fibers.

3.3. SEM Images

The fiber–matrix adhesion achieved in this case can be clearly seen in Figure 4, where
a type of “tunnel” is formed between the PES-MFs and the LDPE matrix. These tunnels
might be formed when the LDPE contracts as a consequence of its cooling and hardening.
The images reveal a lack of fiber–matrix compatibility, mainly because the PES microfibers
are smooth with a negligible degree of roughness [44]. However, as previously stated, when
working with real mixed materials that outflow from a washing machine, other types of
MFs will also be included in the composites. In this sense, materials with more roughness
will appear [45,46]: hence, mechanical adhesion is expected, thus increasing the adhesion
between the MFs and the polymeric matrix. Despite the low compatibility, the composite
does not necessarily have lower tensile strength, because, as stated in the previous section,
the tensile strength increases when the MFs are included. Hence, to achieve a composite
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with improved mechanical properties, it is imperative to perform a thorough mixing before
creating the final products. An important aspect to consider is that this treatment can
include the MFs independently of the retaining method used (e.g., XFiltra, PlanetCare,
Microplastics LINT LUV-R [35]).
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3.4. Practical Solution

Nowadays, in Europe alone, ten million tons of LDPE are produced every year. They
are used for reusable bags, trays, and food packaging, among other functions [47]. In
addition, approximately 40% of the packaging waste, which commonly corresponds to a
type of PE or polypropylene, is currently recycled in Europe [48].

Globally, there are half a million tons of MFs that are annually generated from domestic
laundering [49]. The recycling of this huge amount of MFs, as a composite at 10% (v/v),
requires five million tons of LDPE. In other words, half of the European production of
LDPE is enough to sustainably and practically treat the detached MFs.

Our research group is currently working on some applications of the new MF compos-
ites. Some of the most promising results are found with a 10% (v/v) MF-LDPE composite
used to obtain moving-bed bioreactor carriers. These carriers are being tested in biological
wastewater treatment plants, and the results will be published once the project is finished.

4. Conclusions

PES-MFs immobilized into a polymeric recycled matrix can be transformed into a
composite material. It was found that when including microfibers at a concentration
of 10% in the thermoplastic polymer matrix, some mechanical properties, such as the
tensile stress and Young’s modulus, improved at the expense of reducing the maximum
deformation achievable. It was seen that the composites with up to 10% microfibers behaved
homogeneously. A lower concentration of microfibers also worked fine, but our objective
is to treat the current “fibers’ microplastic pollution from laundering”. Thus, the more
microfibers that can be included, the better. Additionally, no microfibers were detached
from the final composite, meaning that these were fully contained in the matrix. On the
other hand, SEM images showed a low fiber–matrix compatibility due to the non-existent
roughness of the PES microfibers. However, in real-world conditions, other microfibers
with more roughness than that of polyester will be included, further increasing the grip
between the pollutants and the recycled polymer by promoting mechanical adhesion.
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