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Introduction: The purpose of this study was to examine the microhardness and modulus of 

elasticity (MOE) of White ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK) after setting in 

moist or dry intracanal conditions. Methods and Materials: To simulate root canal system, 

14 polyethylen molds with internal diameter of 1 mm and height of 12 mm were used. These 

molds were filled with 9-mm thick layers of White ProRoot Mineral Trioxide Aggregate 

(MTA; Dentsply Tulsa Dental, Tulsa, OK). The experimental group (n=7) had a damp cotton 

pellet with 1.5 mm height and a 1.5 mm layer of resin composite placed on it. In control 

group (n=7) the whole 3 mm above MTA were filled with resin composite. The specimens 

were kept in 37°C and relative humidity of 80% for 4 days in order to simulate physiological 

conditions. Specimens were longitudinally sectioned and nanoindentation tests were carried 

out using Berkovich indenter at loading rate of 2 mN/s at 4×5 matrices of indents which were 

located in the coronal, middle and apical thirds of the specimen’s cross section, to evaluate 

the microhardness and modulus of elasticity of the specimen to appraise the progression of 

the setting process. Differences were assessed using nonparametric generalized Friedman rank 

sum and Wilcoxon Rank-Sum tests. Results: Statistical analysis showed that there was a 

significant difference in microhardness and MOE between control and experimental groups 

at coronal (P<0.001), middle (P<0.001) and apical (P<0.001) thirds of the simulated rod from 

simulated apical foramen. Kruskal-Wallis test showed no significant effect of depth on 

microhardness of material in experimental or control groups. Conclusion: Within limitations 

of this in vitro study, it seems that moist intracanal environment improves setting of MTA in 

various depths. 
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Introduction 

ineral Trioxide Aggregate (MTA) has become an essential 
tool for endodontists and general dental practitioners. It 

was first introduced as root-end filling  as well as perforation 
repair material  because of its excellent biocompatibility and 
possible acceptance of moisture during setting reaction [1]. 
Moreover, it is being widely used for direct pulp capping, root 

perforation repair, pulpotomy, apexification, regenerative 
endodontic procedures [2-4] and complete root canal 
obturation [5, 6].  

According to the manufacturer´s instructions, MTA as a 
hydraulic cement which sets in moist condition at least for 4 h. 
Wet cotton pellet placed against the coronal surface of MTA is 
vastly used for this purpose. In literature, the use of wet cotton 
pellet for each indication of MTA is recommended [2], but some 
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Figure 1. Specimen and indent´s matrices (image taken with confocal microscope) 

 
evidence indicate that it´s use is not beneficial if thickness of MTA 
is less than 4 mm [7], or if the apical foramen is larger than 1 mm 
[8]. If wet cotton pellet is used, a second appointment is necessary 
in order to remove the cotton pellet and place a final restoration. 
This approach has cost and convenience implications as well as 
the risk of reinfection of the root canal system [8, 9]. 

Investigation of the mechanical properties of contemporary 

dental materials at relevant scale is necessary for understanding 

their performance, application limits and of course, for 

optimization of their application protocols. It should be noted that 

mechanical properties show an important size-dependent 

character [10]. One of the mostly mentioned mechanical 

properties of MTA related to setting is microhardness. It is a 

crucial parameter characterizing its mechanical strength and the 

quality of setting as well. 

The purpose of this study was to examine the role of intracanal 

humidity on microhardness and elastic modulus of MTA after 

setting in simulated root canal environment and if it is possible to 

use elastic modulus as an indicator of setting MTA. This has been 

measured using nanoindentation test with MTA exposed to moist 

and dry intra-canal environment. 

Materials and Methods 

In this in vitro experimental study, polyethylen mold tubes with 
internal diameter of 1 mm and height of 12 mm were used to 
simulate the root canal environment. The molds were randomly 
divided to 2 groups (experimental and control), with 8 molds in 
each group.  

In the experimental group, the end of tube was sealed with 1.5 
mm thick layer of flowable resin composite and after light curing, 

a 1.5 mm thick layer of wet cotton was placed inside in order to 
simulate wet intracanal environment. In control group, the end of 
mold tube was sealed with 3 mm thick layer of flowable resin 
composite, without any intracanal humidity. In both groups, the 
tooth-colored ProRoot MTA (Dentsply, Tulsa Dental, Tulsa, OK, 
USA) was mixed with sterile distilled water according to the 
manufacturer’s instructions and incrementally delivered and 
vertically compacted with #3 Machtou plugger. After this 
procedure, a 9 mm long cylinders of material in molds were 
obtained.  

Subsequently whole external surface of mold except simulated 
foramen was covered with nail polish (Nail lacquer, O.P.I, North 
Holywood, CA, USA) in order to avoid absorption of moisture 
apart from simulated apical foramen [11]. The specimens were 
kept in 37°C and relative humidity of 80% for 4 days in order to 
simulate physiological conditions. 

After that the cylindrical samples were fixed in to the acrylic 
resin Dentacryl (SpofaDental, Jičín, Czech Republic) and were 
sectioned. Subsequently were specimen grid by sequential 
procedure with 600 and 800-grit silicon carbide and subsequently 
polished using 0.25 µm diamond suspension. All the preparation 
procedures were performed under the conditions of water cooling 
in order to prevent the sample from overheating. At the end of this 
procedure, the cross-sectional surface of dimensions 1 mm×9 mm 
with the sufficiently low surface roughness was acquired. 

Nanoindentation experiments were carried out using a fully 
calibrated NanoTest instrument (Micro Materials, Wrexham, 
UK) in load controlled mode at room temperature. During the 
test the normal load of 40 mN was applied to the diamond 
Berkovich indenter (Synton-MDP, Port, Switzerland) at 
loading rate of 2 mN/s. The corresponding penetration depths 
were typically around 1 µm. In order to obtain the complete  
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Figure 2. Scatter plot of microhardness and modulus elasticity of MTA  

picture of the effect of the moisture on the mechanical 
properties of MTA the 4×5 matrices of indents were located in 
the central and opposite ends of the specimen’s cross section 
(Figure 1). The distance of the indents in the matrix was 200 
µm. Indentation hardness and reduced modulus of elasticity 
(MOE) were calculated using the standard procedure based on 
the analysis of the load-displacement record [12]. 

Statistical analysis 

Due to non-normal distribution of hardness and modulus of 
elasticity, the effect of depth of material and presence of dry or 
moist intracanal environment were analysed with generalized 
Friedman rank sum test and Wilcoxon Rank-Sum test. 
Statistical significance was set at 0.05. 

Results 

The descriptive statistics of the data are summarized in table 1. 
The data do not exhibit normal distribution according to the 
Shapiro-Wilk tests. Statistical analysis employing generalized 

Friedman rank sum test for blocked data showed that there was 
no significant difference in surface microhardness in various 
depths of material for dry (P=0.1061) or moist intracanal 
environment (P=0.0962).  

The influence of dry and wet environment on hardness and 
MOE in stated depth was tested by Wilcoxon Rank-Sum test. 
The results indicated that there was significant difference in 
microhardness and MOE at first, second and last third of 
material from simulated apical foramen, when higher values of 
observed variables were typical for wet environment and all the 
obtained P-values were substantially lower than significance 
level 0.05. Moreover, there was quite strong correlation 
between microhardness and MOE; the Spearman correlation 
coefficients in dry and moist intracanal environment were 0.77 
and 0.78, respectively. Its zero values were rejected by the 
Spearman’s tests (both P<0.05). The linear relationship is also 
visible from the scatter plot of microhardness and MOE 
(Tables 1 and 2) (Figure 2).  

Discussion 

The present in vitro study compare the microhardness and MOE 
of MTA in dry and wet environments. Microhardness testing is 
based on the evaluation of resistance of material 
againstplastic/elastic deformation [13]. This resistance is 
influenced by many material properties such as MOE, Poisson’s 
ratio, yield strength, stress hardening exponent, tensile strength 
and many others [14, 15] as well as the experimental conditions. 
Conventionally, the hardness test is based on the measurement of 
the diagonal dimensions of the residual plastic impression created 
during the indentation process, where the hard indenter is pressed 
into the sample’s surface. Vickers indenter, a four-sided pyramid, 
was used in most studies. This approach relies on the visual 
observation of residual indentation, and also on the assumption 
that only very limited elastic recovery of the residual indent takes 
place. Generally, the measurement of the actual size of the indent 
becomes intricate with the decrease of its dimensions and increase 

Table 1. Descriptive statistics of measured data of microhardness  
Depth (N) Mean (SD) in moist condition Depth (N) Mean (SD) in dry condition 
Coronal (95) 1.52 (0.46)  Coronal (78) 1.14 (0.40)  
Middle (117) 1.42 (0.36) Middle (85) 1.30 (0.52)  
Apical (101) 1.40 (0.33)  Apical (82) 1.27 (0.56)  

Table 2. Descriptive statistics of measured data of elastic modulus 

Depth (N) Mean (SD) in moist condition Depth (N) Mean (SD) in dry condition 

Coronal (110) 46.94 (8.02)  Coronal (84) 36.72 (7.28)  

Middle (127) 45.60 (7.35)  Middle (87) 40.56 (8.74)  

Apical (107) 42.75 (7.93)  Apical (85) 37.72 (7.82)  



 

IEJ Iranian Endodontic Journal 2018;13(1): 20-24 

23 Žižka et al. 

 

of surface roughness. On the contrary, the advanced approach of 
hardness testing, also called depth sensing indentation, is based on 
the continuous recording of the force-displacement data during 
the whole test. Such approach includes loading, creep and 
unloading. The graphical representation of such data is called a 
nanoindentation curve, containing the loading and unloading 
curves. The defined geometry of the indenter together with the 
measured penetration depth are then used for determination of 
the projected area and in turn for calculation of hardness. This 
reduces the possible errors of the visual observation of the residual 
impression. The obvious advantage of depth sensing indentation 
is the ability to determine the elastic modulus of the specimen 
evaluating the slope of the unloading branch [12]. Also, the energy 
of elastic and plastic works associated with the indentation process 
can also be calculated, which makes the analysis far more 
comprehensive [16, 17]. Finally, other phenomena like creep, 
incipient plasticity [18] or other pressure-induced phase 
transformations [19] can be studied, even at elevated 
temperatures [16].  

In recent studies, specimens were subjected to Vickers 

microhardness test only in horizontal plane and in specific 

distance from simulated apical foramen. Several studies suggest 

that dry or moist intracanal environment does not influence the 

setting of MTA up to 2 mm [20] or 4 mm [7, 8]. Microhardness 

tests have been used for the evaluation of the quality and 

progression of the hydration process and as an indicator of the 

setting process [21, 22]. Previous work marked on its capability to 

provide information on the effect of setting conditions and the 

strength of tested materials [23]. For accurate comparison with 

other materials, specimens should be polished and dimensions of 

at least 6 mm thick and 12 mm wide are required. These 

conditions are far from clinical endodontics. Thus, tests in this 

field are mainly comparative for the use within each study [24]. 

Unlike all previous studies, we measured microhardness of real 

size samples sectioned to longitudinal axis. The loading force was 

chosen in order to keep the local characteristics of the 

measurements on one hand and to avoid the negative effect of 

surface roughness on the other hand.  

To our knowledge, in this study, the mechanical properties 

(indentation hardness and elastic modulus) of MTA using 

nanoindentation were studied for the first time. Furthermore, the 

cross-sectioned area was tested in order to get the complete 

hardness map. In addition, the nanoindentation depth sensing 

approach allowed us to explore reduced modulus distribution 

also. Since all the tests were performed under the same conditions, 

both the relative as well as absolute values of mechanical 

properties across the longitudinal cross section were provided.  

In general, the data demonstrated high standard deviations 

ranging from 21% to 45% for microhardness and from 11% to 

19% for elastic modulus. The large variability in standard 

deviations may have resulted from local differences in MTA itself 

or caused by compaction of material. The maintenance of a 

constant degree of hydration of MTA during compaction is 

almost impossible in clinical setting [8]. Another possible cause 

may be continually maturing nature of material because of 

continuation of hydration reactions and structure maturation in 

MTA, well beyond clinically observed setting times [25]. High 

standard deviations can be found in other studies dealing with 

microhardness of MTA as well [7, 8]. 

Our findings suggest that additional water from wet intracanal 

environment can improve the setting of white MTA along whole 

thickness of material. Nevertheless, in vivo, there are another 

possible sources of moisture such as absorption through root [11] 

which can improve setting of white MTA. However, this study 

aimed to investigate and to compare the microhardness and MOE 

only in relation to intracanal environment. Although clinical 

impact of less set material in root canal when used as root canal 

filling is questionable. Some evidence suggests that the apical seal 

can be obtained independently on wet cotton pellet placement 

[26] and rather is connected to thickness of MTA plug [27]. We 

must emphasize that the outstanding sealing properties of MTA 

are most probably caused by slight setting expansion and 

production of interfacial layer [28, 29] which are dependent on the 

setting of material. 

Conclusion 

Within limitations of this study, it seems that the use of wet cotton 

pellet is beneficial for the whole thickness of material when MTA used 

as a root canal filling material. Moreover, the microhardness and 

elastic modulus were significantly higher even for apical third. It 

seems that usage of wet cotton pellet even in situations where only 

limited thickness of MTA is used like revascularization/revitalization 

or perforation repair, is not redundant. Because of in vitro nature of 

this experiment, the authors suggest caution when extrapolating the 

results to clinical practice. 
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