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�
 ABSTRACT 

Purpose: Enzalutamide after abiraterone progression is com-
monly used in metastatic castration-resistant prostate cancer 
despite a low rate of clinical benefit. Analyzing IMbassador250, a 
phase III trial assessing enzalutamide with or without atezolizu-
mab after abiraterone, we hypothesized that baseline and early 
changes in circulating tumor DNA (ctDNA) tumor fraction (TF) 
may identify patients more likely to exhibit survival benefit from 
enzalutamide. 

Experimental Design: ctDNA was quantified from plasma 
samples using a tissue-agnostic assay without buffy coat se-
quencing. Baseline ctDNA TF, changes in ctDNA TF from 
baseline to cycle 3 day 1 (C3D1), and detection at C3D1 alone 
were compared with overall response rate, radiographic 
progression-free survival (rPFS), median OS (mOS), and 50% 
reduction in PSA. 

Results: ctDNA TF detection at baseline and/or C3D1 was 
associated with shorter rPFS and OS in 494 evaluable patients. 
Detection of ctDNA TF at C3D1, with or without detection at 
cycle 1 day 1, was associated with worse rPFS and mOS than lack 
of detection. When ctDNA TF and PSA response at C3D1 were 
discordant, patients with (ctDNA TF undetected/PSA not re-
duced) had more favorable outcomes than (ctDNA TF detected/ 
PSA reduced; mOS 22.1 vs. 16 months; P < 0.001). 

Conclusions: In a large cohort of patients with metastatic 
castration-resistant prostate cancer receiving enzalutamide after 
abiraterone, we demonstrate the utility of a new tissue-agnostic 
assay for monitoring molecular response based on ctDNA TF 
detection and dynamics. ctDNA TF provides a minimally inva-
sive, complementary biomarker to PSA testing and may refine 
personalized treatment approaches. 

Introduction 
Novel hormonal therapies such as abiraterone and enzalutamide 

have transformed the care of patients with advanced prostate cancer. 
However, patients eventually develop resistance and require novel 
therapeutic approaches. Like abiraterone, enzalutamide targets the 
androgen receptor (AR) signaling axis (1–4), and mechanisms of 
resistance to abiraterone often result in cross-resistance to enzaluta-
mide. Still, following abiraterone progression, enzalutamide is the 
most-used regimen in the treatment of metastatic castration-resistant 
prostate cancer (mCRPC; ref. 5) despite the known low rate of net 
clinical benefit (6, 7). This may be due to a number of factors, in-
cluding aversion to chemotherapy (8, 9), lack of access to infusion 
centers (10), or lack of training for chemotherapy use by urologists 

(11, 12). Furthermore, current standard-of-care imaging assessments 
and biomarkers for assessing response such as PSA have limitations 
(13). A biomarker that can accurately identify patients who are likely 
to have prolonged clinical benefit on an oral, chemotherapy-sparing 
regimen (enzalutamide) after abiraterone progression could be very 
useful. 

Liquid biopsy for the analysis of circulating tumor DNA (ctDNA) 
in blood is an increasingly adopted tool with regulatory approvals for 
treatment selection and on-treatment monitoring for patients with 
advanced cancer. It is particularly well suited for those with inac-
cessible progressing lesions such as bone metastases (14). Addition-
ally, one newly emerging liquid biopsy analyte measuring the 
abundance of ctDNA shed into the bloodstream is tumor fraction 
(TF). Several studies in mCRPC have now reported an association 
between a patient’s TF and clinical features or tumor burden (2, 
15–17). A recent real-world evaluation of 1,723 patients with mCRPC, 
metastatic breast cancer, metastatic colorectal carcinoma, or advanced 
non–small cell lung cancer found that those with elevated TF, defined 
in that study as 10% TF or greater, had worse relative overall survival 
(OS) independent of standard features used for prognosis in each of 
the respective disease areas (18). Furthermore, monitoring early 
ctDNA changes on therapy has been shown to inform treatment 
response and survival outcomes across therapeutic classes and tumor 
types (19–24). Utilizing a more comprehensive TF calculation, here 
called ctDNA TF, which is a composite of aneuploidy, variant allele 
frequency, canonical alterations, and sequencing read fragment 
lengths (18), we analyzed pre- and on treatment plasma to risk stratify 
patients with mCRPC and enable enhanced patient selection for in-
tensified treatment approaches after abiraterone progression. 
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IMbassador250 (NCT03016312) sought to improve upon enza-
lutamide therapy, enrolling patients with mCRPC who had received 
prior abiraterone in the mCRPC setting and had either additionally 
received treatment with taxanes or refused chemotherapy. Enrolled 
patients were randomized to receive enzalutamide backbone with 
atezolizumab or placebo. The addition of atezolizumab to enzalu-
tamide did not meet the primary endpoint of improved OS in un-
selected patients [stratified HR 1.12, 95% confidence interval (CI, 
0.91–1.37); P ¼ 0.28] (25). To enable tissue-agnostic ctDNA mon-
itoring without paired peripheral blood mononuclear cell sequenc-
ing, FoundationOne Monitor was developed, which leverages the 
sequencing platform of FoundationOne Liquid CDx and enables 
quantification of, and changes in, ctDNA TF. Using the ctDNA TF 
results from banked plasma, we assessed the ctDNA content pre- 
enzalutamide and at cycle 3 day 1 (C3D1) with the hypothesis that 
early levels of and reductions in ctDNA TF on treatment are asso-
ciated with radiographic response and represent a population 
enriched for the clinical benefit of enzalutamide. 

Materials and Methods 
Study design 

Plasma was obtained and banked for research purposes from pa-
tients enrolled in IMbassador250 (25). Any patients with banked 
plasma at baseline (cycle 1 day 1, C1D1) were eligible for baseline 
analysis including the prognostic assessment of ctDNA TF pretreat-
ment. Patients with banked plasma at C1D1 and C3D1 were eligible 
for ctDNA TF change analysis. Any patient with C3D1 plasma was 
eligible for the prognostic assessment of ctDNA TF on treatment. 

Approval for this study, including a waiver of informed consent 
and Health Insurance Portability and Accountability Act waiver of 
authorization, was obtained from the Western Institutional Review 
Board (protocol 20152817). 

FoundationOne Monitor assay and ctDNA tumor fraction 
algorithm 

FoundationOne Monitor is a tissue-naı̈ve ctDNA monitoring 
assay using hybrid capture NGS based on the assay methods 

described previously (17). The assay detects and quantifies the 
fraction of ctDNA of the total cell-free DNA present in a liquid 
biopsy sample as ctDNA TF, recently described elsewhere (26). It 
also reports clinically relevant alterations. 

FoundationOne Monitor was performed on banked plasma 
specimens in a CLIA-certified, CAP-accredited laboratory (Foun-
dation Medicine, Cambridge, MA). 

In the FoundationOne Monitor assay, the ctDNA TF in a sample is 
quantified by integrating multiple distinct signals, including aneu-
ploidy, the presence of short variants, and patterns related to the sizes 
of cell-free DNA fragments in the sample. When significant aneu-
ploidy is present, a copy number model is constructed to explain the 
observed variations in relative coverage (as normalized using a panel- 
of-normals approach) as well as deflections in the allele frequencies of 
common heterozygous single nucleotide polymorphisms. The resulting 
model consists of a segmentation of the genome with an assigned 
integer copy number state for each segment in the tumor compart-
ment, as well as a direct estimate of the fraction of DNA found in the 
tumor compartment. When significant aneuploidy is not present, the 
variant allele frequencies of short variants deemed very likely to be 
somatic are used to infer the likely TF in the sample based on the 
maximum variant allele frequency. Fragment information is used to 
limit the contribution of clonal hematopoiesis to the aneuploidy-based 
estimate and to help identify somatic short variants (27). 

Statistical analysis and outcome measures 
The primary outcome analysis for baseline ctDNA TF compared 

radiographic progression-free survival (rPFS; with OS as a second-
ary measure) of patients defined by ctDNA TF detected versus not 
detected. Whenever possible, biologically supportive analyses were 
conducted in accordance with the Bradford Hill Criteria (28) for 
inferring causality from observational studies. 

Chi-square tests and Wilcoxon rank-sum tests were used to assess 
differences between cohorts of categorical and continuous variables, 
respectively. Records with missing values were excluded from ana-
lyses. PSA response was defined as ≥50% reduction from C1D1 to 
C3D1 (29). 

rPFS was calculated from the initiation of treatment until either 
investigator-assessed radiographic progression or death, whichever 
came first. Patients without progression or death at the last follow- 
up were right censored. OS was calculated from treatment initiation 
to death from any cause, and patients with no record of mortality 
were right censored at the date of last contact. Seven patients with 
progression prior to C3D1 were excluded from progression-free 
survival analyses but included in OS analyses. 

Radiographic response (overall response rate, ORR) was deter-
mined via the RECIST criteria in patients with measurable disease at 
baseline [281 of 408 patients (68.9%); refs. 25, 30]. 

Differences in time-to-event outcomes were assessed with the 
log-rank test and Cox proportional hazard models. 

Harrell’s concordance index (C-index; ref. 31) is a measure of 
model discriminatory performance, with values from 0.5 to 1.0, 
where 0.5 reflects a completely random result and 1.0 reflects perfect 
prediction (32). It was used as generated from the “survival” 
package in R (RRID:SCR_021137). Statistical significance was 
assessed from 95% confidence intervals. 

Statistics, computation, and plotting were carried out using Py-
thon 2.7 (Python Software Foundation, Wilmington, DE, RRID: 
008394) packages matplotlib (RRID:SCR_008624), statsmodels 
(RRID:SCR_016074), and Pandas (RRID:SCR_018214) or R 4.2.1 
(Posit, Boston, MA, RRID:SCR_001905) packages ggplot2 (RRID: 

Translational Relevance 
Despite frequent use of enzalutamide after abiraterone in 

metastatic castration-resistant prostate cancer, most patients do 
not derive clinical benefit due to primary or rapidly acquired 
resistance. There is an urgent need to identify patients likely to 
progress rapidly. Radiographic assessment of treatment response 
and PSA exhibit limitations for the identification of nonre-
sponders during early treatment. Longitudinal ctDNA moni-
toring has emerged as a powerful new technology for the 
assessment of treatment response in patients with advanced 
cancer. Using data from a randomized, phase III trial, we link 
the detection of ctDNA TF at baseline, on treatment, and TF 
dynamics with outcomes. We provide evidence that ctDNA TF is 
a clinically pragmatic complement, or even tiebreaker, to PSA 
and imaging, which are sometimes unreliable or conflicting. 
Taken together, ctDNA TF may inform treatment switches, 
provide risk stratification, and potentially guide clinical trials in 
patients with metastatic castration-resistant prostate cancer. 
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SCR_014601), survminer (RRID:SCR_021094), survival (RRID: 
SCR_021137), and tidyverse (RRID:SCR_019186). 

Statement on investigation on humans 
Informed consent was obtained for participation in the IMbas-

sador250 study. Approval for this study, including a waiver of in-
formed consent and Health Insurance Portability and 
Accountability Act waiver of authorization, was obtained from the 
Western Institutional Review Board (protocol 20152817). 

Data availability 
All relevant data are provided within the article and its accompanying 

Supplementary Material. Because of Health Insurance Portability and 
Accountability Act requirements, we are not consented to share indi-
vidualized patient genomic data, which contains potentially identifying 
or sensitive patient information. Foundation Medicine is committed to 
collaborative data analysis, and we have well-established and widely used 
mechanisms by which investigators can query our core genomic data-
base of >600,000 deidentified sequenced cancers to obtain aggregated 
datasets. More information and mechanisms for data access can be 
obtained by contacting the corresponding authors or the Foundation 
Medicine Data Governance Council at data.governance.council@ 
foundationmedicine.com. For IMbassador250, qualified researchers 
may request access to individual patient-level data through the clinical 
study data request platform (https://search.vivli.org/enquiries). 

Results 
Characteristics of analysis cohort 

The intention-to-treat population included 759 patients with 
mCRPC who had progressed on abiraterone, and either progressed 
after taxane treatment or refused chemotherapy (25). Of these, a 
total of 570 had C1D1 plasma available for sequencing; 494 of these 
specimens passed quality control and were successfully sequenced. 
Of these, 408 patients had C1D1 and C3D1 sequencing results 
suitable for bridging reanalysis, comprising the biomarker-evaluable 
population (BEP; Supplementary Figs. S1 and S2), but clinical 
characteristics were comparable (Supplementary Table S1). Within 
the BEP, the detection of ctDNA TF was strongly associated with a 
number of clinical factors, including higher PSA, abnormal hemo-
globin, alkaline phosphatase, and a greater number of bone me-
tastases and metastatic sites (all P < 0.001; Supplementary Table S2). 

ctDNA TF and outcomes on enzalutamide after abiraterone 
progression 

Patients with ctDNA TF detected at baseline (326 of 408, 80%) 
had considerably worse rPFS (median 4.6 vs. 11.4 months; HR, 2.21, 
95% CI, 1.62–3.03; P < 0.001) and OS (median 13.6 vs. 22.5 months, 
HR, 3.25, 95% CI, 2.13–4.97; P < 0.001; Supplementary Fig. S3). The 
lowest ctDNA TF value quantified among BEP patients at baseline 
was 0.3%. A variable cut point sensitivity analysis observed robust 
results irrespective of the cut point chosen (Supplementary Table 
S3). The main analysis assumed that the addition of atezolizumab 
would have a negligible effect on this patient population. We ad-
ditionally performed analyses restricted to patients who were ran-
domized to receive enzalutamide plus atezolizumab or enzalutamide 
plus placebo, and the results were consistent with the overall anal-
ysis (Supplementary Fig. S4). 

In the BEP, 296 (73%) had detectable ctDNA TF at C3D1. When 
evaluating ctDNA TF on treatment, detection at C3D1 was associ-
ated with shorter rPFS (HR, 3.16; 95% CI, 2.38–4.18; P < 0.001) and 

OS (HR, 5.33; 95% CI, 3.57–7.95; P < 0.001; Fig. 1A and B). Of 
patients with ctDNA TF detected at C3D1, 73% had an rPFS ≤6 
months. 

Given the prognostic value of ctDNA TF at both C1D1 and C3D1, we 
stratified patients into four groups based on the status of each timepoint 
(C1D1/C3D1): [Not Detected/Not Detected], [Detected/Not Detected], 
[Not Detected/Detected], and [Detected/Detected]. The clinical charac-
teristics of these patients are described in Supplementary Table S4. Pa-
tients with ctDNA TF Detected at both C1D1 and C3D1 (i.e., ctDNA 
nonresponders, 68.6% of patients assessed) had median rPFS of 
4.1 months and median OS of 12.4 months. Patients with ctDNA TF 
Detected at C1D1 and Not Detected at C3D1 (i.e., ctDNA responders, 
11.2% of patients assessed) had a median rPFS of 14.2 months and 
median OS of 22.1 months. For patients having ctDNA TF Not Detected 
at C1D1 and Detected at C3D1 (i.e., ctDNA newly detected on treat-
ment, 3.9% of patients assessed), median rPFS was 5.9 months, and 
median OS was 16.1 months, whereas those with ctDNA TF Not De-
tected at C1D1 and ctDNA TF Not Detected at C3D1 (i.e., ctDNA never 
detected, 16.2% of patients assessed) had median rPFS of 14.3 months 
and median OS not reached (Fig. 2A and B). 

ctDNA TF and standard clinical prognostic features 
The relative prognostic power was compared between baseline 

ctDNA TF and standard prognostic features used in metastatic 
prostate cancer care. In multivariable models evaluating rPFS and 
OS, the inclusion of baseline ctDNA TF was strongly independent in 
the models (Supplementary Fig. S5A and S5B). We additionally 
investigated the relative prognostic value of clinical factors and 
ctDNA TF, as well as the combined information. We calculated 
Harrell’s concordance index (C-index) of PSA only, all clinical 
variables, ctDNA TF only, and clinical variables and ctDNA TF 
combined. The clinical variables available for analysis were largely 
consistent with those used in a validated nomogram for baseline 
prognosis in patients with chemotherapy-näıve mCRPC (33). PSA 
alone had the least prognostic value for both OS (0.65, Supple-
mentary Fig. S5C) and PFS (0.56, Supplementary Fig. S5D). All 
clinical variables had similar prognostic values to ctDNA TF for 
both OS (0.71 and 0.72, respectively) and PFS (0.63 and 0.62). 
Clinical variables and ctDNA TF combined had a still higher OS 
(0.76) and PFS (0.66), indicating an independent value of ctDNA TF 
even when accounting for other clinical factors. 

To understand the discriminatory power of response assessment 
modality and timing, we evaluated OS in a C-index model con-
taining each single modality either at baseline, C3D1, or both 
timepoints. We investigated PSA50, ctDNA TF at C3D1 and/or 
C1D1, as well as RECIST assessment comparing radiographic im-
aging at C1D1 and C3D1. The concordance for PSA50 (0.57, SE 
0.56–0.59) was outperformed by RECIST (0.62, SE 0.60–0.64; 
Fig. 3), although this difference was not statistically significant (P > 
0.05). Concordance for ctDNA TF at baseline (0.58, SE 0.56–0.59) 
was largely equivalent to PSA50. Concordance for ctDNA TF at 
C3D1 (0.64, SE 0.63–0.65) was significantly better than baseline 
ctDNA TF alone (P < 0.05) and was similar to the combination of 
baseline and C3D1 ctDNA TF (0.64, SE 0.63–0.66; Fig. 3). The 
concordance of ctDNA TF at C3D1 or both timepoints when 
compared with OS was numerically but not significantly greater 
than RECIST alone. These results indicate that ctDNA TF at C3D1 
is a stronger predictor of OS than 50% PSA reduction alone or 
ctDNA TF at C1D1 alone and slightly stronger than radiographic 
response, especially when combined with ctDNA TF at C1D1. 
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ctDNA TF and PSA for treatment response monitoring 
Change in PSA is often used as an additional response assessment 

in mCRPC. Comparatively, patients without a PSA reduction of at 
least 50% (PSA50) also had shorter rPFS (HR, 2.24; 95% CI, 1.67, 
3.00) and OS (HR, 2.20; 95% CI, 1.55, 3.13; Supplementary Fig. S6). 

These results were consistent for PSA reduction cut points of 30% 
(Supplementary Fig. S7) and 90% (Supplementary Fig. S8). When 
evaluating the value of ctDNA TF and PSA for predicting ORR, we 
find that ctDNA TF at C3D1 and PSA50 response result in similar 
ORR predictions determined by RECIST (Supplementary Table S5). 
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However, only 281 of 408 patients (68.9%) were evaluable for 
RECIST. In clinical practice, results from different clinical lab-
oratories and imaging can sometimes be discordant. We found 
that ctDNA TF detection status at C3D1 and PSA50 response at 
C3D1 were concordant in 71.1% of cases. To understand the 
relationship between PSA response and ctDNA TF detection, we 
conducted a survival analysis using the combination of ctDNA 
TF status and PSA response as a factor. When ctDNA TF status 
and PSA response at C3D1 were discordant, patients with 
[ctDNA TF Not Detected/PSA Not Reduced] had more favorable 
outcomes compared with [ctDNA TF Detected/PSA Reduced] 
(mOS 22.1 vs. 16 months; P < 0.001; rPFS 11.7 vs. 6.3 months) 
and were more similar to patients with [ctDNA TF Not Detected/ 
PSA Reduced] (mOS Not Reduced; rPFS 16.5 months) than those 
with [ctDNA TF Detected/PSA Not Reduced] (mOS 16 months; 
rPFS 6.3 months; Fig. 4). Fifty out of 70 (71.4%) patients with 
[ctDNA TF Not Detected/PSA Not Reduced] had undetectable 
ctDNA TF at C1D1 as well, which correlates with good prognosis 
(Supplementary Fig. S2). These results were consistent when 
using the alternative PSA reduction cut points of 30% (Supple-
mentary Fig. S9) and 90% (Supplementary Fig. S10). To evaluate 
ctDNA TF response vs. PSA50 response, we restricted the anal-
ysis to those patients with ctDNA TF detected at C1D1 and 
found similar results (Supplementary Fig. S11). Furthermore, 
when considering ctDNA TF for patients with clinically ambig-
uous imaging and PSA results (i.e., no radiographic progression 

but lack of PSA reduction), ctDNA TF detection further stratified 
patient risk (mOS 12.9 months vs. not reached; HR, ¼ 4.56; P < 
0.001; Fig. 5). 

Discussion 
Enzalutamide is the most widely used therapy after progression 

on abiraterone even though the clinical benefit is low due to im-
precise predictors of response (5, 6). This leads to some patients 
receiving ineffective therapy. Within this specific clinical context, we 
sought to evaluate ctDNA TF, a clinically pragmatic biomarker bi-
ologically tied to both tumor growth rate and tumor burden, to 
identify patients most likely to benefit from enzalutamide. Utilizing 
reanalyzed data from a completed phase III clinical trial with an 
FDA-approved assay, we demonstrate that ctDNA TF detection at 
baseline and C3D1 on therapy are both independently prognostic 
for poorer outcomes on enzalutamide. Multivariable modeling 
suggests that consideration of both timepoints is more predictive 
than either timepoint alone. The data presented here suggest that 
the most recent ctDNA TF is the most relevant, with additional 
prognostic information provided by the previous timepoint(s). As 
has been described for other ctDNA monitoring assays in other 
diseases and clinical settings, the clinical performance increases with 
additional monitoring (20, 21, 25, 34–38). Although baseline ctDNA 
TF status is prognostic itself, we anticipate that each new result will 
enable a more up-to-date assessment that describes the current 
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Figure 3. 
Comparison of PSA, RECIST, and ctDNA TF as intermediate clinical endpoints. Multivariable model assessing ctDNA TF status at C3D1, ctDNA TF status 
at C1D1, PSA at C1D1, PSA response, PTEN loss, and DDR gene alterations for associations with (A) OS and (B) rPFS. C, C-index comparison of model 
performance for predicting OS. Error bars indicate standard error. TF and PSA values are categorical. “TF C1D1 and TF C3D1” includes the categorical 
response values at both timepoints in addition to a combination term. Axis of the C-index is displayed as starting at 0.5, consistent with the possible 
values of a C-index calculation. 
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disease burden and therefore updated information to inform 
treatment decisions. 

PSA remains readily accessible and broadly recommended by 
treatment guidelines, but these data indicate that evaluation of 
ctDNA TF on its own is more informative and can be comple-
mentary to widely used response measures such as RECIST as 
well as PSA at either timepoint or combined. When PSA 

response and ctDNA TF were discordant at C3D1, ctDNA TF 
status had a stronger correlation with survival outcomes. Inter-
estingly, in instances where ctDNA TF was not detected but PSA 
was not reduced, baseline ctDNA TF was enriched for “not de-
tected” (71.4% of cases), indicating a superior sensitivity of 
ctDNA TF in identifying low-risk patients. Furthermore, when 
radiographic imaging results and PSA response were discordant 
or inconclusive, ctDNA TF was able to risk stratify patients. This 
is of significant value in tumor types with high rates of bone 
metastasis or “bone-only” disease, such as mCRPC, where im-
aging is often inconclusive. Additionally, metastatic prostate 
cancer is particularly well suited to monitoring by ctDNA due to 
the relatively high prevalence of detectable aneuploidy and 
ctDNA shed (39). These data suggest that ctDNA TF may serve 
as a robust liquid biopsy analog to RECIST (40, 41). Compre-
hensive genomic profiling also enables the identification of novel 
alterations that may confer resistance to various therapies, re-
gardless of the site of metastasis. 

We acknowledge shortcomings in this analysis. Although 
some analyses were predefined, specifically the use of a ctDNA 
TF 2% cutoff for the prognostic value of ctDNA TF at C1D1 
(Supplementary Table S2), and others were based on prior ex-
amples of ctDNA-based monitoring, these analyses were largely 
exploratory. Furthermore, although consistent with findings 
from across tumor types for both baseline prognosis and on- 
treatment monitoring, this analysis is restricted to mCRPC (18, 
21, 24, 34, 35, 42–45). Most patients had RECIST-evaluable 
disease, although ctDNA TF and PSA results were available to 
evaluate the remaining 31% with RECIST-unevaluable disease. 
Further research in additional cohorts could evaluate the utility 
of ctDNA TF in patients with bone-only metastases or other 
clinical settings in which imaging remains challenging. Fur-
thermore, we here analyzed on-treatment samples only from 
C3D1. Further exploration of optimal timing of monitoring may yield 
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still better predictive value. Earlier timepoints could provide infor-
mation on response earlier, potentially helping discontinue ineffective 
treatment sooner. Later timepoints may prove to be more strongly 
correlated with survival outcomes, as they would allow for more 
therapy exposure. In clinical practice, liquid biopsy at C3D1 would 
make results available for decisions about therapy discontinuation for 
cycle 4, complementary to imaging taken at 3 months. Subsequent 
research evaluating other timepoints may need to evaluate the optimal 
quantitative cutoff to define ctDNA response, potentially with less 
stringent cutoffs earlier (18, 21, 24, 34, 35, 42–45). Selection of the 
ideal timepoint and cutoff will require a tradeoff between clinical 
actionability and analytic stringency. Additionally, genomic alter-
ations, especially in the gene encoding the AR, have been shown 
previously to impact prognosis on AR-directed therapies such as 
those examined here (46, 47). The interplay between ctDNA TF and 
its relation to both prognosis and sensitivity for alterations, as well as 
the prognostic implications for the alterations themselves, will be 
examined in future work. 

In summary, the established methods of assessing tumor progression 
in mCRPC by PSA (a direct measure of prostate cancer, which is a 
disease mostly driven by AR) and radiographs (direct for soft tissue and 
indirect when assessing the cancer’s impact on the bone structure such 
as with whole-body bone scan and CT enhanced with defined 
density windows to improve signal) have clear clinical utility. 
However, these established methods track AR-driven disease and/ 
or require gross changes to see changes on radiographs. The data 
presented demonstrate how ctDNA TF complements PSA and 
conventional whole-body bone scan and CT imaging and are a 
strong prognostic factor across timepoints, making serial mea-
surements through liquid biopsy a potentially useful tool in 
assessing and predicting response to therapy. 
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