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Eukaryotic cells employ diverse uptake mechanisms depending on their specialized

functions. While such mechanisms vary widely in their defining criteria: scale, molecular

machinery utilized, cargo selection, and cargo destination, to name a few, they all

result in the internalization of extracellular solutes and fluid into membrane-bound

endosomes. Upon scission from the plasmamembrane, this compartment is immediately

subjected to extensive remodeling which involves tubulation and vesiculation/budding

of the limiting endomembrane. This is followed by a maturation process involving

concomitant retrograde transport by microtubule-based motors and graded fusion

with late endosomes and lysosomes, organelles that support the degradation of

the internalized content. Here we review an important determinant for sorting and

trafficking in early endosomes and in lysosomes; the control of tension on the

endomembrane. Remodeling of endomembranes is opposed by high tension (caused

by high hydrostatic pressure) and supported by the relief of tension. We describe

how the timely and coordinated efflux of major solutes along the endocytic pathway

affords the cell control over such tension. The channels and transporters that expel

the smallest components of the ingested medium from the early endocytic fluid are

described in detail as these systems are thought to enable endomembrane deformation

by curvature-sensing/generating coat proteins. We also review similar considerations

for the lysosome where resident hydrolases liberate building blocks from luminal

macromolecules and transporters flux these organic solutes to orchestrate trafficking

events. How the cell directs organellar trafficking based on the luminal contents of

organelles of the endocytic pathway is not well-understood, however, we propose that

the control over membrane tension by solute transport constitutes one means for this

to ensue.

Keywords: endocytosis, phagocytosis, macropinocytosis, mTOR, ESCRT, ion transport, V-ATPase, sorting nexin

INTRODUCTION

The active internalization of extracellular material by eukaryotic cells is key to nutrient acquisition,
environment sensing, and maintenance of normal cell physiology. In metazoans, this process
is essential for maintaining the specialized functions of tissues and the system as a whole. As
such, different cell types engage multiple different uptake pathways including clathrin-dependent
and -independent endocytosis, micropinocytosis, and phagocytosis (Figure 1). These pathways
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operate under distinct mechanisms and scales; receptor-
mediated endocytosis internalizes small plasma membrane-
derived vesicles, macropinocytosis results in bulk uptake of
extracellular fluid, and phagocytosis is employed for the
internalization of large (>0.5µm) particulates. Endocytic
pathways are also usurped by a variety of obligate intracellular
pathogens as part of their infection cycle including viruses,
bacteria, and fungi. In addition, cells undergo autophagy, a
process by which cytosolic components are entrapped within a
newly generated membrane to form an autophagosome. Despite
their differences, these pathways all result in the conception
of an intracellular, membrane-bound vesicle bearing cargo (i.e.,
receptors, ligands), and fluid.

Cargo that is internalized from the extracellular milieu
meets one of 3 known fates depending on the cell’s needs; (1)
receptors/ligands may be recycled back to the plasma membrane,
(2) cargo may be routed elsewhere in the cell such as to the trans-
Golgi network (TGN) via retrograde transport or (3) cargo may
be degraded by delivery to lysosomes, organelles that support the
enzymatic breakdown of macromolecules (Lawrence and Zoncu,
2019). Regardless of destination, cargo sorting and trafficking
from the early (nascent) endosome necessitates an astonishing
degree of endomembrane remodeling. This remodeling begins
moments after scission of the endosome from the plasma
membrane. To retrieve receptors and membrane, fine membrane
tubules extend from the endosome and pinch off to form smaller
vesicles that recycle the cargo (Yamashiro et al., 1984; Ren et al.,
1998; Grant and Donaldson, 2009). These fission events occur
even as endosomes undergo homotypic fusion giving rise to a
complex balance betweenmembrane addition and removal. After
the initial stages of remodeling, the remaining endosome that
bears cargo destined for degradation then matures. Maturation
can be envisaged as a series of steps including retrograde
transport of the organelle, inward budding of the limiting
endomembrane, morphing into a multivesicular endosome in
the process (Gruenberg, 2020), and finally, graded fusion with
(endo)lysosomes (Huotari and Helenius, 2011). Interestingly,
these trafficking pathways may be highjacked or arrested by
effectors generated by internalized pathogens. For example,
bacterial effectors, ejected into the cytosol from their resident
vacuoles, can target various steps of endosome maturation,
thereby curtailing microbicidal activities of the host (Gruenberg
and van der Goot, 2006). Studies on cargo sorting have revealed
key protein complexes such as retromer, retriever, and ESCRT
that function in the aforementioned pathways of retrograde
cargo transport to the TGN, recycling to the plasma membrane
and degradation in lysosomes, respectively (Seaman et al., 1998;
Raiborg and Stenmark, 2009; McNally et al., 2017).

On the other hand, the fate of the internalized fluid has been
relatively unexplored. Recent work suggests that the resolution
of volume from the endocytic pathway is not only essential
for sorting and trafficking, but may be the initiating event
that enables the extensive endomembrane remodeling described
above (Freeman et al., 2020). One need only consider the extreme
surface-to-volume changes that occur during sorting (Freeman
and Grinstein, 2018): A newly formed spherical macropinosome
that is anywhere between 0.5 and 5µm in diameter can project

numerous fine tubules that can be several microns long yet
contain almost no luminal volume at all (Kerr et al., 2006;
Freeman et al., 2020). Such continuous removal of membrane
without a parallel loss of volume would quickly limit this
system by increasing the hydrostatic pressure within the vacuole,
generating a turgid membrane that is refractory to deformation.
The solution? Cells rely on a collection of vacuolar channels and
transporters for the timely release of solutes from the lumen
across the endomembrane. This process ensures that water is
forcibly extruded from the vacuole, causing a subsequent drop
in its internal hydrostatic pressure and a drop in the membrane
tension. The membrane slack afforded by this process results in
crenation that permits the recruitment and assembly of curvature
sensing/stabilizing proteins, such as BAR domain-containing
proteins, to the vacuolar surface (Simunovic and Voth, 2015;
Freeman et al., 2020). It is expected therefore that trafficking
complexes that associate with highly curved membranes are
similarly dependent on membrane tension relief for their
recruitment and function. Conversely, the addition of tension
to the membrane may be utilized to arrest endomembrane
remodeling. Thus, the flux of solutes, and as a consequence,
water, to and from the vacuole drives traffic by controlling
membrane tension.

Although tremendously understudied, similar mechanisms
of membrane tension control may operate at the late stages
of endosome maturation as well. As endosomes mature,
they ultimately fuse with lysosomes, highly acidic organelles
that harbor more than 50 resident acid hydrolases that
support the degradation of internalized molecules. And, in
addition to endocytosis, autophagy converges on the lysosome
for degradation of intracellular cargoes through fusion of
autophagosomes with lysosomes to form autolysosomes. While
acidification is central to lysosomal function, it comes with
osmotic considerations. For example, counter-ion fluxes that
are driven by lysosome-resident transporters and channels
are key to reaching and maintaining the low pH but have
varying osmotic effects on the lysosome. In addition, the
liberation of building blocks from enzymatic digestion of the
internalized content requires their efflux via transporters of
the solute carrier family (SLCs), for use in anabolic cellular
processes and to mitigate an osmotic burden that could
result in overtly high membrane tension. Thus, the collective
activities of numerous lysosomal channels and transporters
supports normal lysosomal functions and affords the cell
control over endomembrane tension to dictate trafficking. When
solute transport mechanisms are impaired, defects in lysosomal
function and trafficking ensue, such as those documented in
numerous lysosomal storage disorders (LSDs). Moreover, the
ability for endocytosed liposomes, exosomes, and enveloped
viruses to fuse with the limiting endomembrane are also
predicted to be dependent on membrane tension. Understanding
how cells utilize solute transport to control endomembrane
tension is therefore important to fully appreciate mechanisms
that support trafficking, infection, and its dysregulation in
storage disorders.

In this review we discuss how cells may be afforded control
over membrane tension to regulate endomembrane trafficking,
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FIGURE 1 | Cells entrap extracellular and cytosolic fluid via diverse mechanisms. Multiple forms of endocytic uptake are depicted along with autophagy.

Clathrin-mediated endocytosis occurs when plasma membrane (PM) invaginations are formed by the coat protein clathrin to generate a clathrin-coated pit. The pit

dissociates from the PM by scission, induced by the GTPase dynamin (not depicted), and forms an endocytic vesicle. In addition, numerous clathrin-independent

endocytic routes are depicted including caveolae, clathrin-independent carriers (CLICs), and fast endophilin-mediated endocytosis (FEME). Caveolae form at

cholesterol-rich PM domains called lipid rafts and use the protein caveolin to shape the membrane into flask-like invaginations. CLICs are uncoated tubulovesicular

PM invaginations stabilized by the actin cytoskeleton and regulated by the small GTPase Cdc42 that recruits the actin polymerization machinery. FEME relies on a

BAR-domain containing protein, endophilin, for curvature of tubular PM invaginations that scission upon dynamin recruitment. In the schematic, one tubular PM

invagination represents endocytic uptake via CLICs and FEME. Macropinocytosis and phagocytosis are specialized forms of endocytosis. Macropinocytosis proceeds

via polymerization of the cortical actin cytoskeleton to produce PM ruffles that fold back on the cell and fuse, indiscriminantly trapping the surrounding medium into

large (up to 5µm sized) membrane-enclosed vacuoles called macropinososmes. Phagocytosis is a receptor-mediated process by which cells bind and engulf

particulates including dead cells (depicted), debris, and pathogens like bacteria and fungi into membrane-enclosed phagosomes. Phagocytosis is also aided by the

actin cytoskeleton. Note that extracellular fluid is internalized via all these pathways. In addition, cells use autophagy to sequester protein aggregates, damaged

organelles and other cytoplasmic components within a double-membrane structure called an autophagosome.

a view that we and others have proposed (Scott and Gruenberg,
2011; Freeman and Grinstein, 2018). A brief overview of the
different endocytic pathways is presented with considerations
of plasma membrane tension in these processes and the
solute composition of internalized fluid. This is followed by a
description of how nascent endosomes flux osmolytes via a suite
of channels and transporters to maintain the low endomembrane
tension required for the membrane remodeling that accompanies
cargo sorting and trafficking. Finally, we consider how lysosomal
solute transport via a broad range of channels and transporters
may function to fine-tune membrane tension as a mechanism to
tightly control membrane trafficking.

MAIN

Endocytosis Mechanisms and the Role of
Membrane Tension
Endocytosis, Macropinocytosis, Phagocytosis
Endocytosis, the fundamental process of nutrient uptake and
receptor signaling regulation, is utilized by virtually all nucleated

cells of the body. The best described is clathrin-mediated
endocytosis (CME) that proceeds through invaginations of
the plasma membrane (PM) that sequester receptor-ligand
complexes into∼50–200 nm pits coated with the protein clathrin
(Figure 1) (Ehrlich et al., 2004; McMahon and Boucrot, 2011).
These pits ultimately scission with the aid of the GTPase
dynamin that constricts the neck of the bud, to form endocytic
vesicles bearing cargo such as low-density lipoprotein (LDL),

transferrin (Tf), and epidermal growth factor (EGF) bound
to their cognate receptors (Kaksonen and Roux, 2018). Thus,
while nutrients like lipids and iron are internalized for cell
growth, CME also controls receptor signaling by removing
receptors from the plasma membrane when needed (Tsao et al.,

2001; Goh and Sorkin, 2013). Additionally, numerous clathrin-

independent endocytic routes have been described including

caveolae, tubulovesicular clathrin-independent carriers (CLICs),

and fast endophilin-mediated endocytosis (FEME) (Mayor and

Pagano, 2007). These pathways rely on specific biophysical
properties for cargo internalization such as distinct membrane
lipid compositions (i.e., lipid rafts), the engagement of the actin
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cytoskeleton to produce tubular invaginations or non-clathrin
membrane shaping proteins (Galbiati et al., 2001; Doherty and
McMahon, 2009; Boucrot et al., 2015).

In addition to one or multiple of these pathways, specialized
cells also utilize macropinocytosis or phagocytosis to internalize
large amounts of extracellular fluid or particulates, respectively.
Macropinocytosis involves the rapid polymerization of cortical
actin to produce plasma membrane ruffles that capture
surrounding fluid and collapse to form large (>0.2µm) internal
vacuoles called macropinosomes (Swanson, 2008). Because
this process results in the non-discriminant sampling of
large amounts of extracellular fluid (Steinman et al., 1976),
macropinocytosis is typically utilized by cells of the innate
immune system to survey tissues for infection (West et al.,
2004), as well as by some cancer cells as a means of sustaining
the high nutrient requirements of their altered metabolic states
(Commisso et al., 2013). In addition, professional phagocytes
like macrophages are tasked with the removal of cell corpses
and microbes, and as such utilize phagocytosis, a specialized
form of endocytosis that allows for ingestion and degradation
of particulates (Aderem and Underhill, 1999; Freeman and
Grinstein, 2014).

Membrane Tension and Control of Endocytic

Trafficking
It has been known for some time that PM tension regulates
endocytic pathways (Gottlieb et al., 1993; Dai and Sheetz, 1995;
Bajno et al., 2000). Low membrane tension is permissive of
and induces multiple forms of endocytosis (Watanabe et al.,
2013; Hirama et al., 2017; Wu et al., 2017; Loh et al., 2019).
On the other hand, increases in tension oppose CME (Bucher
et al., 2018) and require additional forces exerted by the actin
cytoskeleton to complete pit formation and aid scission (Boulant
et al., 2011). Yeast that have to invaginate their PM against
turgor pressure are entirely dependent on their actin cytoskeleton
for endocytosis (Aghamohammadzadeh and Ayscough, 2009).
An interesting concept, however, is that cells are able to
sense changes in membrane tension and exert control over
it in order to govern membrane trafficking. Some of these
control mechanisms have been described. For example, caveolae
can assemble or disassemble to provide additional membrane
as needed (Sinha et al., 2011; Golani et al., 2019), CLICs
regulate membrane tension via the mechano-transducer vinculin
(Thottacherry et al., 2018), and increases in PM tension during
phagocytosis can signal to exocytosis machinery in order to
deliver additional membrane as required (Masters et al., 2013).
Thus, cells use endocytic machinery like caveolae and CLICs
as well as exocytosis as important membrane reservoirs to
provide rapid membrane slack when required. Conversely, cells
must also have ways to prevent overt membrane slack, since
acute decreases in membrane tension dysregulates endocytic
uptake (Wu et al., 2017; Loh et al., 2019). Insights gained
from studies on PM tension control raise questions regarding
intracellular membranes: Do cells sense and regulate membrane
tension throughout the endosomal-lysosomal system to direct
endomembrane trafficking, and how? One way this could
be achieved is by controlled osmotic shifts imposed by the

transport of solutes. Numerous endolysosomal resident channels
and transporters working in a concerted fashion may achieve
such ends.

Immediately upon scission, endosomes containing cargo and
fluid undergo rapid recycling of membrane. It should be obvious
however, that without a parallel loss of fluid, membrane recycling
would abruptly halt as hydrostatic pressure within the organelle
would quickly build up to a point where membrane deformation
is negated. A critical component of fluid resolution is that it
accompanies efflux of osmolytes. While the composition of the
extracellular fluid varies depending on the niche, it typically
consists of a mix of organic solutes, macromolecules and small
inorganic ions. Many of the molecules are in the form of
polymers (i.e., polysaccharides, proteins, polynucleotides etc.)
and are of relatively low concentrations, thus have a low osmotic
contribution. There are some exceptions (including hydrating
glucosaminoglycans) but these too are often of low abundance
in most tissues. On the other hand, the types and concentrations
of inorganic monovalent ions in extracellular fluids are high and
kept relatively constant in the body; Na+ (140mM) and Cl−

(110mM) account for the major osmolytes present (Figure 2).
Given that extracellular concentrations of Na+ and Cl− are 3–
10 times higher than the cytosol, this gradient favors the efflux
of Na+ and Cl− from nascent endosomes into the cytosol by
channels. Indeed, recent work demonstrates that cells exploit this
gradient to drive water out of vacuoles without costing the cell
energy to relieve endomembrane tension and enable trafficking
from the compartment (Freeman et al., 2020).

Fluid Resolution Lowers Membrane
Tension to Enable Early Endocytic
Trafficking
Gated Efflux of Na+ Drives Endomembrane

Remodeling and Trafficking
While all forms of endocytosis involve the uptake of fluid
(pinocytosis), this is emphasized and can be readily monitored
in cell types that macropinocytose. In such cells, the newly
formedmacropinosomes resolve rapidly (withinminutes) by way
of shrinkage and extensive tubulation (Racoosin and Swanson,
1993; Steinman and Swanson, 1995). The compartments can
also be manipulated by simply performing ion substitutions at
the time of their formation and sealing. Monitoring the large
endosomes when Na+ is substituted with non-transportable
cations (e.g., N-methyl-D-glucosamine+), demonstrates that a
Na+ gradient is necessary for tubulation and shrinkage of
macropinosomes (Freeman et al., 2020). As a result, without
Na+ the endosomes are large and perfectly spherical, as though
swollen by trapped water. By inhibiting a panel of endolysosomal
channels and transporters pharmacologically, Freeman et al.
identified the Na+-conducting two-pore channels 1 and 2
(Wang et al., 2012; She et al., 2018) (TPC1 and TPC2) as
key players in this process: Treatment of cells with the TPC
inhibitor tetrandrine resulted in swollen macropinosomes. The
resultant, distended macropinosomes, precluded the formation
of membrane tubules that are a hallmark of early cargo
sorting. Use of single and double knock-out strategies further
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FIGURE 2 | Lipid-gated monovalent ion efflux controls endomembrane tension and trafficking of early endosomes. (A) The fusion and delivery of

endomembrane-resident channels including TPCs is important for the subsequent efflux of Na+ from the nascent endosome. Fusion is mediated by SNAREs in a

Ca2+-dependent manner. The initial source of Ca2+ is not clear but can come from the endocytic fluid or via store operated calcium entry (SOCE). (B) Once

incorporated into the endosome and activated by PtdIns(3,5)P2, TPCs and TRPMLs can transport Na+ down its concentration gradient into the cytosol. A parallel flux

of Cl− is also required, which could be facilitated by CLIC1, ClCs, or VRAC. At the near-neutral pH of early endosomes, ClCs allow for 2Cl− to be transported out in

exchange for 1H+. ClCs as well as Na+ proton exchangers (NHEs) may therefore contribute to early acidification of the endosome. Importantly, the efflux of Na+ and

Cl− from early endosomes drives osmotically obliged water out of the organelle and this fluid resolution reduces membrane tension. Rab5 may sense endomembrane

tension as it drives endosome enlargement through effector proteins EEA1 and Rabenosyn-5 that facilitate SNARE-dependent fusion. (C) Fluid resolution ultimately

lowers membrane tension. (D) Low membrane tension fosters the recruitment of membrane remodeling/sorting complexes to the endosome surface to drive early

endosomal trafficking.

revealed that TPC1 is primarily responsible for the resolution of
volume from macropinosomes (Freeman et al., 2020) (Figure 2).
Consistent with this finding, TPC1 has been shown to be
recruited to macropinosomes immediately upon their formation,
while TPC2 is recruited at later stages and operates at lysosomes
(Calcraft et al., 2009; Freeman et al., 2020). Not surprisingly,
macropinocytic cells like macrophages that handle large amounts
of fluid experience pressure for Na+ efflux, as evidenced by their
high expression of TPC1 (Freeman and Grinstein, 2018; Freeman
et al., 2020). Nevertheless, TPC1−/−;TPC2−/− mice are, for the
most part, normal unless pressured to perform high membrane
traffic (Grimm et al., 2014; Sakurai et al., 2015; Castonguay et al.,
2017), suggesting either redundancy or compensation in Na+

efflux pathways in these animals.
The failure of macropinosomes to shrink and resolve without

a Na+ gradient is due to the disruption of an efflux that supports
the extrusion of osmotically coupled water from the vacuole
(Figure 2). This loss of water is a critical trafficking prerequisite
that lowers endomembrane tension by reducing the hydrostatic
pressure within the vacuole, in turn rendering the vacuolar
membrane amenable to deformation by trafficking complexes.
Indeed, not only is macropinosome resolution impaired when a
Na+ gradient is lost, but canonical receptor recycling pathways
are disrupted in fibroblasts and epithelia cell types (Freeman
et al., 2020). This suggests that the exploitation of a Na+ gradient

is a universal mechanism used by cells to drive endomembrane
trafficking. In principle, sodium proton exchangers (NHEs) could
also efflux Na+ while causing early acidification of vacuoles
(Nakamura et al., 2005), a process that would be electroneutral.
Thus, while there are likely multiple pathways for vacuolar
volume resolution, TPC1-mediated Na+ efflux represents a
prototypical mechanism for relieving hydrostatic pressure and
membrane tension to enable trafficking.

Counterion Flux Is Required for Volume Resolution
The efflux of Na+ by TPCs presents the need for counterion
fluxes in order to maintain electroneutrality. It stands to reason
that a parallel loss of Cl− would be similarly necessary for
the resolution of nascent endosomes. Indeed, ion substitution
experiments in which Cl− is replaced with the impermeant anion
gluconate− prevents macropinosome shrinkage and tubulation
and the organelles again appear swollen, suggesting that water
is trapped in the compartment (Freeman et al., 2020). The
transport pathway for Cl− is not known, but endolysosomal
organelles bear several Cl− channels and transporters that could
potentially fulfill this role even in the early endosome. To this
end, the Cl− intracellular channel protein 1 may be involved
in these counterion fluxes, however, its ion transport activities
and mechanisms of action remain controversial (Stauber and
Jentsch, 2013). Other endomembrane Cl− transporters include
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members 3–7 of the ClC family of H+/Cl− exchange transporters.
Some of these transporters are located in early endosomes and
can support early acidification by exchanging luminal Cl− for
H+ (Stauber and Jentsch, 2013), so like organellar NHEs, these
could contribute to volume loss. Interestingly, gain of function
mutations in members of the ClC family result in volume
increases in the endocytic pathway (Nicoli et al., 2019), and ClCs
are generally outwardly rectifying, so while these transporters
have yet to show a role in the rapid process of volume resolution,
they may contribute to the osmoregulation of endolysosomes in
other ways. In addition, a recent screen identified LRRC8A, a
component of the volume-regulated anion channel (VRAC), as
necessary for the control of vacuolar volume, since inactivation
of the LRRC8A gene causes swelling of endolysosomes (Lenk
et al., 2019). Whether this effect is directly caused by the
loss of VRAC activity from endosomes remains to be formally
tested. Should VRAC function along the endocytic pathway
(Li et al., 2020), its flux of Cl− and that of several organic
anions (Jentsch, 2016; Kasuya et al., 2018), could yield pleiotropic
control over trafficking.

The Role of TRPMLs in Early Endomembrane

Trafficking
Among the channels reported to play critical roles in membrane
trafficking are the Ca2+ conducting transient receptor potential
cation channels of the mucolipin subfamily 1-3 (TRPML1-3).
Loss of TRPML1 causes severe vacuolation of endolysosomes
in restricted cell types including gut epithelial cells (Venugopal
et al., 2007) where only the expression of a wild type channel,
but not pore-mutants, rescue this phenotype (Dong et al., 2010).
TRPML1 is indeed rapidly acquired by nascent endosomes in
myeloid cells but TRPML1−/− macrophages do not appear
vacuolated or impaired (SF unpublished). It should be noted
that Ca2+ itself is a minor osmoticant of extracellular and
endocytic fluid, with concentrations that change drastically in
the endocytic pathway, but never reach >2mM. The flux of
Ca2+ from early endosomes may nevertheless be critical for
early compartments to fuse with later ones via SNARE-mediated
membrane fusion, analogous to proposed methods of secretory
vesicle fusion with the plasma membrane (Park and Ryu, 2018).
This would ensure that the endomembrane becomes endowed
with the necessary channels and transporters that support fluid
resolution (Figure 2). However, Ca2+ in the endocytic fluid is
not ostensibly required for the shrinkage of nascent vacuoles
(Freeman et al., 2020). This would suggest alternate sources of
Ca2+ that contribute to fusion beyond that of the early endocytic
fluid, potentially from previously formed endosomes. Despite
being a minor osmotic contributor, Ca2+ indeed exits from
early endosomes as its concentration quickly drops from 1mM
to low µM ranges despite volume loss (Scott and Gruenberg,
2011). The efflux of Ca2+ may be mediated by TRPML, TPCs,
or even store-operated channels stimulated by contacts between
the endoplasmic reticulum (ER) and the plasma membrane.

It remains unclear why TRPML1-deficient epithelial cells have
enlarged endolysosomes. This could be either because (1) the
compartment does not fuse to acquire TPCs or (2) because
TRPMLs may be the critical mode of Na+ efflux in these cells.

The former possibility stems from studies demonstrating that
endosomal Ca2+, released by TRPML, regulates the fusion of
endomembranes (Pryor et al., 2000; Dayam et al., 2015). Since
TPCs exist in endomembrane reservoirs and are delivered to
newly formed endosomes by fusion (Castonguay et al., 2017),
their efficient delivery may require TRPML-mediated Ca2+

efflux. The latter is a possibility because TRPMLs are in fact non-
selective cation channels, and were shown to be permeable to
Na+ in addition to Ca2+ (LaPlante et al., 2002). Thus, TRPMLs
may contribute to volume resolution either indirectly by aiding
TPC delivery to endosomes or directly by mediating Na+ efflux
along with TPCs. Either way, TRPML activity is necessary for
the resolution of vacuolar fluid in select cell types. Interestingly,
like some TRP channels in the PM, the gating of TRPML2 is
mechanosensitive and activated under hypotonic (high tension)
conditions (Chen et al., 2020). This is a remarkable finding,
suggesting that channels that support volume loss are activated
when biophysical demands present themselves.

A Critical Role for Phosphoinositides in

Endomembrane Tension and Trafficking
TPCs and TRPMLs in fact belong to a class of ion channels
that are gated by a single, rare lipid species found on the
cytoplasmic leaflet of endomembranes—the phosphoinositide
PtdIns(3,5)P2 (Dong et al., 2010; Wang et al., 2012; She et al.,
2018). PtdIns(3,5)P2 is generated by a single kinase (PIKfyve)
which is activated, in part, by osmotic stress (Gary et al., 1998;
Bonangelino et al., 2002). This feature then confers the cell
with an ability to control Na+ efflux in space, time and upon
changes to ionic strength. Together with some understanding
for how monovalent ion effluxes control volume resolution,
the connections provide a new perspective on numerous
studies reporting endolysosomal defects caused by the loss of
PtdIns(3,5)P2. In yeast, it had long been reported that the
loss of Fab1, the lipid kinase that synthesizes PtdIns(3,5)P2 by
phosphorylating PtdIns(3)P, leads to the formation of abnormally
enlarged vacuoles (Yamamoto et al., 1995; Gary et al., 1998).
Subsequent studies in mammalian systems further demonstrated
extensive vacuolation of endolysosomal compartments upon
PtdIns(3,5)P2 depletion (Ikonomov et al., 2001; Rutherford et al.,
2006; Chow et al., 2007; Zhang et al., 2007; Jefferies et al., 2008;
Zolov et al., 2012; Cai et al., 2013; Sharma et al., 2019). That
PtdIns(3,5)P2-deficient vacuoles are large, phase-lucent, highly
spherical organelles, suggests that they are fluid-filled and likely
experience high membrane tension that precludes the formation
of tubules.

Supporting this notion, loss of PtdIns(3,5)P2 blocks endosome
fission (Sharma et al., 2019), prevents receptor recycling
(Freeman et al., 2020) and trafficking of the proton-pumping
vacuolar-type ATPase (V-ATPase) (Buckley et al., 2019),
impairs retrograde transport of numerous cargoes to the TGN
(Rutherford et al., 2006), and arrests phagosome resolution
(Krishna et al., 2016). Importantly, all of these processes
proceed throughmembrane deformation events such as budding,
tubulation, and scission. In addition, the acute washout of
inhibitors of PIKfyve, promptly results in extensive tubulation,
vesiculation, and shrinkage of the engorged endolysosomes
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(Sharma et al., 2019; Freeman et al., 2020). Distended
macropinosomes in PIKfyve-inhibited cells can be induced to
shrink and form tubules when subjected to hypertonic solution
(Freeman et al., 2020), a condition that osmotically forces water
out the cell and concomitantly, out of the vacuoles. These
findings suggest that PtdIns(3,5)P2 controls the vacuolar efflux
of Na+ through its gating of TPCs and TRPMLs, and that this
in turn drives water out of the lumen and triggers membrane
remodeling processes by reducing membrane tension. Like all
phosphoinositides, the effectors of PtdIns(3,5)P2 collectively
orchestrate a gamut of cellular functions. For example, in yeast,
this phosphoinositide can regulate the assembly of the V-ATPase
(Li et al., 2014) yet lysosome swelling is prevented whenmutating
or inhibiting the pump in PtdIns(3,5)P2-deficient cells (Wilson
et al., 2018; Sharma et al., 2019). It seems likely, therefore, that
PtdIns(3,5)P2 may support efflux of Na+ and Ca2+ but also
govern ion and specifically proton transport at the lysosome in
yet poorly-defined ways.

Endomembrane Tension Sensing
Amajor outstanding question in the field is how endosomes sense
their luminal contents to direct traffic. As previously alluded to,
cation channels (e.g., TRPML), PIKfyve, and VRAC/LRRC8 are
all responsive to endomembrane tension and/or osmotic stress,
suggesting that there are numerous feedback mechanisms for
the cell to calibrate ion transport to the tension experienced
at organelles (Bonangelino et al., 2002; Chen et al., 2020; Li
et al., 2020). Tension on the endomembrane may impact lipid
packing or spacing of lipid headgroups and could conceivably
recruit or activate signaling complexes that sense these events.
In this regard, given that the small GTPases of the Rab family
control nearly all aspects of membrane traffic, including vesicle
budding, docking, fusion, and transport (Grosshans et al., 2006),
they would seem to be likely candidates. Like all GTPases,
Rabs function as molecular switches; when GTP-bound they
recruit effector proteins with diverse functions in membrane
trafficking, whereas they are inactivated by GTPase activating
proteins (GAPs) that help convert the GTP to GDP. The cycle
repeats when the GDP is removed by a guanine nucleotide-
exchange factor (GEF) and the GTPase is loaded with GTP once
again. This ability to rapidly cycle between on and off states
and their individual specificities for membrane compartments
makes Rab proteins well-suited for the task of sensing membrane
tension to direct traffic. Rab5 in particular is a possible candidate
in as much as its activation can disrupt volume and trafficking
of early endosomes. Enlarged endosomes are observed with a
constitutively activated mutant of Rab5 (Stenmark et al., 1994;
Roberts et al., 2000; Murray et al., 2002; Galperin and Sorkin,
2003), as well as upon ectopic expression of its GEF (Otomo et al.,
2003) or mutation of its GAP (Sun et al., 2012). This phenotype is
accompanied by impaired transferrin recycling and the retention
of transferrin receptor in enlarged endosomes (Stenmark et al.,
1994; Sun et al., 2012).

The endosome enlargement under Rab5 activating conditions
is attributed to the recruitment of several Rab5 effectors that
facilitate SNARE-dependent membrane fusion, including EEA1
and Rabenosyn-5 (Simonsen et al., 1998; Christoforidis et al.,

1999; Nielsen et al., 2000). Moreover, Rab5 is required for the
endosomal enlargement in PIKfyve inhibited cells (Compton
et al., 2016).When considering the extreme size of PtdIns(3,5)P2-
deficient vacuoles, and of those produced by inhibition of TPCs
or Na+ removal, it is clear that while deformation of the turgid
membrane is hindered, incoming membrane fusion with this
compartment is not impaired. This raises the possibility that
Rab5 senses membrane tension to induce fusion, which may be
a means to offset some of the tension by providing additional
membrane to this stressed system.

Endomembrane Remodeling and Trafficking as a

Consequence of Membrane Tension Relief
Upon internalization, various receptors and their ligands are
simultaneously sorted into membrane subdomains of the early
endosome and trafficked to specific destinations. Transferrin
and its receptor are recycled to the plasma membrane (Dautry-
Varsat et al., 1983; Dunn et al., 1989) in order to bind and
take up more iron (Klausner et al., 1983), acid-hydrolase
receptors are retrieved back to the TGN after delivering
newly synthesized hydrolases to endosomes (Bonifacino and
Rojas, 2006), and cargo such as LDL and EGF bound to its
receptor are delivered to lysosomes and degraded (Carpenter
and Cohen, 1979; Brown et al., 1983; Dunn et al., 1989).
The endomembrane subdomains within which these sorting
events occur are morphologically distinct (Mellman, 1996). For
example, recycling cargo enters slender membrane tubules that
pinch off to form tubular and vesicular transport carriers while
remaining cargo is sequestered into inward-budding membrane
invaginations that form intralumenal vesicles (ILV) within the
endosome. The former, in fact, has also been described as a
tubular endosomal network in which multiple interconnected
membrane tubules are formed from an endosomal subdomain
(Bonifacino and Rojas, 2006).

The formation of tubular subdomains on endosomes is
orchestrated by the recruitment and assembly of trafficking
complexes, such as retromer that targets cargo to the TGN
(Figure 2) (Seaman et al., 1998). Retromer is composed of a
heterotrimeric cargo selective complex that recognizes cargo
in endosomal membranes, as well as a heterodimer of SNX-
BAR proteins (combinations of SNX1, SNX2, SNX5, SNX6) that
bind and stabilize highly curved membrane tubules (Carlton
et al., 2004; Wassmer et al., 2007). Interestingly, the SNX-BAR
proteins can also function independently of retromer in cargo
trafficking (Kvainickas et al., 2017; Simonetti et al., 2017). SNX5/6
heterodimers and the SNX-BAR protein SNX4 can additionally
interact with components of the retrograde microtubule motor
protein dynein (Traer et al., 2007; Wassmer et al., 2009) to direct
trafficking from endosomes to a perinuclear endosomal recycling
compartment (Traer et al., 2007). In addition, endosomal tubules
decorated with other SNX-BARs were shown to be affected by
perturbations in dynein or the anterograde microtubule motor
kinesin (Hunt et al., 2013). Membrane tubule interactions with
motors likely contributes to their elongation and scission (Hunt
et al., 2013), by their stretching along microtubules.

Retromer can also associate with WASH, which regulates
branched actin polymerization on the endosome to facilitate
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membrane remodeling, cargo sorting and membrane scission
(Derivery et al., 2009; Puthenveedu et al., 2010; Buckley et al.,
2016). Furthermore, the recently identified complex, retriever,
that shares striking similarity to retromer, also interacts with
WASH on endomembranes and directs cargo trafficking toward
the plasma membrane (McNally et al., 2017). The membrane
tubules that form can be further remodeled into buds, by the
recruitment of the coat protein clathrin (Stoorvogel et al., 1996),
that eventually scission into smaller cargo-carrying vesicles
(Saint-Pol et al., 2004). Membrane scission at these sites was
shown to be mediated by the collar-forming GTPase dynamin
(Llorente et al., 1998; Nicoziani et al., 2000), contact sites with
the endoplasmic reticulum (Rowland et al., 2014) and through
friction mediated scission (Simunovic et al., 2017).

Remnant cargo that escapes sorting into tubules may be
directed into ILVs as the endosome matures into a multivesicular
body. ILVs are formed by the endosomal sorting complex
required for trafficking (ESCRT), that assembles as spiral
filaments on the surface of endomembranes to drive inward
membrane budding and constriction (Figure 2) (Pfitzner et al.,
2020). ESCRT is made up of 4 subcomplexes: ESCRT-0 mediates
initial binding to endomembranes and recruits ESCRT-I, which
in turn recruits ESCRT-II, followed by ESCRT-III, the key
functional subcomplex that drives membrane deformation and
scission along with the ATPase VPS4 (Saksena et al., 2009; Adell
et al., 2014; Chiaruttini et al., 2015;Maity et al., 2019). The inward
budding events generated by ESCRT-III result in the delivery of
membrane receptors into the lumen of the organelle, where they
are degraded by subsequent fusion with lysosomes (Katzmann
et al., 2002).

All of these membrane remodeling events including
tubulation, scission, and invagination that are sculpted by coat
proteins and the spiral polymerization of ESCRT involve extreme
deformations to the endomembrane. Modeling predictions and
solved structures for BAR domain-containing SNXs show
preferred binding to tubules of 20–60 nm in diameter (Mim
et al., 2012; Simunovic et al., 2015) which is supported by
reconstitution experiments (see van Weering et al., 2012 for
example). ESCRT-driven invaginations can be even more narrow
(Pfitzner et al., 2020). In the case of tubules, the substructures
can reach remarkable lengths, even several microns (Kerr
et al., 2006). Given the substantive changes in the surface to
volume ratios, it follows that to create these features, membrane-
deforming proteins require low membrane tension for their
assembly while high hydrostatic pressure increases membrane
tension which offsets the process altogether (Zimmerberg
and Kozlov, 2006; Shi and Baumgart, 2015; Simunovic and
Voth, 2015). This notion was empirically tested by exposing
liposomes to hypertonic solutions which leads to their crenation
and the recruitment of the BAR domain-containing protein
BIN1, which in turn induces liposome tubulation. Conversely,
swelling the liposomes prevents the BIN1-mediated tubulation
(Freeman et al., 2020). And, as expected, ESCRT-III-mediated
ILV formation has a similar dependency on low membrane
tension (Booth et al., 2019; Mercier et al., 2020) and prefers
assembly with curved/crenated membranes (Lee et al., 2015).
Thus, membrane tension relief that is accomplished via the efflux

of monovalent ions and the concomitant extrusion of water, is
a critical event that maintains a low hydrostatic pressure and
triggers membrane crenation. This crenation in turn lowers
the energy barrier for membrane deformation by proteins like
SNX-BAR and ESCRT-III that maintain membrane trafficking.

Failure to relieve endomembrane tension disrupts cargo
trafficking and is incapacitating. Treatment of cells with PIKfyve
inhibitors or other compounds that cause endosomal swelling
impairs retrograde trafficking (Rutherford et al., 2006), recycling
of cell surface receptors (Carpentier et al., 2013; Freeman et al.,
2020) and leads to cell death (Overmeyer et al., 2011; Martin
et al., 2013). In addition, knock-out of TPC1 or inhibition of
PIKfyve or TPCs, causes decreased responsiveness of the tumor
cell line HT1080 to EGF, and results in delayed growth (Freeman
et al., 2020). Disruption of the Na+ gradient by culturing
cells in Na+-free medium, prevents the recycling of Mac-
1 (αMβ2-integrin) from endosomes to the plasma membrane
and impairs phagocytosis and formation of focal adhesions,
processes that require surface integrins (Freeman et al., 2020).
The importance of Na+ efflux was demonstrated in vivo as well.
Laser ablation of tissue to mimic small injuries such as those
that may occur during exercise, normally causes the migration
of highly macropinocytic resident tissue macrophages to injury
sites to contain the damage (Uderhardt et al., 2019). However,
when vacuolar Na+ efflux is prevented, the macrophages fail
to resolve their macropinososmes and are unable to survey
their environment and respond to the damage. This results in
neutrophil “swarming” of the affected area, an aberrant and
inflammatory response (Freeman et al., 2020). Thus, cells exploit
a Na+ gradient to resolve fluid from their endosomes and
maintain the low membrane tension required for trafficking and
overall cell responsiveness.

Lysosomal Solute Efflux and Membrane
Trafficking
Maturing endosomes and autophagosomes ultimately fuse with
lysosomes in order to degrade their luminal contents. The
fusion with lysosomes confers on these hybrid organelles
degradative properties by delivering the V-ATPase to the limiting
membrane and soluble acid hydrolases to the endocytic fluid.
But (endo)lysosomes are not just terminal compartments where
breakdown occurs. Instead, they function in membrane repair,
immunity, and are major signaling hubs that posit at the
crossroads of nutritional status, transcription/translation, and
cellular homeostasis. To meet the demand of such diverse
functions, lysosomes are remarkably dynamic organelles. While
the steady-state distribution of lysosomes in the cytoplasm is
typically perinuclear, with some occupying the peripheral cytosol,
they undergo frequent bi-directional transport between these
areas (Pu et al., 2016). Lysosomes also undergo fusion, fission
and tubulation by coupling to the motor proteins dynein and
kinesin (Phaire-Washington et al., 1980; Swanson et al., 1987;
Luzio et al., 2007; Mrakovic et al., 2012; Saffi and Botelho, 2019).
Indeed, these properties are implicated inmany of their functions
including encounter and fusion with autophagosomes (Jia et al.,
2017), antigen presentation (Vyas et al., 2007; Garg et al., 2011;
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Saric et al., 2016), exocytosis (Rodriguez et al., 1997; Tuli et al.,
2013; Encarnação et al., 2016), and their reformation following
autophagy (Yu et al., 2010). Remarkably, and germane to the
principles discussed in this review, at least the signaling pathways
known to be initiated at the lysosomal membrane are engaged
according to the luminal solutes of the lysosome including amino
acids, protons, and we will argue, major osmoticants (Sancak
et al., 2008; Zoncu et al., 2011).

Importantly, because multiple pathways converge on
lysosomes, this relatively small organelle that normally occupies
a fraction of the total cell volume (∼2.5% Steinman et al., 1976)
experiences high solute flux. As such, the lysosome is equipped
with a suite of channels and transporters that maintain its ionic
composition and facilitate the flux of catabolites from the lumen
(Figure 3). Maintenance of its ionic composition is critical
for proper acidification, membrane potential, and in order to
remain iso-osmotic with the cytosol (Xu and Ren, 2015). The
luminal concentrations of mono- and di-valent inorganic ions
have been estimated or determined with ratiometric dyes or by
isolating/patch-clamping lysosomes, though values have a wide
range owed to challenges with each of these approaches. Na+

concentrations have been determined as between 20mM and
upwards of 140mM for example (Steinberg et al., 2010; Morgan
et al., 2011; Wang et al., 2012), though many experimental
approaches suggest it is the major cation of the lysosome
(Morgan et al., 2011). Measurements of lysosomal Cl− come
with similar challenges but largely show a tighter spectrum
of estimates ranging from 60 to 110mM (Sonawane and
Verkman, 2003; Morgan et al., 2011; Stauber and Jentsch, 2013;
Saha et al., 2015) suggesting Cl− is the major anion of the
compartment. Although it is not known if or how much osmotic
pressure lysosomes may experience, dysregulation in Na+ or
Cl− transport are expected to cause osmotic imbalances and
high membrane tension and we describe this in the following
subsections. Moreover, well-characterized storage disorders of
the lysosome that cause the accumulation of organic osmolytes
will also drive such hydrostatic pressure and membrane tension
to build up at the lysosome. We therefore also discuss organic
solutes and broadly describe osmoregulation of lysosomes in
homeostasis and disease.

The V-ATPase and Counterion Fluxes in

Endolysosome pH: Osmotic Considerations
Maintaining a low lysosomal pH (4.5-5) aids in enzymatic
digestion, is important for lysosomal trafficking, and the
steep proton gradient supports lysosomal cotransporters whose
activities are H+-coupled. The low pH is maintained by the V-
ATPase, a pump that consumes ATP to constitutively transport
protons into the organelle (Figure 3). However, this process is
electrogenic and the highly positive charge generated within
the lumen would quickly inhibit further proton pumping. To
circumvent this problem, an ion counter-flux exists to dissipate
the electrical potential across the membrane (Fuchs et al., 1989).
Theoretically, this can be done either by adding negative charge
or removing positive charge from the lumen. From an osmotic
standpoint, the addition of negative charge leads to an osmotic

gain in the compartment while removal of positive charge
does not.

Despite the osmotic consequences, the addition of negative
charge is not just theoretical; it is known to be accomplished
by Cl− transporters including the ClC7 H+/Cl− exchange
transporter that brings 2Cl− in for 1H+ out (Stauber and
Jentsch, 2013) such that the V-ATPase can bring 3H+ in. In
the absence of ClC7, osteoclasts cannot remodel bone and
mice and patients become severely osteopetrotic (Kornak et al.,
2001). Moreover, the loss of ClC7 causes neurodegeneration
and lysosomal storage disease (Kasper et al., 2005), so clearly
ClC7 is important in pH regulation. It is curious therefore
that numerous studies have demonstrated that ClC7 is in fact
not required for lysosomes to reach their acidic pH (Kasper
et al., 2005; Weinert et al., 2010). The discrepancies between the
observed physiological phenotypes and that of single lysosomes
in their steady state needs to be rectified. It should be noted,
however, that certain circumstances require rapid and deep
transitions in the pH of compartments, yet these events are
rarely captured experimentally. Examples include host-pathogen
interactions where a phagosome has little time to waste in
acidifying to become a hostile environment for the microbe.
This could equally be the case for the osteoclast lacunae—
a large compartment with a seal that evolves along with the
substratum being degraded. In the case of the osteoclast lacunae,
the extracellular osmotic gain of Cl− is of no consequence, so
using Cl− efflux to drive the V-ATPase would be advantageous
in this setting. For the maturing phagosome, perhaps the
tradeoff between contending with a little volume gain and
making a steep transition in pH is one the cell is willing
to make. Either way, given the osmotic consequence of Cl−

transport, control over ClC7 activity is critical. Indeed, gain-of-
function mutations in ClC7 cause massive swelling of lysosomes
(Nicoli et al., 2019).

Once a low pH is reached, the steady state is supported by
ongoing activity of the V-ATPase coupled to a proton “leak”
as mediated by solute transport systems (see below) and alkali
cation exchangers (Casey et al., 2010). The latter necessitates
the efflux of cations to prevent their accumulation and support
electro- and osmo-neutrality (Steinberg et al., 2010). Since
lysosomal [Na+] has been estimated to be high, it is interesting
to speculate on the role of TPC2 and Na+ transport from the
lysosome. TPC2 may play a similar role at the lysosome as
TPC1 at the endosome—to move Na+ down its concentration
gradient (from the lumen to the cytosol), in this case to promote
acidification as well as prevent osmotic swelling that opposes
trafficking. In this regard, lysosomes are indeed more alkaline
in skeletal muscle cells of TPC2−/− mice compared to wild type
animals (Lin et al., 2015). And, interestingly, overexpression of
TPC2 alone in HeLa cells causes extensive lysosome tubulation
and increases lysosomal motility, whereas overexpression of a
pore-mutant prevents tubulation (Freeman et al., 2020). It cannot
be disregarded that proton exchangers of lysosomes may equally
transport K+ (Wilson et al., 2018), which would also require a
K+ channel that drives its efflux. This could involve TMEM175,
a bidirectional K+ channel that is essential to maintain normal
lysosome biology, especially in neurons (Cang et al., 2015).
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FIGURE 3 | Solute transport controls the trafficking and function of lysosomes. (A) Low lysosomal pH (4-5) is maintained by the V-ATPase that uses energy from ATP

hydrolysis to constitutively pump H+ into the lumen. The low pH is supported by a counter-ion flux involving either the efflux of cations or influx of anions. The luminal

Na+ and Cl− concentrations of the lysosome are higher than that of endosomes, suggesting that both mechanisms may be involved. Cl− transport by ClC7 is indeed

important for maintaining proper lysosomal functions in certain cell types. VRAC/LRRC8 also features in Cl− transport in lysosomes. Since lysosomal NHEs may

exchange either Na+ or K+ for H+, the K+ channel TMEM175 may also be critical for the control of lysosome size, fission, and tension. Indeed, to remodel the limiting

membrane of the lysosome, the extrusion of major osmolytes is thought to be a necessary prerequisite and may orchestrate the process altogether. In this regard, it is

known that Na+ efflux, as activated by PtdIns(3,5)P2, causes the extrusion of water from lysosomes, leading to a lowering of the hydrostatic pressure and subsequent

membrane tension. PtdIns(3,5)P2 also regulates the V-ATPase either directly or indirectly. The low pH of the lysosome maintains the activity of various acid hydrolases

(red text) in the luminal fluid that break down the macromolecules that reach lysosomes by various endocytic uptake pathways and autophagy (see Figure 1). The

building blocks generated from this hydrolysis are exported out of lysosomes via numerous transporters of the SLC family depicted and described in the main text.

Known solutes for the SLC transporters are provided in parentheses next to transporter names. The best described example is the amino acid transporter SLC38A9

that senses luminal arginine to activate mTOR on the lysosomal surface via complexes collectively termed the “amino acid sensing machinery.” mTOR also binds and

inhibits TPCs, providing a link between amino acid sensing and membrane tension control. Cholesterol efflux is also well-described and is exported from lysosomes by

NPC1/NPC2 proteins as well as SCARB2. In general, solute efflux is critical for nutrient acquisition but also to prevent an osmotic pressure that could increase

lysosomal hydrostatic pressure and membrane tension. (B) When solute efflux via lysosomal channels and transporters is functioning optimally, lysosomal membrane

tension is controlled and this supports trafficking processes like ALR, that proceeds through lysosome tubulation, lysosomal motor-driven motility, and viral fusion. (C)

When solute efflux mechanisms are impaired, this leads to lysosomal storage disorders, many of which exhibit distended lysosomes and likely high membrane tension

that precludes lysosome tubulation and trafficking. In addition, some bacteria may modulate lysosomal membrane tension for their benefit.
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While little is known about the role of Na+ in the lysosome,
Ca2+ is much better appreciated. Amongst its many functions,
Ca2+ is an important second messenger in signal transduction
pathways and regulates membrane fusion (Clapham, 2007), thus,
it’s release from lysosomes must be transient and exquisitely
timed. This is nicely reviewed elsewhere (Morgan et al., 2011).
From an osmotic view, although the concentration of Ca2+ in the
lysosome is much higher than that of the cytosol ([Ca2+]lysosome

= 0.5mM (Christensen et al., 2002), [Ca2+]cytosol <0.0002mM),

it is of low abundance compared to Na+ and K+, and Ca2+

efflux also does not appear to play a role in the acidification
of lysosomes (Steinberg et al., 2010). Still, the timed release of
Ca2+ from lysosomes is important for fusion events as mediated
by TRPML (Pryor et al., 2000; Dayam et al., 2015). Similar
to endosomes, lysosomal TRPML channels and PtdIns(3,5)P2
likely contribute to the lipid-gated control of Ca2+ efflux to
support trafficking.

Controlled Lysosomal Solute Efflux Governs

Membrane Tension and Trafficking
Maintaining lysosomal acidity is critical for the luminal
hydrolases, including proteases like most cathepsins, various
carbohydrate-processing enzymes, and nucleases and lipases
that function optimally at low pH. Collectively, these enzymes
digest macromolecules into their constituent building blocks.
These solutes are in turn effluxed from lysosomes via solute
transporters, in order to be used by the cell in anabolic
reactions that sustain growth. An additional consideration is
that in the absence of such efflux, the osmotic burden from
enzymatic hydrolysis would be substantial. For example, a
single internalized polysaccharide of 100 glucose monomers,
when enzymatically processed, generates 100 osmotically active
monosaccharides. If solute efflux mechanisms did not exist,
the resulting inward flow of water due to a 100-fold higher
osmotic gradient would generate hydrostatic pressure against
the compartment. Thus, cells continually efflux lysosomal
solutes to prevent osmotic swelling and overtly high membrane
tension, which in turn supports lysosomal resolution by way of
tubulation, vesiculation, and trafficking. Cells likely utilize these
pathways to orchestrate endomembrane remodeling events that
are coincident with organellar resolution and fission.

A clue to this comes from studies on autophagic lysosome
reformation (ALR): Lysosomes that fuse with autophagosomes
to form autolysosomes, reform by way of tubulation and
fission only upon completion of autophagy (digestion) (Yu
et al., 2010). The molecular machinery that facilitates lysosomal
membrane remodeling remains to be discovered, however,
some coat proteins have been described. For example, the
adaptor protein complex AP5 may function with the hereditary
spastic paraplegia proteins SPG11 and SPG15 as a novel coat-
like complex to retrieve mannose 6-phosphate receptors from
late endosomes/lysosomes to the TGN (Hirst et al., 2013,
2018). Consistent with this, enlarged lysosomes are observed
in SPG11- or SPG15-depleted cells (Renvoise et al., 2014),
and these proteins have been shown to mediate ALR (Chang
et al., 2014). Also, clathrin was shown to mediate ALR
tubule formation (Rong et al., 2012), suggesting that lysosome

trafficking may be similarly dependent on membrane tension
as endocytosis and early endosomal sorting. In this regard, it is
remarkable that TPC2−/− animals show defects in autophagic
flux (Garcia-Rua et al., 2016). Putatively, Na+ efflux from
the autolysosome orchestrates endomembrane remodeling and
ALR but how this is timed remains unclear and the [Na+]
of autophagosomes/autolysosomes has not been estimated to
our knowledge. It is nevertheless enticing to anticipate that
monovalent ion efflux must be choreographed such that organic
solutes are fluxed before resolution occurs so as not to defeat the
autophagic function.

The Role of the SLC Transporters in Lysosomal

Solute Efflux and Membrane Tension Control
The lysosomal efflux of organic solutes is carried out by a suite
of transporters belonging to the solute carrier (SLC) protein
families (Figure 3). When solute efflux is prevented, osmotically-
imposed lysosomal swelling occurs, a condition that limits
lysosomal transport (Bandyopadhyay et al., 2014). An indication
that solute efflux mitigates high membrane tension comes from
investigation of sucrosomes. When sucrose, a disaccharide of
glucose and fructose that is resistant to cleavage by lysosomal
enzymes, is loaded into lysosomes by endocytosis, lysosomes
swell (Cohn and Ehrenreich, 1969), suggesting that water is
trapped in the compartment. The introduction of invertase,
an enzyme that breaks down sucrose into its monosaccharide
constituents, induces a prompt shrinkage and, interestingly,
extensive tubulation of the lysosome (Swanson et al., 1986; Bright
et al., 2016). Since glucose and fructose can be transported out of
lysosomes by unknown monosaccharide transporters (Mancini
et al., 1990; Lizak et al., 2019), it is likely that efflux of this
sugar drives the osmotic extrusion of water from the organelle.
Consistent with this, mutations in SLC17A5, a H+-driven acid
sugar transporter, cause Salla disease, a rare lysosomal storage
disorder (LSD) in which sialic acid is unable to be exported out
of lysosomes (Aula et al., 1979; Renlund et al., 1986; Verheijen
et al., 1999; Tarailo-Graovac et al., 2017). Consequently,
vacuolated endolysosomes are observed in patient peripheral
blood lymphocytes (Aula et al., 1979). In addition, loss of
Spinster (Spin), another lysosomal sugar transporter, also causes
lysosomal enlargement in cultured NRK cells. Remarkably, the
loss of Spin alone blocks lysosome tubulation during ALR (Rong
et al., 2011). The requirement for Spinster and other sugar efflux
pathways would be especially pronounced in cells undergoing
glycophagy or those internalizing polysaccharides from their
surrounding fluid. As the efflux ofmonosaccharides is required to
maintain the low membrane tension to support trafficking, cells
under these conditions should be investigated with interest.

The efflux of amino acids is equally essential. Numerous
lysosomal amino acid transporters have been identified including
SLC66A4/Cystinosin, SLC36A1/PAT1, and SLC66A1/PQLC2
that transport cystine (Town et al., 1998), small neutral amino
acids (Sagne et al., 2001) and cationic amino acids (Liu et al.,
2012). Hematopoietic cells additionally express the proton-
coupled transporters SLC15A3 and SLC15A4 that transport
histidine as well as di- and tri-peptides. Their activities are
particularly important in innate immune responses such as
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sensing of bacterial peptides from phagosomes (Nakamura et al.,
2014) and mast cell functions (Kobayashi et al., 2017). Indeed,
loss of some of these amino acid/oligopeptide transporters was
also shown to cause lysosome enlargement (Liu et al., 2012;
Kobayashi et al., 2017). In addition, the sodium-coupled neutral
amino acid transporters SLC38A7 and SLC38A9 transport
glutamate and asparagine (Hagglund et al., 2011; Verdon et al.,
2017) and leucine among other amino acids (Wyant et al.,
2017). The case of SLC38A9 is particularly intriguing as it
not only transports amino acids, but is able to sense luminal
arginine and relay this information to activate mTORC1 on
the lysosome surface (Zoncu et al., 2011; Rebsamen et al.,
2015; Wang et al., 2015). This relay occurs through physical
interactions between several proteins and complexes spanning
both sides of the lysosomal membrane, that collectively can be
termed the “amino acid sensing machinery” (Figure 3). And, in
addition to SLC38A9, PAT1 can also activatemTOR on lysosomes
(Ogmundsdottir et al., 2012). Of note, mTOR interacts with
and inhibits TPCs, while nutrient deprivation, a condition that
inactivates mTOR and causes its dissociation from lysosomes,
constitutively opens the channels (Cang et al., 2013). Given that
TPCs can lower membrane tension via Na+ efflux, and that
their activity supports tubulation and trafficking, perhaps mTOR
activation via the amino acid sensing machinery simultaneously
prevents lysosomal vesiculation and resolution, until sensing
is complete. This raises the possibility that mTORC1 could
contribute to membrane tension sensing.

Like sugars and amino acids, polynucleotides are another
major type of biological polymer that is degraded within
lysosomes. Sources of these can come from the DNA and RNA
of dead cells that are continually being cleared by phagocytosis
(Hochreiter-Hufford and Ravichandran, 2013). Following the
breakdown of polynucleotides by lysosomal hydrolases such as
acid deoxyribonuclease (Odaka and Mizuochi, 1999), the efflux
of their monomers is necessary to prevent excessive osmotically
imposed increases in lysosomal membrane tension. To this end,
the lysosomal nucleoside/nucleobase transporter SLC29A3 (also
known as ENT3), functions to efflux nucleosides in a pH-
dependent manner (Rahman et al., 2017). Importantly, splenic
macrophages from ENT3−/− mice exhibit swollen lysosomes
(Hsu et al., 2012), signifying an osmotic defect that likely
precludes lysosome tubulation and trafficking.

Phagocytosed cell corpses (and autophagosomes) are also a
significant source of membranes, which are largely composed
of phospholipids, glycolipids and cholesterol. These lipids are
broken down by various lysosomal enzymes (Schulze et al.,
2009) into individual monosaccharides, long chain bases and
fatty acids. These products also need to be exported out of
lysosomes though the transport pathways involved are poorly
described. The one exception is with cholesterol, a significant
source of which comes from endocytosed LDL particles, where
a single known lysosomal acid lipase converts the LDL-derived
cholesteryl esters into free cholesterol. The free cholesterol is
transferred to the transmembrane protein Niemann Pick C1
(NPC1) (Infante et al., 2008; Kwon et al., 2009; Li et al., 2016) by
the luminal proteinNPC2. Cholesterolmay also be transported to
the limiting membrane by lysosomal integral membrane protein

2 (LIMP2/SCARB2) (Heybrock et al., 2019). Once incorporated
into the lysosomal membrane, cholesterol is exported out of
lysosomes to reach various other cellular destinations by vesicular
and non-vesicular means (Luo et al., 2019) (Figure 3). Lysosomes
can make direct contacts with the endoplasmic reticulum
(ER) to transfer cholesterol down a concentration gradient via
transport protein complexes (Hoglinger et al., 2019). Mutations
in NPC proteins lead to Niemann Pick type C disease, a severe
lysosomal storage disorder characterized by massive cholesterol
accumulation within lysosomes (Vanier, 2010). As a result,
lysosomes are enlarged (Lim et al., 2019), and, although in this
case the enlargement is not attributed to an osmotic effect, the
membrane tension may be higher than normal. Interestingly,
mTORC1 is constitutively activated in NPC1−/− cells (Lim et al.,
2019), a condition that also inhibits TPCs and Na+ efflux (Cang
et al., 2013). Finally, it cannot be ruled out that the direct
insertion of lipids into the lysosomal limiting membrane may
itself affect membrane tension and lysosomal trafficking: Such
a contribution is complex since cholesterol would increase total
membrane surface area while also increasing membrane order
and effecting lipid packing (Hofsab et al., 2003; Zimmerberg and
Kozlov, 2006).

Lysosomal Storage Disorders Are Associated With

Impaired Solute Efflux
The inability to transport solutes across the lysosomal membrane
results in their accumulation in the lumen and is the cause
of numerous lysosomal storage disorders (LSDs), a class of
inherited metabolic diseases. At least 70 LSDs have now been
identified and we refer the reader to several excellent reviews
describing the different types (Futerman and van Meer, 2004;
Platt et al., 2018). Majority of LSDs are caused by mutations in
genes encoding soluble lysosomal enzymes. This typically leads
to lack of or incomplete digestion of their substrates. As a result,
transportable products of these macromolecules are not formed
and the substrates accumulate in the lumen, as they themselves
are unable to be exported from lysosomes. A smaller category
of LSD are caused by mutations in genes encoding lysosomal
channels and transporters (Figure 3). Interestingly, many LSDs
exhibit distended lysosomes (Aula et al., 1979; Goldin et al., 1995;
Malm and Nilssen, 2008; Arvio and Mononen, 2016), suggesting
that they are under high hydrostatic pressure and membrane
tension, which likely affects their trafficking. The connections
between endomembrane tension and lysosomal trafficking in
LSDs is unknown, but recent evidence would at least suggest a
role in inward budding and outward tubulation(Freeman et al.,
2020; Mercier et al., 2020). A thorough investigation of the
osmotic pressure and endomembrane tension incurred in these
LSDs would greatly contribute to our understanding of the
disease pathology.

The Role of Endomembrane Tension in Infection
Membrane tension is potentially targetable. The first clues come
from studies of infections caused by the bacterium Helicobacter
pylori that colonizes the gastric mucosa, and can cause chronic
inflammation, stomach ulcers, and gastric cancer (Suerbaum
and Michetti, 2002). This bacterium survives by entering the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 January 2021 | Volume 8 | Article 611326

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Saric and Freeman Endomembrane Tension and Trafficking

endolysosomal system, and causes extreme vacuolation of the
late endosomes/lysosomes within which it resides (Leunk et al.,
1988; Amieva et al., 2002). The lysosomal vacuolation is
largely attributed to a toxin, VacA, produced by the bacterium
(Terebiznik et al., 2006), that has been classified as a pore-
forming channel able to conduct Cl−, bicarbonate and small
organic anions (Foegeding et al., 2016). Interestingly, TRPML
activity is reduced in infected cells and activation of TRPML
prevents the VacA-induced lysosomal swelling (Capurro et al.,
2019). These findings suggest that the disruption of solute
transport causes osmotic swelling of the H. pylori vacuole
that is likely under high membrane tension. Many bacteria
have evolved ways to hijack the host trafficking machinery
in order to survive in intracellular compartments (Cossart
and Helenius, 2014). Listeria monocytogenes and Chlamydia
trachomatis for example are also known to cause spacious
vacuoles to form that accommodate their infection cycle (Van
Ooij et al., 1997; Birmingham et al., 2008). In the case of H.
pylori, L. monocytogenes and C. trachomatis, manipulation of host
endomembrane tension may be a mechanism of arresting traffic
to prevent resolution of their niche.

As control of membrane tension is required for membrane
bending, it is also not surprising that pathogens that require
fusion with host endomembranes are opposed by high
hydrostatic pressure and membrane tension. Enveloped
viruses that gain entry to the host cytosol by fusing with the
(endo)lysosome including Ebola and coronaviruses do so with
the use of fusogenic peptides, splayed by proteolytic enzyme
processing (White et al., 2008). The fusogens must overcome
the glycocalyx of the endosome for their insertion and the
hydration force of two opposing bilayers; tension on the host
membrane arrests the fusion process altogether (Harrison, 2008;
Mercer et al., 2020). In this regard, it is interesting that PIKfyve
and TPC inhibitors that prevent the entry of at least some
enveloped viruses have been suggested as therapeutics (Kang
et al., 2020). The treatment of human macrophages with TPC
inhibitors blocks Ebola virus entry and the drug is effective in
vivo to prevent infection in mice (Sakurai et al., 2015). So, while
understanding endomembrane tension in cellular homeostasis
is critical to appreciate normal trafficking events, it may also be
important from a translational perspective.

CONCLUSION

Studies on membrane trafficking typically focus on cargo
(receptors and ligands) sorting and membrane remodeling.
However, it is important also to consider the fate of the fluid
that is taken up during the course of all endocytic uptake

mechanisms. So often we neglect the “black space” of the
endocytic pathway. We now know that fluid resolution by
solute transport mechanisms is a critical prerequisite for early
endosomal trafficking. At the lysosome, a complex balance
between enzymatic digestion and solute efflux ensures that
membrane tension is controlled to permit lysosomal trafficking.
When solute transport is impaired, this balance is perturbed,
resulting in numerous LSDs. In addition, endomembrane tension
may be exploited in infection.

As we first introduced, membrane tension is a biophysical
feature of membranes that has been well-appreciated for
the PM and during endocytosis in particular (Popescu
et al., 2006; El Alaoui Faris et al., 2009; Dent et al., 2016;
Colom et al., 2018). Though we did not include a discussion
of the extensive work exploring the impact of tension on
reconstituted systems including bilayers and giant unilamellar
vesicles (GUVs) in this article, tension has indeed been
measured in such experimental set-ups and we direct the
reader to the review by Kozlov and Chernomordik for
a summary of these details (Kozlov and Chernomordik,
2015). Measurements of endolysosomal membrane tension in
particular have been challenging due to numerous limitations.
First, these organelles are small, and many are below the
resolution of light microscopy. Second, endolysosomes are
dynamic organelles that undergo frequent bi-directional
transport and membrane remodeling, as described. Third, all
biological membranes are subject to continuous changes,
such as in the lipid species present, due to ongoing
biochemical reactions. Nonetheless, fluorescent probes that
intercalate into membranes and display changes in their
photophysical properties in response to membrane tension,
show promise for endomembrane tension measurement
(Colom et al., 2018).

More work is needed to uncover the mechanisms cells use to
sense endomembrane tension. For now, at least, there is ample
evidence that cells use ion transport as a mechanism to control
membrane tension to direct endolysosomal trafficking. Placing
priority on understanding how these mechanisms are controlled
in space and time would seem to be the logical next step.
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