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Abstract: Implementation of protocolized surveillance, diagnosis, and management of septic patients,
and of surgical sepsis patients in particular, is shown to result in significantly increased numbers of
patients surviving their initial hospitalization. Currently, most surgical sepsis patients will rapidly
recover from sepsis; however, many patients will not rapidly recover, but instead will go on to
develop chronic critical illness (CCI) and experience dismal long-term outcomes. The elderly and
comorbid patient is highly susceptible to death or CCI after sepsis. Here, we review aspects of the
Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) endotype to explain
the underlying pathobiology of a dysregulated immune system in sepsis survivors who develop CCI;
then, we explore targets for immunomodulatory therapy.
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1. Introduction

Sepsis remains one of the leading causes of death in the United States [1]. Implemen-
tation of the 2004 and 2011 Surviving Sepsis Campaign guidelines, as well as of the Centers
for Medicare & Medicaid Services guidelines for sepsis management [2], and an increase in
systemic and protocolized surveillance, diagnosis, and management of sepsis, all together
led to a significant decrease in early death and an increase in hospital survival [3,4]. How-
ever, this increased initial survival after sepsis is not yet translated to similarly improved
long-term outcomes nor full recovery [5,6]. Specifically, following surgical sepsis, three
common clinical trajectories are described: early death, rapid recovery, or development of
chronic critical illness (CCI) (Figure 1). Historically, many patients would develop fulmi-
nant multiple organ failure from systemic inflammatory response syndrome, leading to
early death. Currently, less than 10% of surgical sepsis patients succumb to early death [5];
the majority of patients survive sepsis and either rapidly recover or develop CCI [5,7].
Unfortunately, almost one-third of surgical sepsis patients develop CCI and have dismal
long-term outcomes [5].

CCI is defined in several ways, but an accepted definition in the literature is an
individual with a prolonged intensive care unit stay (>14 days) and persistent organ
dysfunction ranging from low-grade organ insufficiency to chronic organ failure [8,9].
Patients who develop CCI are more likely to be older males with a greater number of
medical comorbidities [10,11]. Importantly, patients who develop CCI continue to consume
vast resources long after hospital discharge [12]. Additionally, CCI patients have an
increased number of secondary infections [13,14] and have poor long-term outcomes that
include functional and neurocognitive impairments, increased muscle wasting, and higher
30-day and 1-year mortality [5,9,10,15]. However, the underlying pathobiology of CCI
remains unclear.
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Figure 1. Proposed hypothesis for Persistent Inflammation, Immunosuppression, and Catabolism 
Syndrome (PICS) in sepsis survivors. Abbreviations: MDSC—myeloid-derived suppressor cell; 
DAMP—damage-associated molecular protein; LTAC—long-term acute care facility. 

CCI is defined in several ways, but an accepted definition in the literature is an indi-
vidual with a prolonged intensive care unit stay (>14 days) and persistent organ dysfunction 
ranging from low-grade organ insufficiency to chronic organ failure [8,9]. Patients who de-
velop CCI are more likely to be older males with a greater number of medical comorbidities 
[10,11]. Importantly, patients who develop CCI continue to consume vast resources long 
after hospital discharge [12]. Additionally, CCI patients have an increased number of sec-
ondary infections [13,14] and have poor long-term outcomes that include functional and 
neurocognitive impairments, increased muscle wasting, and higher 30-day and 1-year mor-
tality [5,9,10,15]. However, the underlying pathobiology of CCI remains unclear. 

In a 2012 review, the University of Florida Sepsis and Critical Illness Research Center, 
under the leadership of Dr. Frederick Moore, defined the Persistent Inflammation, Immu-
nosuppression, and Catabolism Syndrome (PICS) as the clinical endotype underlying the 
CCI phenotype [16]. PICS is not specific to a critical illness and is seen in a number of con-
ditions including sepsis, trauma, advanced cancer, and chronic inflammatory diseases 
[16,17]. A significant subset of CCI patients progress to PICS, experiencing ongoing inflam-
mation (e.g., neutrophilia) and immunosuppression (e.g., lymphopenia) that are associated 
with a sustained acute phase response (e.g., high C-reactive protein and low prealbumin) 
and persistent whole body protein catabolism [8,18,19]. Clinically, PICS patients (as stated 
above) suffer from recurrent nosocomial infections and poor wound healing, and frequently 
develop decubitus ulcers. Despite aggressive nutritional intervention, there is a constant 
loss of lean body mass accompanied by a proportional reduction in both functional status 
and wound healing potential [14]. Patients with PICS are commonly discharged to long-
term acute care facilities where they face failure to rehabilitate, sepsis recidivism requiring 
re-hospitalization, and ultimately sufferance of an indolent death [20]. 

The Persistent Inflammation, Immunosuppression, and Catabolism Syndrome rep-
resents a testable hypothesis to elucidate what drives the development of CCI and its mor-
bidities, including persistent immunologic dysfunction, lack of organ recovery, and func-
tional deficit. All of these factors contribute to poor long-term outcomes after severe pro-
inflammatory insults such as trauma, sepsis, pancreatitis, or burn injury [21]. Importantly, 
the PICS endotype offers insight into the dysregulated immunity and dysfunctional emer-
gency myelopoietic response seen in CCI patients after sepsis [7,8,22]. Sepsis is a complex 
disease process in which outcomes are affected by both the early and late inflammatory 
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In a 2012 review, the University of Florida Sepsis and Critical Illness Research Center,
under the leadership of Dr. Frederick Moore, defined the Persistent Inflammation, Im-
munosuppression, and Catabolism Syndrome (PICS) as the clinical endotype underlying
the CCI phenotype [16]. PICS is not specific to a critical illness and is seen in a number
of conditions including sepsis, trauma, advanced cancer, and chronic inflammatory dis-
eases [16,17]. A significant subset of CCI patients progress to PICS, experiencing ongoing
inflammation (e.g., neutrophilia) and immunosuppression (e.g., lymphopenia) that are
associated with a sustained acute phase response (e.g., high C-reactive protein and low pre-
albumin) and persistent whole body protein catabolism [8,18,19]. Clinically, PICS patients
(as stated above) suffer from recurrent nosocomial infections and poor wound healing, and
frequently develop decubitus ulcers. Despite aggressive nutritional intervention, there
is a constant loss of lean body mass accompanied by a proportional reduction in both
functional status and wound healing potential [14]. Patients with PICS are commonly
discharged to long-term acute care facilities where they face failure to rehabilitate, sepsis
recidivism requiring re-hospitalization, and ultimately sufferance of an indolent death [20].

The Persistent Inflammation, Immunosuppression, and Catabolism Syndrome rep-
resents a testable hypothesis to elucidate what drives the development of CCI and its
morbidities, including persistent immunologic dysfunction, lack of organ recovery, and
functional deficit. All of these factors contribute to poor long-term outcomes after severe
pro-inflammatory insults such as trauma, sepsis, pancreatitis, or burn injury [21]. Impor-
tantly, the PICS endotype offers insight into the dysregulated immunity and dysfunctional
emergency myelopoietic response seen in CCI patients after sepsis [7,8,22]. Sepsis is a
complex disease process in which outcomes are affected by both the early and late inflam-
matory response [23,24]. In this review, we will focus on the pathobiologic processes that
contribute to the post-sepsis PICS endotype.

2. Persistent Inflammation

During acute sepsis, the progression from sepsis to CCI/PICS is mediated by widespread
innate immune activation in the early inflammatory response [25]. In sepsis survivors
who develop CCI, there remains a persistent elevation in a number of inflammatory
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markers at least 28 days after sepsis onset, and potentially much longer [26]. The body’s
response to sepsis or severe injury begins with the recognition of alarmins derived from
either microbial products (pathogen-associate molecular patterns; PAMPs) or tissue in-
jury (damage-associated molecular patterns; DAMPs) [23]. Alarmins represent an array
of ligands for highly-conserved pattern recognition receptors (PRRs) that detect exoge-
nous microbial components or host danger signals [23]. These alarmins were previously
identified as major mediators of persistent inflammation in CCI after sepsis.

Major classes of PRRs include Toll-like receptors (TLRs), C-type lectin receptors,
nucleotide-binding oligomerization domain-like receptors, retinoic-acid-inducible gene-
I-like receptors, and receptors for advanced glycation end products (RAGE) [27]. PRRs
are comprised of both cell membrane and cytoplasmic receptors that can collectively
recognize microbial peptidoglycans, lipopolysaccharides, glucans, phospholipids, high
mobility group box (HMGB) proteins [28], S100 family of proteins, nucleic acids [29–31],
glycoproteins and glycolipids [32], flagellin [33], glycosylated end products [28,34], and
oxidation/nitrosylation products associated with cellular injury [27,35–37]. Upon recogni-
tion of these molecular patterns, PRRs initiate downstream signaling events that induce a
host-protective response [36].

In the case of sepsis, alarmins are mostly derived from foreign pathogen materials
or PAMPs [27,36]. Among the critically ill, PAMPs are released during the initial sepsis
event and in secondary nosocomial infections or reactivated viral infections. PAMPs from
these microbes induce a rapid activation of effector cells [36]. PAMPs initiate dendritic
cell maturation to promote antigen processing, MHC expression, and migration to lymph
nodes to activate T cells [36,38]. In one study of critically ill patients, viral DNA from either
CMV, EBV, HHV-6, or TTV was identified in the blood of nearly 87% of critically ill septic
patients, compared with <15% for non-septic critically ill patients and healthy controls [39].
Of note, nearly 43% of the septic patients that were examined tested positive for two or
more viruses [39].

The other source of alarmins comes from endogenous nucleic acids, proteins, and
metabolites released from cellular stress, death at sites of injury, or active secretion from
immune cells [40,41]. DAMPs include HMGB1, heat shock proteins, nuclear and mito-
chondrial DNA and structural peptides such as hyaluron, cellular intermediates such as
adenosine, and the cytokines, interleukin (IL)-1α and IL-33 [41–43]. Multiple DAMPs,
including nuclear DNA, RAGE, and S100, are significantly elevated in sepsis survivors
throughout their entire hospitalization [44–47]. DAMPs are initially released from acutely
inflamed and injured tissue secondary to initial septic insult. It is thought that DAMPs
are also chronically released from ongoing oxidant and mitochondrial injury in the kid-
neys, lungs, and intestines of patients with CCI, contributing to a continued low-grade
inflammation in these patients after sepsis [7].

The persistent low-grade inflammation seen in CCI/PICS after sepsis, similar to the
chronic low-grade inflammation experienced in cancer and other inflammatory disorders,
results in a constant cycle of inflammation-induced organ injury and injury-induced inflam-
mation [17]. The chronic inflammation in PICS induces increased mitochondrial production
of reactive oxygen species [48–50]. This oxidative stress leads to mitochondrial dysfunc-
tion, oxidative damage, and cellular metabolism energy deficits, which further aggravates
inflammation and cell death pathways, contributing to low-grade persistent inflammation
and organ injury [51]. Continued kidney and muscle damage from inflammation results
in further release of DAMPs from these tissues, which further perpetuates this cycle of
inflammation [52]. The sepsis-induced chronic inflammation in the brain, termed sepsis-
associated encephalopathy, leads to declines in cognitive function and related reductions
in quality of life among survivors of sepsis [53,54]. This is especially detrimental in the
older patient who already suffers from “inflammaging”, the gradual deterioration of host-
protective immunity associated with natural aging [55]. This vicious cycle of inflammation
leads to more organ failure and eventually death (Figure 2).
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Figure 2. Pathophysiology of Chronic Critical Illness (CCI) and Persistent Inflammation, Immunosuppression, and Catabolism
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3. Persistent Immunosuppression

Immunosuppression after sepsis is reflected in a reduced acute lymphocyte count
(ALC) and monocyte membrane (m) HLA-DR expression alongside an increase in soluble
programmed cell death ligand-1 (PD-L1), which persists for weeks after sepsis [56]. Low
ALC remains suppressed in CCI patients, while it returns to baseline in patients that rapidly
recover [56]. Additionally, mHLA-DR is decreased in those that developed secondary infec-
tions [57] and is an independent predictor of nosocomial infections [58]. Macrophage and
T-lymphocyte dysfunction are important contributors to the PICS-associated immunosup-
pression [59]. In late sepsis, a state of immune “paralysis” develops as bacterial clearance,
cytokine release, and capacity for antigen presentation all decline [59,60]. Additionally,
there is a relative lymphocyte “exhaustion” characterized by dysfunctional T cell differenti-
ation and decreased ability to respond to new or continued antigen presentation [61–63].

This ongoing immune dysfunction, seen mostly among sepsis-induced CCI survivors,
results in increased vulnerability to secondary infections after sepsis. There is a 25–32%
readmission rate among all sepsis survivors, with 52–66% of these admissions being
for recurrent sepsis [14]. Furthermore, sepsis survivors with CCI experience increased
secondary and nosocomial infections at a rate two and a half times greater when compared
to patients who rapidly recovered, with a 60% readmission rate for those with CCI [64].
Mortality approaches 40% at six months for patients with CCI, largely due to sepsis
recidivism [65–67].

4. Persistent Catabolism

Sepsis is associated with increased protein breakdown and suppressed protein syn-
thesis, resulting in increased muscle catabolism and a release of muscle-derived DAMPs.
Patients with CCI experience a prolonged state of this catabolism with muscle wasting
and cachexia that contribute to poor long-term functional outcomes. This breakdown
occurs despite enteral supplementation and may require increased protein enrichment
with specific additives [15].

There is a plethora of evidence that supports prolonged muscle wasting in late
sepsis [15,68,69]. Brakenridge et al. [70] demonstrated that glucagon-like peptide 1, a
biomarker of catabolism, is elevated at 24 h and remains elevated at 21 days in sepsis
survivors with CCI. Unfortunately, the exact mechanism(s) of sepsis-induced catabolism is
not known. There is some evidence that the sustained protein catabolism seen in CCI is
partially due to the self-perpetuating inflammation and mitochondrial oxidant injury that
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leads to the continued release of DAMPs driving inflammation and leading to continued
breakdown of skeletal muscle. For example, circulating mitochondrial DNA (mtDNA)
present in aging and muscle wasting disorders is also seen in sepsis [71]. DAMPs such as
mtDNA, HMGB1, and mitochondrial transcription factor A are increased in systemic circu-
lation during periods of catabolism and continue to drive persistent inflammation [72,73].

5. Dysregulated Myelopoiesis

Infections and sepsis also induce emergency myelopoiesis [74,75]. Acute infection
initiates mobilization of mature myeloid cells that leads to depletion of bone marrow stores
and subsequent release of more immature populations [74]. Early stem cells and multi-
potent progenitor cells all express PRRs, respond to alarmins, and undergo expansion in
response to sepsis. Preferential myeloid progenitor expansion is mediated by inflammatory
cytokines and chemokines, including the granulocyte-macrophage-colony stimulating
factor (GM-CSF) and the granulocyte-colony stimulating factor (G-CSF) [74]. In a murine
model of chronic sepsis, 95% of murine bone marrow cells were noted to be myeloid cells at
seven days, with the majority of these cells being phenotypically immature and functionally
immunosuppressive [76].

Myeloid-derived suppressor cells (MDSCs) were extensively studied in chronic crit-
ical illness of cancer patients and more recently emerged as important immune cells in
early and late sepsis [77–79]. In the early phases of sepsis, strong signals from DAMPs,
PAMPs, and various cytokines and chemokines stimulate rapid mobilization of differen-
tiated monocytes and granulocytes from the bone marrow via classic myelopoiesis [80].
However with persistent weak signaling seen in chronic inflammatory states, such as
late sepsis or cancer, there is a shift towards the mobilization and pathologic activation
of immature myeloid populations [81]. MDSCs are a heterogeneous group of immature
myeloid cells that undergo expansion during emergency myelopoiesis in an attempt to
preserve host innate immunity in these pathologic conditions [82]. MDSCs consist of two
major groups of cells: polymorphnuclear (PMN-MDSC) and monocytic (M-MDSC) [52].
Phenotypically, PMN-MDSCs are defined as CD11b+CD14−CD15+CD66b+LOX-1+ with
low side scatter (SSC), and M-MDSCs are defined as CD14+CD15−HLA-DR−/lo with low
SSC [83]. Functional characterization of these cells is contingent upon their immunosup-
pressive functions, i.e., their ability to suppress lymphocyte proliferation and cytokine
production [82]. Studies demonstrated that circulating MDSCs are persistently elevated
out to 28 days after severe sepsis and septic shock, and are associated with an increase in
secondary infections, increased ICU stay, and poor functional status [74,84,85]. In a study
of surgical sepsis survivors, MDSCs remained significantly elevated for six weeks post-
infection; those same MDSCs only demonstrated suppressive properties at and beyond
14 days post-sepsis [86]. As patients continue to experience unresolved inflammation, there
is continued expansion and an eventual pathologic activation of MDSCs [52]. Although
the initial expansion of MDSCs may be beneficial by potentiating the early innate immune
response and pathogen surveillance, persistent MDSC expansion can be detrimental, as it
both propagates persistent inflammation and dampens the adaptive immune response via
T cell suppression [82,85,87,88].

6. Immunotherapy

Despite the recent decreases in sepsis mortality thanks to earlier recognition and stan-
dardized management, the poor long-term outcomes experienced by sepsis survivors with
CCI lend evidence to a continued need to investigate agents for use in preventing undesir-
able sepsis outcomes. At its core, CCI/PICS is an appropriate early inflammatory response
that goes awry when it becomes persistent and unabated. The goal of most interventional
studies is to bring about a return to immune homeostasis through leukocyte growth factors
that suppress MDSCs, promote restoration of normal lymphocyte numbers and function,
and/or restore mature functional myeloid populations (Table 1). Leukocyte growth factors
such as GM-CSF and G-CSF are one such focus. In one clinical trial, recombinant GM-CSF
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therapy in immunosuppressed pediatric patients with sepsis restored tumor necrosis factor
production in lymphocytes and reduced nosocomial infections to zero in the treatment
group [89]. Two other randomized clinical trials involving recombinant G-CSF in severe
sepsis and community acquired pneumonia demonstrated an increase in total leukocyte
counts in patients receiving the experimental therapy; however, there were no significant
improvements in 28-day mortality [90,91]. Similarly, a meta-analysis of 12 clinical trials
using recombinant G-CSF and GM-CSF as sepsis treatments in humans found a significant
improvement in the rate of infection clearance, but failed to demonstrate any significant
improvements in mortality [92]. We attribute this to a failure to address the expansion of
pathologically activated MDSCs stimulated by these colony-stimulating factors.

Of note, none of these trials focused on long-term outcomes after 28 days. The use
of standard 28-day mortality rates as an endpoint can be misleading and fail to capture
the delayed and protracted course of sepsis-related deaths after hospital discharge ac-
curately [93,94]. Though further studies are warranted to assess effects on long-term
outcomes, their documented role in reducing infections suggests that there may yet be
a role for G-CSF/GM-CSF as one element of a multidrug treatment in combination with
other immunotherapies.

There also were studies aimed at directly impacting T cell immunity in sepsis [95,96].
IL-7 is a hematopoietic cytokine that promotes B and T cell development, proliferation
and enhancement of T-cell activation, and mobilization to sites of injury [97–99]. IL-7 is
noted to increase CD4+ and CD8+ T cell numbers in murine sepsis by upregulating the
expression of the anti-apoptosis regulator B-cell lymphoma 2 protein, which is associated
with improved survival [99,100]. IL-7 improves ex vivo lymphocyte function [97], and
administration of IL-7 enhances T cell receptor diversity in humans, which is typically
reduced in sepsis [96,101]. Treatment of sepsis with IL-7 is promising–it was shown
to be well-tolerated in clinical trials with no severe toxicities [102]. Furthermore, IL-7
administration more than doubles the levels of circulating CD4+ and CD8+ T cells in HIV
and cancer patients, and preferentially promotes effector T cells instead of regulatory T
cells [103–106]. A follow-up trial is underway to study the effect of IL-7 in restoration of
absolute lymphocyte counts in septic patients (NCT03821038).

Interferon gamma (IFN-γ) was also the target of immunomodulatory therapies in
inflammatory disease. IFN-γ is important for immune activation against viral, bacterial,
and protozoal infections [107]. IFN-γ production is typically suppressed during sepsis in
rodents and humans [99,108,109]. However, studies show that the restoration of IFN-γ
production improves survival in murine sepsis [99,110]. Treatment with recombinant IFN-
γ was associated with increased mHLA-DR expression on monocytes in septic patients
and improved monocyte function [111–113]. In one randomized controlled trial, IFN-γ
treatment decreased infection-related and overall mortality in severely injured trauma
patients [114]. IFN-associated genes were suppressed in trauma patients with complicated
outcomes, which highlights a potential subgroup for recombinant IFN-γ therapy or IFN-
stimulating agents [115,116]. IFN-γ could be a potential immunomodulatory therapy
during sepsis. However, as Patil points out, this benefit may ultimately be limited to those
with already downregulated mHLA-DR [117]. A clinical trial is underway to examine the
effects of IFN-γ on immune function in septic patients (NCT01649921).

An alternative approach is to target the immunosuppressive properties of mature
leukocyte populations. Inhibitors of negative co-stimulatory pathways and immune check-
point inhibitors emerged as potential targets for immunomodulation in sepsis. PD-1
blockade showed promising results in cancer therapeutics [118]. As a result, the PD-1/PD-
L1 pathway is an ongoing target for the treatment of sepsis. PD-L1 and its receptor, PD-1,
serve as a checkpoint inhibitor responsible for limiting CD8+ T cell proliferation and ac-
cumulation in lymph nodes. PD-1 is upregulated on CD4+ and CD8+ T cells in states of
infection and inflammation [119,120]. High levels of PD-1 are associated with elevated
secondary infection and mortality rates, and limited T cell proliferation among critically ill
patients [119]. PD-1 knockout mice have improved effector T cell proliferation and faster
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adenovirus clearance [121]. In vitro PD-1/PD-L1 blockade decreases T cell apoptosis and
IL-10 release, and improves the function of neutrophil and monocytes from septic mice and
humans [122,123]. In vivo, it appears to restore impaired CD8+ T cell function, leading to
improved cytokine release and decreased viral loads (even in CD4-deficient models), with
this improved functionality persisting for weeks following the transient blockade [124]. In
pre-clinical mouse models of sepsis, blockade of other proteins in the PD-1/PD-L1 pathway
significantly improved survival as well [110]. Additionally, inhibition of the PD-1/PD-L1
pathway prevented lymphocyte depletion and apoptosis, and improved survival after CLP
in mice [125,126]. However, just as with other clinical trials in sepsis, there yet is no study
to assess the effects of PD-1/PD-L1 inhibition on long-term outcomes beyond 30 days.

Table 1. Summary of select immunotherapy studies in sepsis or immunodeficiency.

Intervention Result Ref

GM-CSF
Restoration of monocytic immunocompetence.

Shortened time of mechanical
ventilation and hospital stay.

[89]

G-CSF Increased total leukocyte counts. No difference in
mortality rates or complications in sepsis patients. [90]

G-CSF & GM-CSF Improved infection clearance, but no difference in
mortality rates in sepsis patients. [92]

IL-7 Improved lymphocyte counts (CD4+ and CD8+

immune effector cells) in sepsis patients. [102]

IL-7 Increased CD4/CD8 T cells in HIV patients. [104]

IL-7 Increased CD4/CD8 T cells in
patients with lymphopenia. [105]

IFN-γ Increased HLA-DR expression and decrease in
natural killer cells in patients with sepsis. [111]

IFN-γ
Decreased infection related mortality and overall
mortality in trauma, but no difference in infection

rates in trauma patients.
[114]

PD-1/PD-L1 blockade
Ex-vivo restoration of function in neutrophils,

monocytes, T cells, and NK cells in whole blood
from septic patients.

[122]

PD-1/PD-L1 blockade
In-vitro decreased T-cell apoptosis, potentiated

monocytic LPS-induced TNF-α and IL-6 production
from sepsis patients.

[123]

Newly emerging interest in the role of MDSCs in sepsis triggered studies to target
these cells for therapy. Although MDSCs were demonstrated to improve bacterial clearance,
persistent activation also results in the failure to resolve acute inflammation and immuno-
suppression, ultimately leading to increased mortality [127]. Attenuating or modifying
MDSC activation, expansion, and migration may be another approach to the treatment of
sepsis [128]. A multitude of clinical efforts are underway to target MDSCs’ number and
function in cancer [129]. The implications of such approaches after sepsis are less clear-
cut; however, many immunomodulatory targets to attenuate MDSC immunosuppression
already emerged. Studies limiting MDSC expansion and functionality using gemcitabine-
treated or CCAAT enhancer binding protein beta-knockout mice yielded conflicting results.
After burn injury, gemcitabine treatment successfully resulted in a decrease in MDSCs and
increased survival following a lethal dose of LPS, but conferred a decreased survival to
Pseudomonas aeruginosa infection [130]. In another study, deficiency in MDSC signaling
pathways caused persistent elevation in inflammatory cytokines and worsened survival,
which all improved with the reintroduction of MDSCs [131]. Though there are no current
clinical trials targeting MDSCs in sepsis, future trials should take into account the timing
of MDSC modulatory treatment, as the MDSC immunosuppressive function is not seen
until day 14 after sepsis [86].
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7. Conclusions

Thanks in no small part to concerted efforts and global campaigns over the last two
decades, patients with sepsis are surviving in greater numbers early in their hospitalization.
Unfortunately, many of those who survive do not rapidly recovery and instead experience
prolonged intensive care unit stays and persistent organ dysfunction. CCI after sepsis is
associated with long-term dismal outcomes out to one year from onset, including poor
functional status, recurrent infection, failure to rehabilitate, and increased mortality [5]. The
pathobiology of CCI is likely multifactorial but can be partially explained as being driven by
the constellation of inflammatory, immunologic, and metabolic dysregulation, collectively
defined as PICS. Single therapies that target aspects of PICS have yet to be successful, but
long-term adverse outcomes after sepsis may be best attenuated with multimodal therapy.
It is clear from clinical trials that a “one-size-fits-all” treatment strategy does not, in fact,
fit all. Therefore, the multimodal therapy may require a precise, personalized strategy to
be successful in helping patients not only survive sepsis, but also offering them a better
chance for good functional recovery.
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