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Abstract
Background: Understanding the mechanisms controlling stem cell differentiation is the key to
future advances in tissue and organ regeneration. Embryonic stem (ES) cell differentiation can be
triggered by embryoid body (EB) formation, which involves ES cell aggregation in suspension. EB
growth in the absence of leukaemia inhibitory factor (LIF) leads EBs to mimic early embryonic
development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here,
we have used microarrays to investigate differences in gene expression between 3 undifferentiated
ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs

Results: An initial array study identified 4 gene expression changes between 3 undifferentiated ES
cell lines. Tissue culture conditions for ES differentiation were then optimized to give the maximum
range of gene expression and growth. -Undifferentiated ES cells and EBs cultured with and without
LIF at each day for 4 days were subjected to microarray analysis. -Differential expression of 23
genes was identified. 13 of these were also differentially regulated in a separate array comparison
between undifferentiated ES cells and compartments of very early embryos. A high degree of inter-
replicate variability was noted when confirming array results. Using a panel of marker genes, RNA
amplification and RT-PCR, we examined expression pattern variation between individual -D4-Lif
EBs. We found that individual EBs selected from the same dish were highly variable in gene
expression profile.

Conclusion: ES cell lines derived from different mouse strains and carrying different genetic
modifications are almost invariant in gene expression profile under conditions used to maintain
pluripotency. Tissue culture conditions that give the widest range of gene expression and maximise
EB growth involve the use of 20% serum and starting cell numbers of 1000 per EB. 23 genes of
importance to early development have been identified; more than half of these are also identified
using similar studies, thus validating our results. EBs cultured in the same dish vary widely in terms
of their gene expression (and hence, undoubtedly, in their future differentiation potential). This may
explain some of the inherent variability in differentiation protocols that use EBs.
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Background
ES cells are derived from the inner cell masses of blasto-
cysts and can contribute to all cell types of the embryo
proper [1,2]. The combination of pluripotency and ease of
genetic modification has given rise to the revolution in
genetic analysis via the use of knockout mice. ES cell
pluripotency has also been exploited in vitro; many differ-
ent cell types can now be generated in culture. Human ES
cell lines have been isolated; moreover, ES like cells (iPS
cells) can be derived from human skin [3-6]. Therefore, in
vitro differentiation protocols for human ES or iPS cells
have huge therapeutic potential.

Many in vitro ES differentiation protocols rely on embry-
oid bodies (EBs); floating aggregates of ES cells which,
when grown without LIF, mimic to some extent the early
stage embryo, giving rise to precursors of a large number
of tissues[7,8]. Early growth of EBs with LIF favours stem
cell renewal and the differentiation of embryonic endo-
derm [9], while removal of LIF allows the generation of
precursors representative of all three germ layers [10]. To
date, protocols for deriving neural, haematopoietic, mus-
cle, bone, pancreatic, hepatic and many other precursor
and mature cell types from ES cells in culture [11-13] have
been developed, many of which still use EBs as a starting
point. EBs can be allowed to differentiate spontaneously
from cell suspension or can be formed from a defined cell
number using 'hanging drops'. Following aggregation,
culture is often allowed to proceed spontaneously for 3–4
days, followed by the addition of factors that promote dif-
ferentiation of specific precursor types; for example, retin-
oic acid may be added to promote neuronal specification
[14,15], although, today, more efficient neural differenti-
ation can be achieved in chemically defined medium or
via adherent monoculture in the presence of FGF [16-18].
Subsequent growth, followed by disassociation and plat-
ing on adherent surfaces, permits the derivation of termi-
nally differentiated cell types.

ES differentiation can provide abundant, partially syn-
chronised sources of transient embryonic precursor types
that are present only in very limiting quantities in vivo.
Moreover, EBs represent a good model for examining the
events of early embryogenesis, as the formation of a pro-
amniotic cavity and the expression of markers of early dif-
ferentiation, for example, are often mimicked by EBs [19].
However, final cell populations are usually heterogene-
ous, percentages of desired cell types arising often vary
from one experimental replicate to another [14,15,10].
Reasons for this variation are not hard to identify; differ-
entiation is sensitive to glucose concentration, serum
quality, amino acids, growth factors, extracellular matrix
proteins, pH, osmolarity, passage number and the iden-
tity of the ES cell line used [13]. The existence of ES cell
derived chimeras and ensuing mouse lines demonstrates
the ability of ES cells to differentiate into all adult cell

types. However, we are at present unable to generate the
full complement of adult cell types from ES cells in vitro.
Greater understanding of gene expression during early dif-
ferentiation may allow more precise direction of ES cell
differentiation and will also widen understanding of early
embryonic development.

Dissecting the events of early differentiation has been
aided by the development of microarray technology,
which allows the examination of global gene expression
changes. We have used microarray technology to examine
variation between 3 undifferentiated ES cell lines. We
then optimised aggregation methods, EB size, and serum
concentrations and carried out array analysis using day 1–
4 EBs in the presence and absence of LIF. We identified 23
differentially regulated genes, some of which have known
roles in early development. However, given lower than
expected confirmation rates, and lack of reproducibility in
stem cell derived arrays [20-22], we tested the replicability
of gene expression patterns arising from individual EBs
growing in the same culture, using RNA amplification. We
found a high level of variation in gene expression pat-
terns, even between EBs from the same culture dish. This
variability may provide explanations for the difficulties
involved in obtaining pure cultures of differentiated prog-
eny from EB based protocols.

Methods
Tissue Culture and cell lines
This study utilised 3 ES cell lines, IMT11 (derived from
129 mice), HM1 (which is Hprt negative) and SMHBl6
(derived from C57Bl6/J mice). The IMT11 line was
selected for all investigations involving differentiation, as
it is not genetically modified and is better characterised
than SMHBl6. IMT11 cells showed the highest percentage
of diploid cells after karyotyping and have been tested for
germline transmission.

1) Undifferentiated ES cells were maintained at 37°C in a
humidified atmosphere with 5% CO2 on 0.1% gelatin in
DMEM, with 2 mM L-glutamine, 50 U/ml penicillin, 50
μg/ml streptomycin (all from Gibco™, Invitrogen Ltd,
Paisley, Renfrewshire, UK), 10-4 M β-Mercaptoethanol
(Merck KGaA, 64293 Darmstadt, Germany), 10-3 U/ml
murine LIF (ESGRO™, Invitrogen, Ltd, Paisley, Renfrews-
hire, UK), 10% FBS (foetal bovine serum) and 10% NBS
(newborn bovine serum) (selected batches, PAA Labora-
tories GmbH, Linz, A-4020 Austria). All undifferentiated
ES cell lines were karyotyped using standard protocols in
order to test that the majority of cells showed a normal
diploid chromosome number (40XY) prior to differentia-
tion.

2) EB generation: a semi-confluent 100 mM dish of ES
cells was trypsinized (0.25% trypsin/EDTA, Invitrogen),
followed by trituration in additional ES medium to
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achieve a single cell suspension. ES medium was prepared
as above for + LIF EBs, and without LIF for -LIF differenti-
ations. Cells were counted using a haemocytometer and
cell density was adjusted appropriately to the required
number of cells per 10 μl. A multichannel pipette (Finnpi-
pette 5–50 μl) was used to deposit approximately 200 10
μl drops on the floor of a 140 mm bacteriological dish
(Sterilin). A smaller plate was filled with 1–2 mls PBS and
placed in the lid of the bacteriological dish. The plate was
inverted and incubated overnight to allow the EBs to
aggregate. The following day dishes were righted and
flooded with 20 mls of the appropriate differentiation
medium, then grown in suspension culture until harvest-
ing. EBs were formed by aggregation of 125, 250, 500, 750
and 1000 cells per 10 μl to determine optimal size. A 50%
FCS, 50% NCS mix was prepared from ES batch tested
serum samples (PAA), then added to serum free ES
medium, at 0%, 5%, 10%, 15% and 20% final volumes.
Hanging drops containing either 750 or 1000 cells were
generated in order to test serum concentrations.

We also tested EBs that were allowed to aggregate ran-
domly following dissociation. For brevity, we refer to
these as "random EBs later in the text". Random aggrega-
tion gives rise to greater numbers of EBs per dish, that are
of much more variable sizes and shapes than those gener-
ated using the "hanging drop" method. For random aggre-
gation of EBs, 1 × 106 cells were suspended in 10 mls
media in a 100 mm bacteriological dish and allowed to
aggregate spontaneously. Serum quantities were varied as
above. Photographs were taken of EBs at day 4 of differen-
tiation without LIF, at varying sizes and serum concentra-
tions and saved in .tif format. Photographs were analysed
and EB diameters measured using Scion Image (Scion
Corporation). Diameter measurements were used to cal-
culate radius and volume.

RNA extraction and amplification
1) For array analysis, undifferentiated ES cells were
washed twice with DPBS-A, treated with trypsin-EDTA
(Invitrogen Ltd., Paisley, UK) and counted. Appropriate
cell numbers were pelleted by centrifugation at 1000 g.
The QIAgen RNeasy™ Midi Kit (Qiagen Ltd., Crawley, Sus-
sex, UK) was used according to the manufacturer's proto-
col for RNA extraction, followed by OD 260/280
spectrophotometry (Camspec, Cambridge, UK) and gel
electrophoresis using dissociating conditions (Northern-
Max™ buffers; Ambion, Huntingdon, UK), used according
to the manufacturer's protocol, to check RNA concentra-
tion and integrity.

2) For RNA extraction from individual embryoid bodies,
the mini RNA isolation kit (Zymo) was used, followed by
amplification using the RNA amplification kit (Arcturus),
both according to the manufacturer's protocol. Following
quantification by UV spectrophotometer (Camspec),

amplified RNA samples were DNase treated using the
Turbo DNAfree kit (Ambion) and reverse transcribed
using the random hexamer protocol of the Superscript
First Strand Synthesis System for RT-PCR (Invitrogen).
(Note, a nuclease step is included in the Arcturus kit to
remove residual DNA, but is not entirely sufficient to
ensure blank negative control lanes, hence the extra
DNase step).

3) For RNA extraction followed by RT-PCR, embryoid
bodies were spun down, washed with PBS, then spun
down again. EBs were treated with 0.25% trypsin/EDTA
and washed with PBS a second time when extracting RNA
from larger Day 3–4 EBs 100 ul of EBs+ residual PBS was
resuspended in 1 ml TRIzol (Invitrogen); samples were
homogenized by pipetting up and down using a 1 ml
micropipette. RNA was extracted according to the manu-
facturer's protocol, quantified, DNase treated and reverse
transcribed as above, except that the oligo-dT supplied
with the kit was spiked with a 1/10000 dilution of an 18S
rRNA gene specific primer, in order to allow 18S rRNA
(which doesn't have a poly A tail) to be used as a house-
keeping control. Where starting RNA quantity was low, we
tripled the amount of RNA used and therefore the reaction
volumes per sample. RT reactions were diluted with nucle-
ase free water (Ambion) to 50 ul before PCR analysis. A
"no RT" control corresponding to each sample was also
produced for all RT-PCR experiments described in this
paper; these were treated in exactly the same way as the
samples except that reverse transcriptase was not added.

4) For RNA extraction prior to array analysis, EBs were
spun down, washed, and trypsinized as above. The QIA-
gen RNeasy™ Midi Kit (Qiagen Ltd., Crawley, Sussex, UK)
was used according to the manufacturer's protocol for
RNA extraction. RNA samples were quantified and
checked for quality as described in 1) above.

Cy labelling for array analysis
10 μg of total RNA was labelled with either Cy3 or Cy5
dyes using the CyScribe labelling system (GE Healthcare,
Chalfont St. Giles, Bucks, UK), according to the manufac-
turer's protocol. 1 μl of labelled cDNA was combined with
2 ul 50% glycerol/50% TE mixture, run on a microscope
slide sized, 1.5% agarose gel (mould manufactured in-
house) and scanned using a GeneTac LS IV scanner
(Genomic Solutions, Huntingdon, Cambs. UK). Control
and experimental samples were then combined and pre-
pared for hybridization.

Hybridization
Array slides were incubated in prehybridization buffer for
1 hour at 42°C (50% formamide, 5 × SSC, 0.1% SDS, 1%
BSA). Targets were dried down via vacuum centrifugation
then resuspended in 50 μl hybe solution (49.9% de-ion-
ised formamide, 49.9% 20 × SSC, 0.2% SDS) with added
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1 μl Cot1 DNA and 1 μl poly A oligo as blocking agents,
heated to 95°C for 5 minutes and then added to the face
of one slide. The printed face of the second slide of the
pair was then placed face to face with the first, using the
same probe. Slide pairs were then placed in a humidified
container and incubated for 24–48 hours at 42°C. Fol-
lowing hybridization, slides were washed once in Wash
solution 1 (1× SSC, 2% SDS, filtered autoclaved ddH2O)
for 20 minutes, then twice in Wash solution 2 (0.1× SSC,
0.2% SDS, filtered autoclaved distilled deionised H2O
(ddH2O) for 20 minutes each. Slides were dipped in
nuclease free filtered water, then spray dried, finally, the
backs of the slides were cleaned with filtered autoclaved
ddH2O, then wiped with 100% EtOH, then wiped dry
and scanned.

Scanning
Scans were carried out at 12.5 μm, using the averaging set-
ting (GeneTac LSIV scanner, (Genomic Solutions, Cam-
bridgeshire, UK)). It is possible to carry out quick draft
scans using this scanner. Gain and black settings, which
affect image intensity and background, were varied
slightly in order to optimize the signal/noise ratio for each
channel and each slide before proper scans were initiated.

MIAME standards
In adherence with MIAME standards [23], all data sets
have been submitted to the GEO database http://
www.ncbi.nlm.nih.gov/geo/ and are fully MIAME compli-
ant. Undifferentiated ES cell comparison data are
described in GSE8625, while EB differentiation compari-
sons are described in GSE8766. The results from these
experiments were compared with an array comparison
(described elsewhere) between undifferentiated ES colo-
nies and microdissected inner cell masses from embryonic
day 3.5, 4.5, and delayed blastocysts and microdissected
day 5.5 and day 6.5 embryonic ectoderm (GSE8881,
[24]).

Array Platforms
Undifferentiated ES cell array experiments (GSE8625)
were carried out using NIA 15K slides printed in the Car-
diff Microarray Facility. These consisted of 17136 spots,
printed in 12 × 4 mini grids, each with 17 rows and 21 col-
umns and are described more fully in GEO, platform
accession number GPL5530. EB differentiation compari-
sons (GSE8766) were carried out using NIA 15K slides
printed by the HGMP. These consist of 2 slides, 17280
spots per slide, including control spots, empties and land-
marks. 2 duplicate spots are printed per slide for each
clone. These slides are described more fully in GEO, plat-
form accession number GPL5735. The array slides used
for GSE8881 were also printed in Cardiff and contain
16128 spots, printed in 12 × 4 mini grids, each with 16
rows and 21 columns. The GEO platform accession
number for these is GPL5771. Differences in spot number

relate to differences in the number of landmarks and
other controls printed; the core NIA 15K set is present on
each of these platforms

Experimental design, Image analysis
Undifferentiated ES cell arrays were carried out using sam-
ples from undifferentiated IMT11, SMHBL6.3 and HM1
ES cells. EB arrays were carried out using samples from
Day0 (undifferentiated), Day1, Day2, Day3 and Day 4
differentiated EBs, generated in the presence and absence
of LIF (9 samples in total). Each experimental sample was
hybridized on a slide with a pooled control derived from
an equal amount of all experimental samples. ES arrays
were repeated 12 times (this print run contained no dupli-
cate spots). EB arrays were repeated twice. Duplicate spots
were present on each array, giving four repeats total for
each gene. Scanned images were stored and filtered, then
analysed using ImaGene™ 5.5 (BioDiscovery). This series
of array experiments was carried out using the NIA15K set
[25]. ESTs comprising this set were isolated from a variety
of embryonic stages and tissues. Arrays were hybridised
with fluor switching, in order to counteract any issues of
dye bias that may have arisen from direct labelling.

Microarray Analysis
Array analyses for GEO entries GSE8625 and GSE8766
were carried out similarly to work described previously
[26,27]. Output files from ImaGene were saved and ana-
lysed in MS Excel spreadsheet format. Each channel from
each repetition was normalised via division by the mean
intensity value. These data were collated and formatted
for Significance Analysis of Microarrays (SAM; http://
www-stat.stanford.edu/~tibs/SAM). Genes that showed a
fold change of 2 or above and were statistically significant
above a delta value of 0.5 (which denotes an error rate of
5%) were selected for further appraisal. SAM, however,
has a disadvantage; all replicates have to be in the same
order, precluding any data filtration. Hence, we supple-
mented SAM analysis with a second analysis method as
follows:

Following normalisation, we used approximately 700
blank spots per slide to calculate a mean background
value + 2 standard deviations of that background value,
for each channel. Genes that fell below this cut-off in
BOTH control and experimental channels were removed,
along with genes with a fold change of < 2. This filtered
gene list was compared with that from SAM; genes appear-
ing as differentially regulated using both methods were
deemed significant (fold change > 2, above background +
2 SD in at least one channel, delta value of 0.5).

Samples were compared with pooled controls; sets of 4
experimental replicates were also compared with normal-
ised samples from each of the other experimental sam-
ples. A "master list" of genes from all analyses was
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generated (see Figures 1 and 2 (all confirmed genes) and
Additional File 1 (all unconfirmed genes)).

Primer design
Significant ESTs were subjected to bioinformatic analysis
via BLAST against the mouse genome, and, where availa-
ble, against the reference sequence from the UniGene
cluster to which they belonged. ESTs with sequences too
short or too poor for primer design were rejected at this
stage. Adequate EST sequences were used for primer
design with Primer3 [28]http://frodo.wi.mit.edu/), using
sequence that matched the genome and/or RefSeq
sequence. This analysis was carried out in order to rule out

primer mismatches due to areas of erroneous first pass
sequence. Primer sequences are given in Table 1.

Bioinformatic analysis
Bioinformatic analysis of confirmed genes was also car-
ried out in order to identify putative function in differen-
tiation. Accession numbers were used to comprehensively
search the NCBI databases http://www.ncbi.nlm.nih.gov.
Data compiled from various NCBI databases (UniGene,
Homologene, OMIM, LocusLink, PubMed etc.) are shown
in Figures 1 and 2. Selected marker genes were chosen on
the basis of a known role in maintenance of pluripotency,
or early development, or because they are well known

Bioinformatic analysis of confirmed genes (part 1)Figure 1
Bioinformatic analysis of confirmed genes (part 1). From top left, columns are as follows: Experiment: this column 
indicates whether the gene confirmed is from the GSE8625 (undifferentiated ES cell lines) or GSE8766 (EB differentiation) gene 
lists. Acc no: GenBank accession number. Gene ID: the NIA clone ID, which is referred to in the NCBI nucleotide database 
as Gene ID. Identity refers to the official NCBI gene name to which the gene relates (where this is known). UniGene: refers 
to the UniGene cluster to which the EST has been assigned (where known). Chromosome indicates the mouse chromosome 
to which the EST maps. Differential regulation gives the nature of the expression change and the fold change derived from 
array analysis. Bioinformatics indicates possible functions related to differentiation obtained from searches of the NCBI data-
base and the literature. Differentially regulated:other experiments describes if the EST/gene in question has been identi-
fied as differentially regulated in our own study of ES cells versus compartments of early embryos (GSE8881), and/or similar 
published work. Abbreviations associated with GSE8881: IMT11: undifferentiated IMT11 ES cells. ICM88 and ICM105 = blasto-
cyst inner cell mass, 88 hours post coitum, 105 hours post coitum. DICM136, DICM180 = delayed blastocyst inner cell mass, 
136 hours post coitum, 180 hours post coitum. EE5.5, EE6.5 = embryonic ectoderm, 5.5 and 6.5 days post coitum. For meth-
ods and more detailed descriptions of this experiment, see GEO, GSE8881, [24].

Experiment acc no. gene id identity UniGene chromos
ome

Differential regulation Bioinformatics; possible functions Differentially regulated; other experiments

GSE8625 BG077623 H3017F07 Hprt1: Hypoxanthine guanine 
phosphoribosyl transferase 1

Mm.299381 X Expression absent in HM1 line, as expected.       
-3.59, IMT11 vs HM1     -4.66, SHBl6.3 vs HM1

Housekeeping gene, role in the generation of purine
nucleotides, knocked out in HM1 ES line, can be used as a 
selection tool. Mutations can cause gout and Lesch-Nyhan 
syndrome (OMIM 308000)

GSE8881: IMT11 vs DICM180, up. Downregulated 
after 7day RA differentiation [31]

GSE8625 CK334674 H3084B07-3 Pter: Phosphotriesterase related Mm.288713 2 Lower expression in SHBl6.3 ES cells as 
compared with HM1 and IMT11. 6.726087 
IMT11 vs SHBL6. 3, 3.217134, HM1 vs 
SHBL6.3

Homologue of bacterial zinc metalloenzyme, may catalyze the 
hydrolysis of a range of phosphotriester compounds,
differentially regulated in cystic kidneys (OMIM 604446)

Differentially regulated after treatment with 
Oct4/Nanog RNAi [34]. Highly represented in 
diaphragm-neck E11 mouse Unigene library

GSE8766 BG063299 H3005E04 Atp5b: ATP synthase, H+ 
transporting mitochondrial F1 
complex, beta subunit

Mm.238973 10 PCR: D3-L, D4-L down vs other samples. 
Array: -4.46, D3-L vs D0

GeneID: 11947. Located to mitochondrial inner 
membrane, involved in ATP biosynthesis and therefore 
energy metabolism. 

GSE8881: IMT11 vs ICM88, ICM105, DICM180, all 
up. Other subunits of Atp5 were differentially 
regulated after treatment with Oct4/Nanog RNAi [34] 
and after 4-3+ RA treatment of EBs [15].

GSE8766 BG062968 H3002E12 Aurkb: Aurora kinase B Mm.3488 11 PCR: D4 + Lif up vs other samples. Array: 
2.86, D4+Lif vs pooled control, 

GeneID: 20877. Role in mitosis, meiosis, ploidy and 
histone modification. May be involved in epigentic 
marking of silent chromatin during cell differentiation. 
[49]

Differentially regulated after treatment with 
Oct4/Nanog RNAi [33]. Upregulated at D10 of 
differentiation vs. Day3 [32].

GSE8766 BG065603 H3033B08 Cox4i1: Cytochrome c oxidase 
subunit IV isoform 1

 Mm.386758  8 PCR: D3,4+L, up vs D0. Array: D0 down 
vs D3 +L , -3.31.  

Gene ID: 12857. Catalyses mitochondrial respiration, 
expression levels regulated by oxygen bioavailability 
[50]. 

GSE8881: IMT11 vs ICM88, ICM105, DICM180, 
EE6.5, all up. Other subunits of Cox4 were 
differentially regulated after treatment with 
Oct4/Nanog RNAi [34]

GSE8766 BG071498 H3099F09 Dppa5: Developmental 
pluripotency associated 5, and 
similar to Dppa5 (a.k.a ESG1)

Mm.139314, 
Mm.359437

5, but 
also other 
high 
matches 

PCR: d3-,4-L down vs d2-L. Peak at 
Day2-L vs other samples. Array: -3.04, d3-
L vs pooled control

Gene ID:  434423.  Marker of pluripotent stem cells, 
downregulated during germ cell development [51]. 
Dispensible for ES cell renewal and ES cell propagation
however [52].

Differentially regulated after treatment with 
Oct4/Nanog RNAi [34]. Highly represented in 
C57Bl6/J ES cell and blastocyst mouse Unigene 
libraries

GSE8766 BG063704 H3010E10 EST none 11 PCR: D3+L, up vs D0. Array: 3.54, D3+L 
vs D0

uncharacterised. 

GSE8766 BG063737 H3012B10 EST none 17 PCR: D0 down versus day 3,4+L.              
D0, day1-L down vs d3-L, d4-L, Array: 
5.83, Day 4+L vs day0  4.052, Day 3-L vs 
Day 0  

uncharacterised. GSE8881: MT11 vs EE5.5, EE6.5, both down

GSE8766 BG067484 H3054H09 EST none no 
matches

PCR: d4-L, up vs D1-L. Array: 5.021 d4-
L, upregulated vs D1-L

uncharacterised. 

GSE8766 BG067621 H3056D06 EST none no 
matches

PCR: d0 up vs d3+L. Array: 10.84 d0 vs 
d3+L, upregulated.

uncharacterised. GSE8881: IMT11 vs ICM105, up

GSE8766 n/a H3133B01 EST none 15 PCR: D4-L down vs D0, Array: 0.377, day 
4-L downregulated vs day0

uncharacterised. 

GSE8766 n/a H3134D10 EST none equal 
matches 
to cs X 
and 2

PCR: D1-4 down vs D0, decline from D0.  
Array: -2.90, D3-Lif vs pooled control

uncharacterised. 

GSE8766 BG069915 H3081E05 EST none 7 PCR: d3-L down vs  D4-L, array: -2.833, 
d3-L vs pooled control

uncharacterised. 

GSE8766 BG063430,  
CK334149

H3007B09 Eukaryotic translation initiation 
factor 4A1 (Eif4a1) 

Mm.371557 11 PCR: Array results NOT confirmed, BUT 
downregulated in D1-4-Lif vs day 0 in all 
6 PCR samples tested. Array: n/a

Gene ID: 13681. Helicase, unwinds 5' mRNA during 
translation initiation. Associated with metastasis, [45] 
can stimulate cell growth in hepatoma cells [46] and 
enriched in human ES cells [47]

GSE8881: IMT11 vs ICM88, ICM105, both up. 
Preferential expression in ES, EG, MS and NS stem 
cells [29]

GSE8625 Higher expression in IMT11  ES cells compared 
with HM1 and SHBL6.3. 3.08, IMT11 vs 
SHBL6.3   2.67, IMT11 vs HM1

Higher expression in IMT11  ES cells compared 
with HM1 and SHBL6.3. 1.6791, IMT11 vs HM1 
1.99465, IMT11 vs SHBL6.3

GSE8625

Expressed in proliferating but not quiescent cells (OMIM 
176741) , can be used to identify rapidly proliferating tumour 
cells. Expression may be related to different proliferation rates 
between the ES lines

constituent of the mammalian Polycomb repressive 
complexes 1 (Prc1).  May be involved during  meiotic 
prophase of male germ cells.  [48]

7

H3113B01-3BG072628, Scmh1: Sex comb on midleg homolog 
1

Mm.208924 4

H3025D07-3BG064926 Mki67: Antigen identified by 
monoclonal antibody Ki 67

Mm.4078
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housekeeping genes. Primers were designed for these
from the appropriate reference sequence, using Primer3 as
above. Datasets derived from ES cell differentiation sub-
tractive EST library studies [15,29] or microarrays [30-38]
were also searched for the presence of the genes we con-
firmed in this study (Figures 1 and 2).

RT PCR array confirmations
We used semi-quantitative RT-PCR to confirm differen-
tially regulated genes. As most significant genes appeared
to be differentially regulated at various different stages of
differentiation, we tested all genes against Day 0, and
Day1–4 EBs, + and - LIF. Three biological replicates of

1000 cell Day 1–4 EBs and 3 replicates of 750 cell EBs (+
and - LIF) were used for confirmations, including No RT
controls. In order to be deemed confirmed, we asked that
a gene demonstrate a consistent expression pattern in at
least 4 out of 6 PCR tests. The number of cycles required
for minimum visibility was identified and PCRs were opti-
mised at the Tm indicated for each primer pair, such that
only single bands appeared. PCR bands obtained for
housekeeping controls were of even intensity at minimum
visibility cycles before testing other genes. PCRs were car-
ried out in 20 μl volumes using 0.025 μmol of each dNTP
(Invitrogen) and 1 unit Taq DNA polymerase (Sigma) per
reaction. PCRs were usually carried out using PCR buffer

Bioinformatic analysis of confirmed genes (part 2)Figure 2
Bioinformatic analysis of confirmed genes (part 2). From top left, columns are as follows: Experiment: this column 
indicates whether the gene confirmed is from the GSE8625 (undifferentiated ES cell lines) or GSE8766 (EB differentiation) gene 
lists. Acc no: GenBank accession number. Gene ID: the NIA clone ID, which is referred to in the NCBI nucleotide database 
as Gene ID. Identity refers to the official NCBI gene name to which the gene relates (where this is known). UniGene: refers 
to the UniGene cluster to which the EST has been assigned (where known). Chromosome indicates the mouse chromosome 
to which the EST maps. Differential regulation gives the nature of the expression change and the fold change derived from 
array analysis. Bioinformatics indicates possible functions related to differentiation obtained from searches of the NCBI data-
base and the literature. Differentially regulated:other experiments describes if the EST/gene in question has been identi-
fied as differentially regulated in our own study of ES cells versus compartments of early embryos (GSE8881), and/or similar 
published work. Abbreviations associated with GSE8881: IMT11: undifferentiated IMT11 ES cells. ICM88 and ICM105 = blasto-
cyst inner cell mass, 88 hours post coitum, 105 hours post coitum. DICM136, DICM180 = delayed blastocyst inner cell mass, 
136 hours post coitum, 180 hours post coitum. EE5.5, EE6.5 = embryonic ectoderm, 5.5 and 6.5 days post coitum. For meth-
ods and more detailed descriptions of this experiment, see GEO, GSE8881, [24].

GSE8766 BG064474, 
BG064794,  
BG064795,   
BG064796    
CK334837

H3020B08, 
H3023H09, 
H3023H10, 
H3023H11   
H3115H06

Ftl1: Ferritin light chain 1 Mm.316179   
Mn30357  
Mm.348374  
Mm.431913  
Mm.472710

13 
(Unigene) 
7 (Gene) 

PCR: D1-L down vs d0 and D2-4 -LIF 
Array: -3.85, day 0 vs day4-L, -3.19, day0 
vs d3-L, -3.26, day1-L vs Day0  

GeneID: 14325. Involved in iron homeostasis GSE8881: IMT11 vs DICM180, down. Ferritin heavy 
chain differentially regulated after treatment with 
Oct4/Nanog RNAi [34]

GSE8766 BG070801, 
BG083716 

H3091C10 Hnrpk: Heterogeneous nuclear 
ribonucleoprotein K

Mm.142872    7,13 PCR: Array results NOT confirmed, PCR: 
d1-L down vs d0,  d0 also up vs d4-L. 

GeneID: 15387. May be involved in mitochondrial 
response to insulin, the regulation of neuronal 
differentiation and improving the efficiency of VEGF 
mRNA translation [53,54, 55]

GSE8881: IMT11 vs ICM105, up. Other Hnrp 
proteins differentially regulated after Oct4/Nanog 
RNAi [34]. Upregulated, 4-3+RA treatment of EBs 
[15]. Common ESC gene [22]

GSE8766 BG074333 H3133H01 Hspa8: Heat shock protein 8 Mm.336743,   
Mm.290774

9 PCR: D1-4-L, down vs day 0, decline 
from day0 Array: 0.395, day4-L 
downregulated vs day 0

GeneID: 15481.  transiently associates with nascent 
peptides to assist correct folding. May regulate AUF1, 
which is involved in the rapid decay of certain mRNAs. 
OMIM 600816

GSE8881: IMT11 vs ICM88, EE6.5, both down. 
Preferential expression in unfertilised egg-E3.5 
blastocyst developmental stages [29]. Differentially 
regulated after treatment with Oct4/Nanog RNAi [34].

GSE8766 BG063605 H3009C07 Hspca: Heat shock protein 1, 
alpha (a.k.a. Hsp86)

Mm.1843 multiple 
matches

PCR: Array results NOT confirmed, 
Decline in -LIF expression  after D0 in all 
6 PCR samples tested. Array: n/a

Implicated in epigenetic modification of chromatin and in 
increased carcinogenic invasiveness [43]. Like Hspa8, 
constitutively expressed heat shock protein.

GSE8881: IMT11 vs ICM105, DICM180, up. 
Downregulated after 4 days exposure to RA [30]. 
Differentially regulated after treatment with 
Oct4/Nanog RNAi [34]. Upregulated after 4-3+RA 
treatment of EBs [15].

GSE8766 BG063569,   
BG076934.

H3008H05 Ribosomal protein S2 (Rps2) Mm.389704 17 PCR: d3,4-L down vs d0. Decline after 
day 0. Array: -3.40, Day3-Lif vs. pooled 
control

GeneID: 16898. Ribosomal protein, involved in 
translation, methylated by Prmt3.

Preferential expression in ES (+&-Lif) and TS cells 
[29]. Many ribosomal proteins upregulated after 4-
3+RA treatment of EBs [15]

GSE8766 CK335084. H3139H08 Ribosomal protein S28 (Rps28) Mm.352374 equal 
matches, 
cs 13 & 2

PCR: D3-L, D4-L down vs D0. Array: -
2.41, day3-Lif vs pooled control

GeneID: 54127. Ribosomal protein involved in 
translation.

Many ribosomal proteins upregulated after 4-3+RA 
treatment of EBs [15]

GSE8766 BG069482 H3076A06 RIKEN cDNA 6330409N04 gene 
(6330409N04Rik)

Mm.282706    PCR: d3,4 +L, up vs day0.  d3-L, d4-L, up 
vs D0, d1-L.  Array: 5.92, d0 vs d3+L, 
5.29, day 3-L up vs. pooled control 

GeneID: 66674. Hypothetical protein, uncharacterised GSE8881: IMT11 vs ICM88, DICM180, EE6.5, all up

GSE8766 BG074976 H3141F09 Rpl8: Ribosomal protein L8 Mm.30066 15 PCR: d3-L down vs d0. Array: -2.045 day 
3 -L vs day 0

GeneID: 26961  Ribosomal protein involved in 
translation. 

GSE:8881:IMT11 vs EE6.5, down. Highly 
represented in male E12.5 mesonephros/gonad and 
E17 mouse Unigene libraries. Many ribosomal 
proteins upregulated after 4-3+RA treatment of EBs  
[15]. 

GSE8766 BG073685 H3124F08 Rplp1: Ribosomal protein, large, 
P1

Mm.3158 multiple 
matches

PCR: d4-L, d3-L down vs. other samples. 
Array: -3.77, day3-Lif vs pooled control

GeneID:56040.  Ribosomal protein involved in 
translation

GSE8881: IMT11 vs ICM105, EE6.5, both down. Up, 
4-3+RA EBs [15]. Diff. reg. Oct4/Nanog RNAi [34].  
Highly expressed E15 brain Unigene library.  
Downregulated at D10 diff vs. D3 [32].

GSE8766 CK334832 H3115E12 Sgce: Sarcoglycan, epsilon Mm.8739 6 PCR: D4-L up vs D3-L. Array: 2.41, day 4-
L up vs day 3-L

GeneID: 20392. Mutations cause myoclonus dystonia, 2 
isoforms, nervous system function [56]

Differentially regulated after Oct4/Nanog RNAi [34]. 
Thought to bind and be regulated by Oct4/Nanog 
[34].

GSE8766 BG074114 H3131A08 Ssr2: Signal sequence receptor, 
beta

Mm.7091 3 PCR: D1-4-L samples down vs d0, 
decline from day0. Array: 0.276, day4-L 
down vs day 0

GeneID:66256.  Component of the signal recognition 
particle that recognizes signal peptides, then transports 
relevant proteins across the endoplasmic reticulum

GSE8881: IMT11 vs ICM88, ICM105, DICM136 
DICM180, EE5.5, EE6.5, all up

GSE8766 BG065267 H3029B05 T: Brachyury Mm.913 17 PCR: Day4-L up vs Day0. Array: 2.31, 
day 4-Lif vs pooled control

GeneID; 20997. T protein is vital for the formation and 
differentiation of posterior mesoderm and for axial 
development in all vertebrates OMIM 601397.

GSE8766 CK334246 H3011G11 Tkt: Transketolase Mm.290692 PCR: d3 + L, up vs D2+L Array: 3.19, 
day3+Lif vs day2+Lif

GeneID: 21881. Ubiquitous metabolic enzyme, 
haploinsufficiency causes growth retardation, adipose 
abnormalities and reduced fertility in female mice [57]. 
Altered expression in neural differentiation [58]

Differentially regulated after treatment with 
Oct4/Nanog RNAi [34]. 

GSE8766 CK334347 H3018E11 Tubb5: Tubulin, beta 5 Mm.472691 17 PCR: D1 down vs D3+L, D2+L , D0 down 
vs D1-L. Array: -6.10, day 1-Lif vs day0,    
3.058, day3+Lif up vs day 1 + Lif      

GeneID: 22154 Structural constituent of cytoskeleton      
OMIM 602662: expressed specifically in fetal and adult 
brain

GSE8881: IMT11 vs ICM88, up
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Table 1: Primer sequences.

A) Marker/Housekeeping genes (note: Brachyury, Beta-actin, Hprt and Gapdh also came up in the arrays)

Gene Primer sequence PCR fragment size (bp)

Oct4 F GAGCACGAGTGGAAAGCAAC 521
Oct4 R CGCCGGTTACAGAACCATAC
NANOG F TTACAAGGGTCTGCTACTGAGATG 431
NANOG R GCAATGGATGCTGGGATACT
18Smm F GTAACCCGTTGAACCCCATT 150
18Smm R CCATCCAATCGGTAGTAGCG
GscF CAGATGCTGCCCTACATGAAC 157
GscR TCTGGGTACTTCGTCTCCTGG
Fgf5 F TGTGTCTCAGGGGATTGTAGG 136
Fgf5 R AGCTGTTTTCTTGGAATCTCTCC
KDR F TTTGGCAAATACAACCCTTCAGA 112
KDR R GCAGAAGATACTGTCACCACC
Hprt F CACGGACTAGAACACCTGC 229
Hprt R GCTGGTGAAAAGGACCTCT
Brachyury F CATGTACTCTTTCTTGCTGG 312
Brachyury R GGTCTCGGGAAAGCAGTGGC
GATA4 F CCCTACCCAGCCTACATGG 138
GATA4 R ACATATCGAGATTGGGGTGTCT
Rex1 F CGTGTAACATACACCATCCG 128
Rex1 R GAAATCCTCTTCCAGAATGG
Nestin F CCGCTTCCGCTGGGTCACTGT 227
Nestin R CTGAGCAGCTGGTTCTGCTCCT
NodalF TTCAAGCCTGTTGGGCTCTAC 162
Nodal R TCCGGTCACGTCCACATCTT
GapdhF: ACCACAGTCCATGCCATCAC 432
Gapdh R: TCCACCACCCTGTTGCTGTA
B-actinF: CGTGGGCCGCCCTAGGCACCA 242
B-actin R: TTGGCCTTAGGGTTCAGGGGG

B) Primers, Confirmed and interesting genes:

GSE8766

Gene Primer sequence PCR fragment size (bp)

Aur F AAATTGAAAGGAATCAGACTAGA 147
Aur R GACCACTGTCTGTAACACCC
Atp5b F CCTGCATGGAAGGAAACCTG 238
Atp5b R GTCACATGGGGAAGCTGGTG
HnrpkF: CCCCAACCCTGTTTGTAAGG 293
HnrpkR: GGACCAGATACAGAACGCACA
Dppa5F: TCGGAGACACAAGGACTGGA 269
Dppa5R: CCCACAGGGATCTCGAATGTC
SgceF: TGTCACGGTATTTGGTTCTCAA 170
SgceR: CGCAGACTACAGGTAAATGGTA
Rplp1F: ACCGAAGCCCATGTCATCTT 211
Rplp1R: CTTTCTGGCCTGGCTTGTTT
Ssr2F: TGGTTGAGTTCGGGGTAAGA 274
Ssr2R: AGCGGGAGTTTGACAGGAGA
Hspa8F: GGGTTGCAGACTTTCTCCAGT 239
Hspa8R: AAGGCTGAGGATGAGAAGCA
Eif4a1 F: CATCCAGCAGCGAGCTATTC 271
Eif4a1R: CAGCTTCTGCACCTCAGCAC
Rpl8 F: CTCCAAAGGGATGCTCCACA 238
Rpl8R: GCCACAGTCATCTCCCACAA
Hspca1F: ATCTGCACCAGCCTGCAAAG 176
Hspca1R: AACTGGACTCGGGGAAGGAG
Page 7 of 18
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(Sigma) containing 15 mM MgCl2 although magnesium
concentrations, along with annealing temperature and
cycle number, were varied where necessary in order to
optimise results. Final PCR conditions are indicated for
each gene in the appropriate figures (see Results). Primer
sequences are given for all genes tested in Table 1 and
Additional File 1. In order to confirm that semi-quantita-
tive PCR was indeed representative of expression pattern
changes, we studied the expression patterns of two con-
firmed genes, Hspa8 and BG063737, by quantitative PCR.
Expression pattern changes achieved by q-PCR were very
similar to the methods described above. Methods and
results are given in Additional File 2[39].

Results
Undifferentiated ES cell arrays
We studied expression differences between 3 ES cell lines,
IMT11 (derived from 129 mice), HM1 (which is Hprt neg-
ative) and SMHBl6 (derived from C57Bl6/J mice) (GEO,

GSE8625). 21 genes, including Hprt, were identified from
the arrays as possibly differentially regulated, four were
confirmed by RT-PCR; Hprt, Mki67, Pter and Scmh1 (see
Figure 3). Hprt was not expressed in HM1 cells, as
expected. Mki67 and Scmh1 were upregulated in IMT11
cells, while Pter was downregulated in SHBl6.3 cells.

Optimisation of embryoid body differentiation
IMT11 ES cells were used to generate EBs of 125, 250, 500,
750 and 1000 cells via hanging drops, using ES medium -
LIF and 20% serum (FBS + NBS). An upper limit of 1000
cells was chosen as we often observed substantial interior
necrosis and RNA degradation in larger EBs by Day 4 of
differentiation. Analysis of EB size measured at day 4
shows little variation in diameter between EBs initiated
with a cell number of 500 or greater; size constraints may
begin to apply once a certain diameter is reached (Figures
4a + b). RT-PCR showed that 125–500 cell EBs failed to
show expression of genes such as brachyury by Day 4. Fur-

BG063704 F: GAACTCCAGACCTCCAGACCA 184
BG063704 R: TTGCTTTGGGCAACAACTGA
Rps2F: TACCTGTTCTCCCTGCCCATT 180
Rps2R: AACACCAAGACCAACGTGACC
BG069915F: GGAGTATGGAACGACCCTCTCA 201
BG069915R: GAGCAGTGATTCTCAACCTTGC
BG067484F: GCCTCGATCAGAAGGACTTG 193
BG067484R: GACCCGCTGAATTTAAGCAT
BG067621F: GCTCCCAAGATCCAACTACGA 257
BG067621R: AGCCTGAGAAACGGCTACCA
Cox4i1F: CGCAGTGAAGCCAATGAAGA 246
Cox4i1R: GCTTTCCCCACTTACGCTGA
Ftl1F: GCTGCCTAGTGGCTTGAGAGG 216
Ftl1R: ATGGGCAACCATCTGACCAA
TktF: TATGGACTGGCCCTCGCTAA 286
TktR: GGGAGCCACAGAGGTTGATG
BG063737F: GACGAGCACACAGGGAAACC 300
BG063737R; GGAGAGAAGGAGGGGCAAGA
BG069482F: CCCTCGGATACCTGATGCTG 167
BG069482R: TGAGAAATGACGGAGCCTTG
Tubb5F: TGGGAGGTGATAAGCGATGAA 257
Tubb5R: GGCCTTTAGCCCAGTTGTTG
Rps28 F: CAGGTGCGAGTGGAATTCATG 198
Rps28 R: TGCTTTATTTAACAGTTGCAGATCA
H3133B01F: CAGCCATTCAGCAAAGGAGA 283
H3133B01R: TCTTGGGCAGGGTCTGTAGG
H3134D10 F: GCTCGGCTGTGTCAAGATGAAG 227
H3134D10 R: CATGGGTCAGAACACCTTGCTT

GSE8625:

Mki67F: CCTTGGCTTAGGTTCACTGTCC 250
Mki67R: TGCAGAATCCAGATGATGGAGC
PterF; CATGTCCCACCTTGACAGGAC 245
PterR; CCGTACTTCATCAACCGATGC
Scmh1F: GGACCCAGTGTAGGAAGAGAGACC 206
Scmh1R: ATTGCTTCTGGCGTTTGGAC

Primers in bold were also used for Q-PCR.

Table 1: Primer sequences. (Continued)
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thermore, the amounts of RNA retrieved were insufficient
for array analysis at Days 1 and 2 (results not shown). 750
and 1000 cell EBs showed expression of markers of all 3
germ layers (see below), and gave a better RNA yield at
days 1 and 2.

Higher serum concentrations are known to promote
maintenance of pluripotency in cultures of undifferenti-
ated ES cells, and also provide more nutrients and pH sta-
bility to the medium. We generated random, 750 cell and
1000 cell EBs in ES media without LIF, containing 0, 5, 10,
15 and 20% serum (1:1 mix of FBS + NBS). EBs cultured
with no serum were dead after 24 hours and are therefore
not shown in data analysis. Measurements of EB diameter
showed that 20% serum promoted the largest EBs at Day
4 for 750 cell and randomly generated EBs, while 1000
cell EBs reached similar sizes with 15% and 20% serum
concentrations (Figure 4b). RNA was extracted at days 1–
4 of differentiation and analysed by RT PCR. Results are
shown in Figures 5, 6 and 7. The greatest range of gene
expression was noted on days 3–4 in concentrations of
15–20% serum (Figures 5, 6 and 7). Moreover, Fgf5 was
only expressed in EBs with a starting size of 1000C. One
should note that the higher serum concentrations also
promote the maintenance within the EB of undifferenti-
ated cells; the expressions of markers of pluripotency such

as Oct4, Nanog and Rex1 diminish at Day 4 in 5% serum,
but maintain and even increase expression levels at 15–
20% serum. Given more varied gene expression profiles
(suggesting that a greater range of cell types could be
obtained eventually from such a protocol over time), size
and greater RNA yield, we decided to use 1000 cell EBs
grown in 20% serum for our subsequent array experi-
ments.

Array analysis
Array results from Day 1–4 EBs, grown in both the pres-
ence and the absence of LIF, were compared at all stages
with the pooled control (equal amounts of Day 0–4 ES
cells + EBs, both with and without LIF), and also with each
other, when analysing the arrays. 128 ESTs selected for fol-
low-up were differentially regulated in all 4 repeats and
were statistically significant according to SAM. Many ESTs
were differentially regulated in more than one compari-
son. Removal of redundancy (more than one EST map-
ping to different parts of the same gene) and elimination
of those ESTs where sequence quality was insufficient for
primer design resulted in a master list of 104 genes. Nota-
bly, beta-actin and Gapdh were differentially regulated, so
18S rRNA was used as a housekeeping gene instead.

Given problems with reproducibility that have been
noted with stem cell arrays [20-22], RT-PCRs were carried
out on 3 sets each of 1000 cell and 750 cell EB samples;
differentially regulated genes showed a reproducible
expression pattern change in at least 4/6 samples. 18
genes were differentially regulated in -LIF samples; a fur-
ther 8 were differentially regulated in + LIF samples. 3
genes appeared in both datasets (Tubb5 and 2 uncharac-
terised genes; BG063737 and BG069482, see Figures 8
and 9 and Figures 1 and 2). None of these 23 genes
appeared in the list of 3 that were differentially regulated
between different undifferentiated ES cell lines
(GSE8625). A further 3 genes did not show the exact
expression patterns predicted by the array, but were dra-
matically downregulated on induction of differentiation
and are therefore also presented in Figure 8. This gave a
total of 26 genes we deemed differentially regulated dur-
ing ES cell differentiation. Q-PCR analysis of two con-
firmed genes, Hspa8 and BG063737, gave very similar
results to semi-quantitative PCR (Additional File 2).

We then compared this dataset with that from another of
our array experiments, which compared undifferentiated
IMT11 ES cells with embryonic inner cell masses (the tis-
sue from which ES cells are derived) and day 5.5 and day
6.5 embryonic ectoderm (see Figures 1 and 2, GSE8881,
methods described [24]), Thirteen of the above 26 genes
were also up- or down-regulated in this study, indicating
their importance in early development and differentia-
tion. Fourteen of the known genes were also noted in

Genes confirmed as differentially regulated between the 3 different undifferentiated ES cell lines, HM1, SHBl6.3 and IMT11Figure 3
Genes confirmed as differentially regulated between 
the 3 different undifferentiated ES cell lines, HM1, 
SHBl6.3 and IMT11. Ann = PCR annealing temperature, 
Cyc = number of PCR cycles used. Beta-actin was not used 
as a housekeeping control as the arrays noted it as variable. It 
was variable, but the variation in expression patterns 
between repeats was very high, such that array results for 
this gene could not be confirmed. 4 genes were confirmed; 
Mki67 and Scmh1 showed highest expression in IMT11 cells, 
Pter showed lower expression in SHBl6.3 cells than in the 
other two lines, while Hprt expression was absent from 
HM1 cells as expected.

Gene  AnnoC Cyc 

18S rRNA  62 23 

Gapdh  62 21 

Hprt  62 23 

Mki67  62 28 

Pter  62 30 

Scmh1  62 30 
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(a) Diameter of EBs at Day 4-LIF plotted against the initial number of cells aggregated via hanging drop on Day 0 b) Diameter of EBs at Day 4-LIF plotted against the serum concentration in the differentiation medium and initial number of cells aggregated via hanging drop on Day 0Figure 4
(a) Diameter of EBs at Day 4-LIF plotted against the initial number of cells aggregated via hanging drop on 
Day 0 b) Diameter of EBs at Day 4-LIF plotted against the serum concentration in the differentiation medium 
and initial number of cells aggregated via hanging drop on Day 0.
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other array or subtractive EST library studies using mate-
rial from different ES cell differentiation experiments (see
Figures 1 and 2). Interestingly, two of the four genes that
varied between undifferentiated cell lines were also iden-
tified by this study.

Amplification from single EBs
Our arrays have successfully identified 23 genes that show
expression changes during EB differentiation (plus an
additional 3 that did not show the exact expression
changes indicated by the array). However, 23 genes repre-
sents a low confirmation rate (22%) given the initial 104
genes tested. The consistency of gene expression in indi-
vidual embryoid bodies was therefore tested in order to
assess how this variation might influence the reproduci-
bility of ES differentiation protocols that are based on EBs.
We studied 10 individual 1000 cell Day 4 EBs from the
same tissue culture dish and 2 small, 2 medium and 2
large EBs from a similar plate of Day 4-L randomly aggre-
gated EBs (medium represented the same size as those
derived from the hanging drop method, large EBs were
roughly double this size, while small ones were half this

size). 18S rRNA was used as a housekeeping gene control.
Expression of Gapdh and Hprt was noted in most EBs,
albeit at varying levels. Expression of Nodal and Rex1 was
also noted in a majority of samples. Nanog, Oct4, Goose-
coid and beta-actin were expressed in 50% or less of EBs,
while Afp, Kdr, Brachyury and Fgf5 were expressed in 1–3
EBs out of 16 only (Figure 10).

Discussion
We have shown that undifferentiated mouse ES cells,
regardless of strain of origin, or absence of Hprt, maintain
a very invariant expression pattern under identical culture
conditions. Given genetic variation between mouse
strains of origin (129Sv/Ev and C57Bl6/J) and absence of
the Hprt gene in one line, this result is perhaps surprising,
but would imply that the culture conditions that maintain
pluripotency may be quite restrictive in terms of gene
expression pattern. Hprt was not expressed in HM1 cells
as expected. The relevance of Pter differential regulation is
unclear, unless this gene is functionally associated with
the Hprt pathway. Mki67 is a marker of proliferating cells;
its upregulation in IMT11 cells might suggest a higher

RT-PCR of key marker genes (involved in maintenance of pluripotency or early development) and housekeeping controls at varying medium serum concentrationsFigure 5
RT-PCR of key marker genes (involved in maintenance of pluripotency or early development) and housekeep-
ing controls at varying medium serum concentrations. Starting size 750 cells. Marker Genes: Oct4, Rex1 and Nanog 
are markers of ES cell pluripotency, Beta-actin, Gapdh, Hprt and 18S rRNA are commonly used housekeeping genes; however, 
we have found that the first 3 vary unpredictably in expression during differentiation. Brachyury and nestin are markers of early 
mesodermal and neurectodermal differentiation respectively; Nestin is considered a CNS stem cell marker. Goosecoid is a 
marker of the Spemann organizer and gastrulation. Gata 4 is expressed in yolk sac endoderm and during heart formation. 
Nodal is expressed during gastrulation and is involved in anterior-posterior and visceral endodermal patterning. Kdr (a.k.a. 
Flk1, VegfR) is exclusively expressed in endothelial cells and defines multipotent haematopoietic stem cells. Fgf 5 is a marker of 
primitive ectoderm.

Serum concentration (50%FCS, 50%NCS): 
 5%   10%   15%   20% 

         
             
             
                    
         
         
         
         
         
                    
         
         
         
                    

Gene Ann. Temp     Cycles

Brachyury  55 30 
Gata4   60 30 
Gsc   42 59 
Fgf5   58 42 
Kdr   59 40 
Nanog   62 36 
Nestin   62 35 
Nodal   60 30 
Oct4   62 30 
Rex1   55 33 
Beta-actin  62 22 
Gapdh   62 22 
Hprt   62 28 
18S rRNA  62 22 
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growth rate, although this has not been tested. Scmh1
may be involved in the meiotic prophase of male germ
cells; ES cells are similar to germ cells, but the significance
of the differential expression is unclear. We should note
that, apart from HM1, expression differences noted were
minor. We selected IMT11 cells for further study.

EB growth optimisation shows that EBs of 500–1000 cells
reach a size plateau at 20% serum, suggesting that size
constraints apply to growth once a certain size is reached.
This may be related to the decreased rate of gas and nutri-
ent diffusion to cells in the centres, but EBs are thought to
be loosely packed and should therefore not suffer from a
buildup of toxic waste products [40,41] EBs created using
cell numbers of 1–1000 were previously found to attain a
maximum of approximately 30,000 cells on Day 12 of dif-
ferentiation, regardless of culture methods used or initial
cell number [41]. Alternatively, growth constraints may
arise from the absence of some necessary developmental
cue, signalling during cavitation or from decreased cell

division rates upon initiation of differentiation, which
may happen sooner with a larger initial size [41,42].

Variation of initial size and serum concentration also
influences gene expression patterns after 4 days of differ-
entiation. We selected an initial size of 1000 cells and a
serum concentration of 20% for our array experiments, on
the grounds that these conditions were optimal for
growth (and therefore RNA yield), gave the widest range
of marker gene expression (implying a greater range of dif-
ferentiated progeny) and were likely to bear more similar-
ity to early embryonic differentiation.

Microarrays have identified 23 genes, which are differen-
tially regulated during ES cell differentiation; a further 3,
while not demonstrating the expression patterns pre-
dicted by the array, showed dramatic down-regulation
upon induction of differentiation without LIF and are
therefore discussed here. Detailed synopses of functional
information available is given in Figure 1; a number of
functional studies are also of interest [43-59].

RT-PCR of key marker genes (involved in maintenance of pluripotency or early development) and housekeeping controls at varying medium serum concentrationsFigure 6
RT-PCR of key marker genes (involved in maintenance of pluripotency or early development) and housekeep-
ing controls at varying medium serum concentrations. Starting size 1000 cells. Marker Genes: Oct4, Rex1 and 
Nanog are markers of ES cell pluripotency, Beta-actin, Gapdh, Hprt and 18S rRNA are commonly used housekeeping genes; 
however, we have found that the first 3 vary unpredictably in expression during differentiation. Brachyury and nestin are mark-
ers of early mesodermal and neurectodermal differentiation respectively; Nestin is considered a CNS stem cell marker. Goo-
secoid is a marker of the Spemann organizer and gastrulation. Gata 4 is expressed in yolk sac endoderm and during heart 
formation. Nodal is expressed during gastrulation and is involved in anterior-posterior and visceral endodermal patterning. Kdr 
(a.k.a. Flk1, VegfR) is exclusively expressed in endothelial cells and defines multipotent haematopoietic stem cells. Fgf 5 is a 
marker of primitive ectoderm.

Serum concentration (50%FCS, 50%NCS): 
 5%   10%   15%   20% 

          
         
        
           
      
          
           
               
        
           
         
         
        
      

D
0 

D
1-

L
 

D
2-

L
 

D
3-

L
 

D
4-

L
 

D
0 

N
o 

R
T

 
D

1-
L

 N
o 

R
T

 
D

2-
L

 N
o 

R
T

 
D

3-
L

 N
o 

R
T

 
D

4-
L

 N
o 

R
T

 

D
0 

D
1-

L
 

D
2-

L
 

D
3-

L
 

D
4-

L
 

D
0 

N
o 

R
T

 
D

1-
L

 N
o 

R
T

 
D

2-
L

 N
o 

R
T

 
D

3-
L

 N
o 

R
T

 
D

4-
L

 N
o 

R
T

 

D
0 

D
1-

L
 

D
2-

L
 

D
3-

L
 

D
4-

L
 

D
0 

N
o 

R
T

 
D

1-
L

 N
o 

R
T

 
D

2-
L

 N
o 

R
T

 
D

3-
L

 N
o 

R
T

 
D

4-
L

 N
o 

R
T

 

D
0 

D
1-

L
 

D
2-

L
 

D
3-

L
 

D
4-

L
 

D
0 

N
o 

R
T

 
D

1-
L

 N
o 

R
T

 
D

2-
L

 N
o 

R
T

 
D

3-
L

 N
o 

R
T

 
D

4-
L

 N
o 

R
T

 

Gene Ann. Temp Cycles

Brachyury  55 30 
Gata4   60 30 
Gsc   42 59 
Fgf5   58 42 
Kdr   59 40 
Nanog   62 36 
Nestin   62 35 
Nodal   60 30 
Oct4   62 30 
Rex1   55 33 
Beta-actin  62 22 
Gapdh   62 22 
Hprt   62 28 
18S rRNA  62 22 
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13 of these genes are implicated in the early development
of pre- and post- implantation embryos, while 14 are
highlighted by other studies and/or preferentially
expressed in embryonic EST libraries. Given the variation
in ES cell lines, differentiation protocols and timepoints
studied by others, this overlap is reasonably significant
[15,29-38]. The functions of 7 ESTs and 1 hypothetical
protein are presently uncharacterised.

The remaining genes fall into a number of different
classes. Hspca (a.k.a Hspc1, Hsp89a, Hsp90a) and Hspa8
are immediately downregulated on induction of differen-
tiation. Both are constitutively expressed heatshock pro-
teins, a class of proteins commonly upregulated in
response to cellular stress (OMIM 140571) and also
implicated in ES differentiation [43]. Heatshock proteins
can function as chaperones; ie, they assist in the correct
folding of nascent proteins. Ssr2, another protein down-
regulated upon onset of differentiation, is also associated
with nascent polypeptides, although it forms part of a
complex that recognises signal peptides, resulting in trans-

port of the relevant protein across the endoplasmic reticu-
lum. Hspca has been implicated in epigenetic
modifications of chromatin (disruption during Drosophila
development results in heritable morphogenic altera-
tions) and in increased carcinogenic invasiveness [44].
Pluripotent cells, such as ES cells, demonstrate uniquely
dynamic chromatin, "breathing chromatin", which allows
availability of a large proportion of the genome for imme-
diate transcriptional activity [45]. Perhaps reductions in
Hspca expression during differentiation may result in
changes to chromatin structure that result in the tighter
histone binding characteristic of differentiated cells and
their committed precursors.

Notably, a related class of 5 genes also shows downregu-
lation upon initiation of differentiation; Eif4a1, Rplp1,
Rpl8, Rps2 and Rps28. Eif4a1 encodes a translation initi-
ation factor that could be involved in selective regulation
of protein expression, while the remaining four genes are
structural constituent of the ribosome. Expression of
Eif4a1 is associated with increased metastasis in certain

RT-PCR of key marker genes (involved in maintenance of pluripotency or early development) and housekeeping controls at varying medium serum concentrationsFigure 7
RT-PCR of key marker genes (involved in maintenance of pluripotency or early development) and housekeep-
ing controls at varying medium serum concentrations. EBs formed via random aggregation. Marker Genes: Oct4, 
Rex1 and Nanog are markers of ES cell pluripotency, Beta-actin, Gapdh, Hprt and 18S rRNA are commonly used housekeeping 
genes; however, we have found that the first 3 vary unpredictably in expression during differentiation. Brachyury and nestin are 
markers of early mesodermal and neurectodermal differentiation respectively; Nestin is considered a CNS stem cell marker. 
Goosecoid is a marker of the Spemann organizer and gastrulation. Gata 4 is expressed in yolk sac endoderm and during heart 
formation. Nodal is expressed during gastrulation and is involved in anterior-posterior and visceral endodermal patterning. Kdr 
(a.k.a. Flk1, VegfR) is exclusively expressed in endothelial cells and defines multipotent haematopoietic stem cells. Fgf 5 is a 
marker of primitive ectoderm.

Serum concentration, percentage media volume (mix of 50%FCS, 50%NCS): 
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cancers [46], can stimulate cell growth in hepatoma cells
[47] and is enriched in populations of human ES cells
[48]. We have previously noted the upregulation of simi-
lar genes involved in translation in response to neural dif-
ferentiation of ES cells [15]; however, this upregulation
was noted after 7 days of EB differentiation, following the
addition of retinoic acid on Day 4. It is possible that ribos-
omal constituents may play a role in complex changes
that occur in gene expression in response to changing sig-
nals at different stages of differentiation.

A third class of genes comprises those that are involved in
energy metabolism and other ubiquitous metabolic proc-
esses (Atp5b, Cox4i1, Ftl1, transketolase, Hnrpk). Energy
and metabolic requirements may change during differen-
tiation; alternatively, these genes may have alternative
functions in these processes. Perhaps surprisingly, only 3
genes, Brachyury, Aurkb and Dppa5 have identified roles
in the maintenance of pluripotency, epigenetic remodel-
ling and early development (see Figure 1); we would have
expected this class of gene to be better represented. How-

ever, larger EBs maintain a core of pluripotent cells that
maintain LIF expression and also, therefore, continue to
express genes such as Oct4, Nanog and Rex1 for some
time. This is obvious from our PCRs of these marker
genes; expression can dip a little on Day 1 but normally
resumes by Day3–4 of differentiation. Other genes, such
as Laminin, are known to display differential expression
during early development; laminin was among the 104
genes selected for PCR confirmation. However, expression
varied so much between PCR replicates that there was no
consistent pattern of variation. This finding was common
to a majority of the genes tested; this would not rule out
their importance to early developmental processes, how-
ever, it would suggest that those genes that did show con-
sistent expression changes may indeed be very important
to early development; we were stringent in our selection
of differentially regulated genes.

The identification of 26 genes which alter in expression
pattern in ES cell differentiation will aid the understand-
ing of early development and in vitro differentiation.

Confirmed genes, up- or down-regulated during differentiation without LIFFigure 8
Confirmed genes, up- or down-regulated during differentiation without LIF. Ann temp = PCR annealing tempera-
ture, Cycles = number of PCR cycles used. Expression change marks the direction of expression changes as shown by RT-PCR. 
Consistency 1000C, 750C refers to the number of replicates out of three that show the same change (always at least 2), this 
information is given as space constraints prevent showing all.
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Gene Ann. Cycles Expression Consistency
  Temp  change  1000C, 750C
Atp5b  62 30 D0-2>D3,4 3/3   3/3 
BG063737 62 22 D0,1<D3,4 3/3   3/3 
BG067484 62 22 D1<D4 3/3   2/3 
BG069482 62 29 D0,1<D3,4 3/3   3/3 
BG069915 62 35 D3<D4 2/3   3/3 
Brachyury 55 30 D0-3<D4 3/3   3/3 
Dppa5  62 30 D2>D3,4 2/2  2/2 
Eif4a  62 22 D0>D1-4 3/3  3/3 
Flt1  62 22 D1<D0, 2-4 3/3  3/3 
H3133B01 62 27 D0>D4 3/3  3/3 
H3134D10 62 23 D0>D1-4 2/3  2/3 
Hnrpk  62 29 D0>D4 3/3  3/3 
Hspa8  62 23 D0>D4 3/3  2/3 
Hspca  62 22 D0>D1-4 3/3   3/3 
Rpl8  62 25 D0>D3 2/3   2/3 
Rplp1  62 23 D0-2>D3-4 2/3   2/3 
Rps2  62 25 D0>D1-4 3/3   2/3 
Rps28  62 25 D0>D3,4 2/3  2/3 
Sgce  56 32 D3<D4 2/3   2/3 
Ssr2  62 25 D0>D1-4 3/3   3/3 
Tubb5  62 24 D0>D1 3/3   3/3 
Gapdh  62 22 no consistent change 
18S rRNA 62 22 control 
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Confirmed genes, up- or down-regulated during differentiation in the presence of LIF.Figure 9
Confirmed genes, up- or down-regulated during differentiation in the presence of LIF. Ann temp = PCR annealing 
temperature, Cycles = number of PCR cycles used. Expression change marks the direction of expression changes as shown by 
RT-PCR. Consistency 1000C, 750C refers to the number of replicates out of three that show the same change (always at least 
2), this information is given as space constraints prevent showing all.
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Gene Ann. Cycles Expression Consistency
  Temp  change  1000C, 750C 

Aurkb  56 31 D0-3<D4 2/3   3/3 
BG063704 62 35 D0<D3 3/3   3/3 
BG063737 62 22 D0<D3,4 3/3   3/3 
BG067621 62 22 D0<D3 3/3   3/3 
BG069482 62 29 D0<D3,4 3/3   2/3 
Cox4i1        62 22 D0<D3,4 3/3   3/3 
Tkt1  62 19 D2<D3 2/3   2/3 
Tubb5  62 24 D0>D1 2/3   2/3 
18S rRNA 62 22 control 

Expression of differentiation markers in EB differentiationFigure 10
Expression of differentiation markers in EB differentiation. EBs were allowed to differentiate in standard ES medium -
LIF for 4 days. To determine whether each EB was consistently expressing marker genes or if these genes were only expressed 
in a minority of EBs, we used an RNA amplification kit to carry out one round of amplification on RNA from 16 individual EBs 
harvested on day 4 of differentiation, -LIF. Ten (1–10) were derived from 1000 cell hanging drops and were of similar sizes. We 
also harvested 6 EBs which had been allowed to aggregate randomly in solution, these were varied in size: 2 large (L1+L2), 2 
medium (M1+M2) and 2 small (S1+S2). Medium EBs were the same size as those obtained from the hanging drops.
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Gene cycles annealing
   temp oC  

Beta-actin 62 29  
Afp  55 40 
Brachyury 55 40 
Fgf5  62 45 
Gapdh  62 26 
Gsc  62 45 
Hprt  58 32 
Kdr  59 45 
Nanog  62 40 
Nodal  60 35 
Oct4  62 38 
Rex1  58 45 
18S rRNA 26 62 
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However, there are important implications of the low
confirmation rates noted in this paper, and of the variabil-
ity in marker gene expression profiles between individual
EBs of homogeneous cell number and size, which origi-
nated from two tissue culture dishes. Firstly, ES differenti-
ation protocols using EBs as a starting point may always
generate very variable results, despite attempts to stand-
ardize them such as using a uniform EB starting size. This
would necessarily limit their therapeutic use; develop-
ment of differentiation protocols that yield more uniform
populations of progenitors without the use of EBs may be
preferable (such as the majority of current neural differen-
tiation methods)[17,18]. On the other hand, the ability of
EBs to generate a wide variety of precursors that could
later be selected for subtypes of choice may be an advan-
tage in certain circumstances. Secondly, this finding
would imply that the lack of directional orientation in EBs
as compared to early embryos is a source of chaotic varia-
bility.

Conclusion
Stem cells provide, potentially, an unparalleled opportu-
nity for treatment of any number of degenerative condi-
tions. A deeper knowledge of stem cell differentiation and
of signalling pathways activated therein, will increase our
ability to direct the differentiation of stem cells in vitro.
This study has advanced our knowledge of early ES cell
differentiation in several key respects. Firstly, we have
demonstrated that regardless of underlying genetic varia-
tion, the constraints of ES cell pluripotency seem to main-
tain a relatively invariant gene expression profile.
Secondly, we have developed optimised tissue culture
conditions that allow the widest range of differentiation
potential. Thirdly, we have identified genes that are impli-
cated by this study and others in the complex processes of
early development; furthermore, given the number of bio-
logical repetitions and the EB size variation used when
confirming these genes, we would regard our results as
robust. Perhaps most importantly, when investigating low
confirmation rates, we have shown that gene expression
patterns of individual EBs vary markedly from each other,
even when grown from the same number of starting cells,
in the same culture. This implies that differentiation pro-
tocols involving EBs may always yield varying proportions
of different cell types, no matter how rigorously condi-
tions are controlled between different experimental repli-
cates, and may suggest that a move away from EB based
differentiations may be warranted, where possible.
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semi-quantitative PCR results. Q-PCR was carried out using an MJ-
Research Peltier Thermal Cycler PTC-200 PCR machine and results were 
analysed using MJ Opticon Monitor 3.1.32 software using previously 
described methods [39]. Reaction volumes were 25 l, comprised of 5 l 
cDNA, 12.5  PCR mix from the DyNAmo HS SYBR Green qPCR kit 
(Finnzymes) and 7.5 l primer mix (25 picomolar). Cycles were as fol-
lows: 95°C for 15 mins followed by 34 cycles of 95°C for 30 s, 62°C for 
30 s and 72°C for 30 s. Primer sequences are given in Table 1. In order 
to compare results with those obtained from semi-quantitative PCR, we 
used Scion Image (Scion Corporation) to measure relative band intensi-
ties for 3 repetitions, and processed the figures with reference to the Day 
0 sample and the 18S housekeeping gene, such that they were in a similar 
format to the figures obtained by Q-PCR. While the figures obtained are 
not identical, the expression patterns seen in terms of trends of differential 
regulation are very similar; Hspa8 declines in expression from Day 0 while 
BG063737 dips at day 1-L and peaks at Day 3-L.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-5-S2.pdf]
Page 16 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-213X-9-5-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-213X-9-5-S2.pdf


BMC Developmental Biology 2009, 9:5 http://www.biomedcentral.com/1471-213X/9/5
References
1. Evans MJ, Kaufman MH: Establishment in culture of pluripoten-

tial cells from mouse embryos.  Nature 1981, 292(5819):154-6.
2. Smith AG: Embryo-derived stem cells: of mice and men.  Annu

Rev Cell Dev Biol 2001, 17:435-62.
3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ,

Marshall VS, Jones JM: Embryonic stem cell lines derived from
human blastocysts.  Science 1998, 282(5391):1145-7.

4. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger
K, Bernstein BE, Jaenisch R: In vitro reprogramming of fibrob-
lasts into a pluripotent ES-cell-like state.  Nature 2007,
448(7151):318-24.

5. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R,
Clark AT, Plath K: Generation of human induced pluripotent
stem cells from dermal fibroblasts.  Proc Natl Acad Sci USA 2008,
105(8):2883-8.

6. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH,
Lensch MW, Daley GQ: Reprogramming of human somatic
cells to pluripotency with defined factors.  Nature 2008,
451(7175):141-6.

7. Leahy A, Xiong JW, Kuhnert F, Stuhlmann H: Use of developmen-
tal marker genes to define temporal and spatial patterns of
differentiation during embryoid body formation.  J Exp Zool
1999, 284(1):67-81.

8. O'Shea KS: Self-renewal vs. differentiation of mouse embry-
onic stem cells.  Biol Reprod 2004, 71(6):1755-65.

9. Hamazaki T, Oka M, Yamanaka S, Terada N: Aggregation of
embryonic stem cells induces Nanog repression and primi-
tive endoderm differentiation.  J Cell Sci 2004, 117(Pt
23):5681-6.

10. Desbaillets I, Ziegler U, Groscurth P, Gassmann M: Embryoid bod-
ies: an in vitro model of mouse embryogenesis.  Exp Physiol
2000, 85(6):645-51.

11. Mansergh FC, Wride MA, Rancourt DE: Neurons from stem cells:
Implications for understanding nervous system develop-
ment and repair.  Biochem Cell Biol 2000, 78:613-628.

12. Mansergh FC, Wride MA, Rancourt DE: Neurons, Stem Cells and
Potential Therapies.  In Stem Cell Handbook Edited by: Sell S.
Humana Press, Totowa, NewJersey; 2003.  ISBN: 1-58829-113-8

13. Wobus AM, Boheler KR: Embryonic stem cells: prospects for
developmental biology and cell therapy.  Physiol Rev 2005,
85:635-678.

14. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI: Embryonic
stem cells express neuronal properties in vitro.  Dev Biol 1995,
168(2):342-57.

15. Bain G, Mansergh FC, Wride MA, Hance JE, Isogawa A, Rancourt SL,
Ray WJ, Yoshimura Y, Tsuzuki T, Gottlieb DI, Rancourt DE: ES cell
neural differentiation reveals a substantial number of novel
ESTs.  Funct Integr Genomics 2000, 1(2):127-39.

16. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD: Devel-
opment of neuronal precursor cells and functional postmi-
totic neurons from embryonic stem cells in vitro.  Mech Dev
1996, 59(1):89-102.

17. Ying QL, Stavridis M, Griffiths D, Li M, Smith A: Conversion of
embryonic stem cells into neuroectodermal precursors in
adherent monoculture.  Nat Biotechnol 2003, 21(2):183-6.

18. Bouhon IA, Joannides A, Kato H, Chandran S, Allen ND: Embryonic
stem cell-derived neural progenitors display temporal
restriction to neural patterning.  Stem Cells 2006, 24(8):1908-13.

19. Coucouvanis E, Martin GR: BMP signaling plays a role in visceral
endoderm differentiation and cavitation in the early mouse
embryo.  Development 1999, 126(3):535-46.

20. Evsikov AV, Solter D: Comment on " 'Stemness':Transcrip-
tional profiling of embryonic and adult stem cells" and " A
stem cell molecular signature" (II).  Science 2003, 302:393.

21. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Ramalho-
Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA, Lemischka
IR: Comment on " 'Stemness':Transcriptional profiling of
embryonic and adult stem cells" and " A stem cell molecular
signature".  Science 2003, 302:393d.

22. Fortunel NO, Otu HH, Ng HH, Chen J, Mu X, Chevassut T, Li X,
Joseph M, Bailey C, Hatzfeld JA, Hatzfeld A, Usta F, Vega VB, Long PM,
Libermann TA, Lim B: Comment on " 'Stemness':Transcrip-
tional profiling of embryonic and adult stem cells" and " A
stem cell molecular signature" (II).  Science 2003, 302:393b.

23. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P,
Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland
T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkin-
son H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R,
Vilo J, Vingron M: Minimum information about a microarray
experiment (MIAME)-toward standards for microarray
data.  Nature Genetics 2001, 29:365-371.

24. Hunter SM, Mansergh FC, Evans MJ: Optimization of minuscule
samples for use with cDNA microarrays.  J Biochem Biophys
Methods 2008, 70(6):1048-1058.

25. Kargul GJ, Dudekula DB, Qian Y, Lim MK, Jaradat SA, Tanaka TS,
Carter MG, Ko MS: Verification and initial annotation of the
NIA mouse 15K cDNA clone set.  Nat Genet 2001, 28(1):17-8.

26. Mansergh FC, Wride MA, Walker VE, Adams S, Hunter SM, Evans MJ:
Gene expression changes during cataract progression in
Sparc null mice:differential regulation of mouse globins in
the lens.  Mol Vis 2004, 10:490-511.

27. Mansergh FC, Wells T, Elford C, Evans SL, Perry MJ, Evans MJ, Evans
BA: Osteopenia in Sparc (osteonectin)-deficient mice: char-
acterisation of phenotypic determinants of femoral strength
and changes in gene expression.  Physiol Genomics 2007,
32(1):64-73.

28. Rozen S, Skaletsky HJ: Primer3 on the WWW for general users
and for biologist programmers.  In Bioinformatics Methods and Pro-
tocols: Methods in Molecular Biology Edited by: Krawetz S, Misener S.
Humana Press, Totowa, NJ:365-386. 

29. Sharov AA, Piao Y, Matoba R, Dudekula DB, Qian Y, VanBuren V,
Falco G, Martin PR, Stagg CA, Bassey UC, Wang Y, Carter MG,
Hamatani T, Aiba K, Akatsu H, Sharova L, Tanaka TS, Kimber WL,
Yoshikawa T, Jaradat SA, Pantano S, Nagaraja R, Boheler KR, Taub D,
Hodes RJ, Longo DL, Schlessinger D, Keller J, Klotz E, Kelsoe G,
Umezawa A, Vescovi AL, Rossant J, Kunath T, Hogal BL, Curci A,
D'Urso M, Kelso J, Hide W, Ko MS: Transcriptome analysis of
mouse stem cells and early embryos.  PLOS Biology 2003,
1(3):410-419.

30. Kelly DL, Rizzino A: DNA microarray analyses of genes regu-
lated during the differentiation of embryonic stem cells.  Mol
Reprod Dev 1999, 56:113-123.

31. Gunji W, Kai T, Sameshima E, Iizuka N, Katagi H, Utsugi T, Fujimori
F, Murakami Y: Global analysis of the expression patterns of
transcriptional regulatory factors in formation of embryoid
bodies using sensitive oligonucleotide microarray systems.
Biochem Biophys Res Comm 2004, 325:265-275.

32. Gissel C, Voolstra C, Doss MX, Koehler C, Winkler J, Hescheler J,
Sachinidis A: An optimised embryonic stem cell model for
consistent gene expression and developmental studies.
Thromb Haemostat 2005, 94:719-27.

33. Palmqvist L, Glover CH, Hsu L, Lu M, Bossen B, Piret JM, Humhries
RK, Helgason CD: Correlation of murine embryonic stem cell
expression profiles with functional measures of pluripotency.
Stem Cells 2005, 23:663-680.

34. Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, Bourque G,
George J, Leong B, Liu J, Wong K-Y, Sung KW, Lee CWH, Zhao X-
D, Chiu K-P, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei
C-L, Ruan Y, Lim B, Ng H-H: The Oct4 and Nanog transcription
network regulates pluripotency in mouse embryonic stem
cells.  Nature Genetics 2006, 38(4):431-440.

35. Pritsker M, Ford NR, Jenq HT, Lemischka IR: Genomewide gain-of
function genetic screen identifies functionally active genes in
mouse embryonic stem cells.  PNAS 2006, 103(18):6946-6951.

36. Hirst CE, Ng ES, Azzola L, Voss AK, Thomas T, Stanley EG, Elefanty
AG: Transcriptional profiling of mouse and human ES cells
identifies SLAIN1, a novel stem cell gene.  Developmental Biology
2006, 293:90-103.

37. Sene KH, Porter CJ, Palidwor G, Perez-Iratxeta C, Muro EM, Camp-
bell PA, Rudnicki MA, Andrade-Navarro MA: Gene function in
early mouse embryonic stem cell differentiation.  BMC Genom-
ics 2007, 8:85.

38. Sekkai D, Gruel G, Herry M, Moucadel V, Constantinescu SN, Albagli
O, Tronik-Le-Roux D, Vainchenker W, Bennacour-Griscelli A:
Microarray analysis of Lif/Stat3 transcriptional targets in
embryonic stem cells.  Stem Cells 2005, 23:1634-1642.

39. Livak KJ, Schmittgen TD: Analysis of relative gene expression
data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) Method.  Methods 2001, 25(4):402-408.
Page 17 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7242681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7242681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11687496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9804556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9804556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17554336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17554336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18287077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18287077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18157115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18157115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15329329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15329329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11187960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11187960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7729574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7729574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16627686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16627686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16627686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9876182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9876182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9876182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18261801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18261801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11326268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11326268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15303089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15303089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15303089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17878319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17878319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17878319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15522228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15522228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15849174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15849174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16518401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16518401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16518401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16621925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16621925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16621925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16546155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16546155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17394647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17394647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609


BMC Developmental Biology 2009, 9:5 http://www.biomedcentral.com/1471-213X/9/5
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

40. Gassmann M, Fandrey J, Bichet S, Wartenburg M, Marti HH, Bauer C,
Wenger RH, Acker H: Oxygen supply and oxygen dependent
gene expression in differentiating embryonic stem cells.
PNAS 1996, 93:2867-2872.

41. Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW: Efficiency
of embryoid body formation and haematopoietic develop-
ment from embryonic stem cells in different culture sys-
tems.  Biotechnology and Bioengineering 2002, 78(4):442-453.

42. Coucouvanis E, Martin GR: Signals for death and survival: a two
step method for cavitation in the vertebrate embryo.  Cell
1995, 83:279-287.

43. Battersby A, Jones RD, Lilley KS, McFarlane RJ, Braig HR, Allen ND,
Wakeman JA: Comparative proteomic analysis reveals differ-
ential expression of Hsp25 following the directed differenti-
ation of mouse embryonic stem cells.  Biochim Biophys Acta 2007,
1773(2):147-56.

44. Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM: Evidence
for an epigenetic mechanism by which Hsp90 acts as a capac-
itor for morphological evolution.  Nat Genet 2003, 33(1):70-4.

45. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Mis-
teli T: Hyperdynamic plasticity of chromatin proteins in
pluripotent embryonic stem cells.  Dev Cell 2006, 10(1):105-16.

46. Wang WB, Boing S, Zhou XQ, Ji P, Dong Y, Yao Q, Muller-Tidow C:
Identification of metastasis-associated genes in early stage
non-small cell lung cancer by subtractive hybridization.
Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2002,
34(3):273-8.

47. Wan D, Gong Y, Qin W, Zhang P, Li J, Wei L, Zhou X, Li H, Qiu X,
Zhong F, He L, Yu J, Yao G, Jiang H, Qian L, Yu Y, Shu H, Chen X, Xu
H, Guo M, Pan Z, Chen Y, Ge C, Yang S, Gu J: Large-scale cDNA
transfection screening for genes related to cancer develop-
ment and progression.  Proc Natl Acad Sci USA 2004,
101(44):15724-9.

48. Brandenberger R, Khrebtukova I, Thies RS, Miura T, Jingli C, Puri R,
Vasicek T, Lebkowski J, Rao M: MPSS profiling of human embry-
onic stem cells.  BMC Dev Biol 2004, 10:4-10.

49. Takada Y, Isono K, Shinga J, Turner JM, Kitamura H, Ohara O, Watan-
abe G, Singh PB, Kamijo T, Jenuwein T, Burgoyne PS, Koseki H: Mam-
malian Polycomb Scmh1 mediates exclusion of Polycomb
complexes from the XY body in the pachytene spermato-
cytes.  Development 2007, 134(3):579-90.

50. Sabbattini P, Canzonetta C, Sjoberg M, Nikic S, Georgiou A, Kemball-
Cook G, Auner HW, Dillon N: A novel role for the Aurora B
kinase in epigenetic marking of silent chromatin in differen-
tiated postmitotic cells.  EMBO J 2007, 26(22):4657-69.

51. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL: HIF-
1 regulates cytochrome oxidase subunits to optimize effi-
ciency of respiration in hypoxic cells.  Cell 2007, 129(1):111-22.

52. Kim SK, Suh MR, Yoon HS, Lee JB, Oh SK, Moon SY, Moon SH, Lee
JY, Hwang JH, Cho WJ, Kim KS: Identification of developmental
pluripotency associated 5 expression in human pluripotent
stem cells.  Stem Cells 2005, 23(4):458-62.

53. Amano H, Itakura K, Maruyama M, Ichisaka T, Nakagawa M,
Yamanaka S: Identification and targeted disruption of the
mouse gene encoding ESG1 (PH34/ECAT2/DPPA5).  Dev Biol
2006, 28;:6-11.

54. Yano M, Okano HJ, Okano H: Involvement of Hu and heteroge-
neous nuclear ribonucleoprotein K in neuronal differentia-
tion through p21 mRNA post-transcriptional regulation.  J
Biol Chem 2005, 280(13):12690-9.

55. Dzwonek A, Mikula M, Ostrowski J: The diverse involvement of
heterogeneous nuclear ribonucleoprotein K in mitochon-
drial response to insulin.  FEBS Lett 2006, 580(7):1839-45.

56. Feliers D, Lee MJ, Ghosh-Choudhury G, Bomsztyk K, Kasinath BS:
Heterogeneous nuclear ribonucleoprotein K contributes to
angiotensin II stimulation of vascular endothelial growth fac-
tor mRNA translation.  Am J Physiol Renal Physiol 2007,
293(2):F607-15.

57. Nishiyama A, Endo T, Takeda S, Imamura M: Identification and
characterization of epsilon-sarcoglycans in the central nerv-
ous system.  Brain Res Mol Brain Res 2004, 125(1–2):1-12.

58. Xu ZP, Wawrousek EF, Piatigorsky J: Transketolase haploinsuffi-
ciency reduces adipose tissue and female fertility in mice.
Mol Cell Biol 2002, 22(17):6142-7.

59. Oh JE, Freilinger A, Gelpi E, Pollak A, Hengstschläger M, Lubec G:
Proteins involved in neuronal differentiation of neuroblast-
oma cell line N1E-115.  Electrophoresis 2007, 28(12):2009-17.
Page 18 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8610133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8610133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7585945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7585945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17030443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17030443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17030443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12483213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12483213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12483213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16399082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16399082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15498874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15498874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15498874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15304200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15304200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17215307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17215307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17215307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17948062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17948062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17948062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17418790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17418790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17418790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16504174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16504174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15671036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15671036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15671036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16519889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16519889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16519889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17581920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17581920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17581920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12167708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12167708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17503409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17503409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17503409
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Tissue Culture and cell lines
	RNA extraction and amplification
	Cy labelling for array analysis
	Hybridization
	Scanning
	MIAME standards
	Array Platforms
	Experimental design, Image analysis
	Microarray Analysis
	Primer design
	Bioinformatic analysis
	RT PCR array confirmations

	Results
	Undifferentiated ES cell arrays
	Optimisation of embryoid body differentiation
	Array analysis
	Amplification from single EBs

	Discussion
	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

