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Abstract

The picture archiving and communications system (PACS) is currently the standard platform

to manage medical images but lacks analytical capabilities. Staying within PACS, the

authors have developed an automatic method to retrieve the medical data and access it at a

voxel level, decrypted and uncompressed that allows analytical capabilities while not per-

turbing the system’s daily operation. Additionally, the strategy is secure and vendor inde-

pendent. Cerebral ventricular volume is important for the diagnosis and treatment of many

neurological disorders. A significant change in ventricular volume is readily recognized, but

subtle changes, especially over longer periods of time, may be difficult to discern. Clinical

imaging protocols and parameters are often varied making it difficult to use a general solu-

tion with standard segmentation techniques. Presented is a segmentation strategy based

on an algorithm that uses four features extracted from the medical images to create a statis-

tical estimator capable of determining ventricular volume. When compared with manual

segmentations, the correlation was 94% and holds promise for even better accuracy by

incorporating the unlimited data available. The volume of any segmentable structure can be

accurately determined utilizing the machine learning strategy presented and runs fully auto-

matically within the PACS.

1 Introduction

The Picture Archiving and Communications System (PACS) is currently the standard plat-

form to manage medical images [1] but lacks analytical and quantification capabilities [2, 3].

Staying within the PACS, the authors have developed an automatic method to retrieve the

medical data and access it at a voxel level, decrypted and uncompressed that enables analytical

procedures to be applied to the data while not perturbing the system’s daily operation. Addi-

tionally, the strategy is secure and vendor independent [4].

Being able to segment the cerebral ventricles to determine the quantity of cerebrospinal

fluid (CSF) within the ventricles has widespread applicability in many neurological conditions.

Although this segmentation would seem to be a relatively straightforward task, such is not the
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case requiring manual tracing of the ventricular outline on multiple image slices. This process

is tedious, time-consuming, operator dependent and rarely done except for research purposes.

It also requires IRB permission to move the images out of the PACS, anonymization, and for-

mat changing so the images are loadable by external software where the segmentations can

be accomplished. Using the PACS vehicle presented [4], segmentations and other analytical

tasks can be performed in the image storing system, provided that the procedures are fully

automatic.

Brain ventricular segmentation has been approached with several methods that include reg-

istration-based techniques [5–7], fuzzy thresholding [8], seed-based for constant neighboring

and boundary tracking [9, 10] and more recently artificial intelligence (AI) approaches that

use voxel-based feature extraction in their core. Some of them require multi-modality images

to refine results as in [11, 12], others use registration to atlases as in [13–16] to label regions

prior to a classification stage. PACS related restrictions hinder the possibility of implementing

the methods mentioned above due either to the need of human interaction and external image

models as required by the template-based strategies or availability of multi-modality images.

Additionally, some of the listed methods, despite being highly accurate with recruited data,

have not been reported to work in randomly selected clinical data and may fail when dealing

with clinical images that have restricted fields of view (FOV) or abnormalities.

Also, clinical imaging protocols and parameters are often varied to suit medical necessities

and patient comfort, making it difficult to use a general solution with the standard segmenta-

tion techniques. As the contrast is variable, structures are harder to segment when small as the

boundaries become less distinct. The segmentation solutions must also incorporate features

other than those based solely on intensities. The presence of restricted FOV makes it necessary

to work with a voxel-based technique. The method presented solves the segmentation issue by

considering it as a classification problem. It utilizes a machine learning strategy whose features

have been carefully chosen and optimized to reach a high level of accuracy without requiring

external resources and running fully automatic within the PACS.

2 Materials and methods

2.1 Training and testing data in the creation of the support vector machine

(SVM) estimator

With the aim of creating a robust estimator, 44 T1-contrast images –acquired at 1.5T– of

patients treated at the hosting institution underwent the feature extraction procedure

explained below in section 2.3. The process yielded a matrix with dimensions 530065.316x6.

The number of rows corresponds to the total number of voxels visited in the 44 studies after

re-sampling each volume to 1x1x1 mm. Four of the columns hold the four features selected as

separation magnifiers for this machine learning implementation, see section 2.3. One more

column holds the supervising factor that defines whether a voxel belongs to the segmenting

structure. This value is provided by manually segmented masks of the lateral ventricles.

Experts perform the segmentation in the native spatial resolution profiting from the higher in-

plane resolution of the original data respect to the 1X1 mm used in the presented ML exercise.

The in-plane resolution of our clinical data is in the range of micrometers. After manual seg-

mentation, all mask are re-sampled to 1x1x1 mm. Finally, the last column of the working

matrix is used to keep a reference to the subject to which the voxel belongs.

In the manual segmentation activities an in-house developed software where collateral tasks

such as DICOM image concatenation, image loading, sub-stacking, advancing along slices and

mask saving, are performed automatically. The in-house developed software also accounts for

human fatigue by turning off automatically after 30 minutes of working and disabling its use
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for 15 minutes. The operator, once authorized to return, is presented with the task precisely in

the slice where the segmentation work was interrupted.

2.2 Clinical data in the use of the SVM estimator

The clinical data where segmentations are performed using the SVM estimator consisted of 10

magnetic resonance imaging (MRI) studies acquired with T1 contrast using a 1.5T Phillips

Scanner. Five of those subjects were randomly collected. Three more subjects correspond to

selected cases for mild, moderate and severe hydrocephalus (HC). The other two images corre-

spond to a single subject with two imaging sessions, before and after a CSF diverting shunt

procedure. The selected cases were retrieved from the Children Hospital Los Angeles (CHLA)

repository and presented different flipping angles, resolutions, and averaging schemes. Among

the five randomly selected subjects, there is one with normal ventricular characteristics, and

the other four presented with at least one abnormality that either deformed the ventricles or

created anomalies in intensity and shape that mislead the automatic algorithms while doing

the ventricular segmentation. The Table 1 registers acquisition details of each studied subject

together with the resulting volumes of manual and automatic segmentations.

2.3 Driving concept

It is often difficult for a programmatic tool to deal with the high degree of variability present in

the clinical brain images [17, 18]. This variability includes but is not limited to different image

acquisition parameters, the existence of non-natural objects like CSF diverting shunt hard-

ware, general deformation, localized deformation, and positioning constraints. Nevertheless, a

minimally trained human can localize and delineate the boundaries of the ventricles even in

the worse case scenario where all the hardening factors converge. This complex task is possible

because the human can develop identification skills that are not available in any computer sys-

tem. We artificially reproduce in the computer, the human ability to learn; thus, our methods

can deal with the uncertainty in the same manner humans do.

The biggest barrier to the automation is the human visual capability [19] as it is almost

impossible to reproduce. We observe objects in space, and with the a-priori knowledge of their

form; therefore, we can later localize them regardless of the scale, position or surrounding

noise [20]. The computer can be fed a structure; however, the computer will have trouble

defining if the given structure has been randomly deformed, linearly modified from a given

Table 1. Comparison between manually and automatic extracted volumes. AVVE stands for Automatic Ventricular Volume Estimator.

Item Resolution Voxel size (mm3) Volume (mm3) Difference (mm3) Jaccard Index

Manual AVVE

Subject a (0.41, 0.41, 1.00) 0.17 5065.09 4664.51 400.58 0.87

Subject b (0.43, 0.43, 1.00) 0.18 5387.72 5036.74 350.98 0.90

Subject c (0.44, 0.44, 1.00) 0.19 4435.07 3909.47 525.60 0.89

Subject d (0.45, 0.45, 1.00) 0.20 3001.53 5805.10 -2803.57 0.66

Subject e (0.58, 0.58, 1.00) 0.37 11383.99 10900.66 483.32 0.89

Mild (0.62, 0.62, 4.99) 1.95 28238.27 27666.00 572.26 0.92

Moderate (0.59, 0.59, 4.00) 1.41 271184.35 262207.29 8977.05 0.92

Severe (0.39, 0.39, 4.99) 0.76 587793.99 581557.78 6236.21 0.94

S1 Before (0.46, 0.46, 4.00) 0.86 171016.79 154477.01 16539.78 0.91

S1 After (0.47, 0.47, 5.00) 1.01 129592.70 119572.13 10020.56 0.94

https://doi.org/10.1371/journal.pone.0193152.t001
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model or is a noisy version of what is being searched. We propose a voxel by voxel analysis

that the computer can classify as to whether a given voxel belongs to the searched structure.

The composition of the included voxels should yield the form that we wish to segment. For

this purpose, we extract features from the images selecting those that create statistical differ-

ences between the voxels conforming to our volume of interest versus other voxels in the

image.

Naturally, one particular feature is not enough. For instance, the levels of intensity in the

ventricular region may also appear in regions of gray matter affected by noise or in empty

spaces close to limits of the FOV. But, if a positioning constraint is also given to the program-

matic estimator, the power of discrimination is expected to increase. However, some features

if wrongly configured, can also negatively affect the estimation.

Among the initially explored features we included: the raw intensity, that is a direct candi-

date; the Laplacian, that is a boundary detector; filtered versions of the Laplacian using Gaus-

sians with σ = [1, 2, 3] as suggested in [17]; and the four features that finally throw the higher

score when using the strong-force algorithm presented in Listing 1. Detailed explanation of

the four selected features is provided in sections 2.3.1-2.3.4.

In the code provided in Listing 1, the two FOR sentences (lines 5 and 6) run over all permu-

tations among the group of features (feature_ls), that are iteratively selected as columns in the

pandas structure (pd_data). The function selectPermutation (line 7), returns the needed data to

perform the analysis in each grouping and the names of the used features. Note how an SVM is

performed in each iteration (line 13). In this feature-selection exercise, we let the cross_valida-
tion (line 15) function to deal with over-fitting. The index of the highest value in the score array

(maxS) returns the best features when used in the participants array (participants[maxS]). This

last operation is not listed.
1 def testKbestFeatures(feature ls, pd data):
2 scores = []
3 participants = []
4 regsels = []
5 for n in range (len (feature_ls ) + 1):
6 for r in range (len (feature_ls + 1))
7 ar, lbls, sfeats = selectPermutation (pd_data, n, r)
8 est = feature_selection . SelectKBest (k = r)
9 est. fit(ar, lbls)
10 tregs = est . get_support(indices = True)
11 regsels . append(tregs)
12 ndata = est . transform(ar)
13 estsvm = svm . LinearSVC()
14 gs = grid_search . GridSearchCV(estsvm,{‘C’:np . logspace(-4,3)})
15 tscore = np . mean(cross_validation. cross_val_score (gs, ndata,
16 lbls, n_jobs = 6))
17 scores . append(tscore)
18 participants . append(sfeats)
19 return scores, participants, regsels

Listing 1. Core code of the strong-force algorithm to select the best features.

The feature-selection exercise detailed above suggested the following features to be the

most robust set for automatically segmenting the brain ventricles.

2.3.1 Histogram-based parcellation. A strong characteristic that a human operator

uses when attempting to separate structures in a medical image is the contrast. In computer

tomography (CT) the contrast is a global characteristic that is derived from the differences

in radiation’s absorption of the structures in the FOV [21]; therefore, consecutive imaging

intakes lead to similar results [22]. In MRI however, the contrast is generated by differences
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in spin recruitment that may vary between intakes [23], meaning that each image is made

with a different contrast pattern and for that reason, a deterministic threshold would not

work in all cases.

The histogram, Fig 1, captures the intensity distribution of the images and the inflection

zones in its envelope estimate the classes present in the image [24]. A second derivate operator

detects those inflection zones of the histogram. Due to the different protocols existing in our

dataset, some images display a low contrast. Therefore all the derived histograms underwent a

signal stretching procedure that not only provides standardization to the process but enhances

the detection of slope changes in the signal. Once the inflection points are found, a signal com-

pression is run to return the inflection points to their original position and therefore effect

region separation. The outcome of this sub-processing are the labels R1 to R4 that define the

boundaries of background (BG), CSF, gray matter (GM), and white matter (WM). The created

algorithm uses recursion to identify the four most prominent peaks in a second order derivate

signal, that is in turn obtained from the envelope of the histogram. The recursion breaks when

four peaks are found. To this end, each iteration adapts the thresholding step of a function

applied to the second differentiation array affected by a power-of-five function. This last oper-

ation amplifies the significant changes while diminishes the small ones. Also, the even nature

of the power-of-five function keeps the polarity of the detected peaks. The positive peaks depict

the desired class boundaries.

The extraction of this feature is generalized as follows:

Fig 1. Histogram classified intensity feature. In panel A, the enveloping signal (EnvS) of the histogram is extracted. In panel B. The inflection points

of the EnvS are detected using the positive peaks of the power of five of the second derivate. Panel C shows the estimated parcellation in the original

EnvS. Panel D shows an axial slice of healthy neonate that presents low contrast (left) and its parcellation (right).

https://doi.org/10.1371/journal.pone.0193152.g001
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Let f(x) be the function representing the envelope of the histogram of image Im. Then, the

positive values of x where
d2 f
dx2 ¼ 0, will pick the abrupt changes in the envelop. The four most

prominent detected peaks (p1, p2, p3, p4) are assigned as the intensity boundaries of each struc-

ture in the brain and then, back in the image domain, the voxels intensities I(Vi) serve to label

the each Vi as follows:

HCIi ¼

R1; if IðViÞ < p1

R2; if p1 < IðViÞ < p2

R3; if p2 < IðViÞ < p3

R4; if p3 < IðViÞ < p4

8Vi 2 Im

8
>>>><

>>>>:

Thus, every voxel in the image will have a parcellation factor associated due to the position

of its intensity in the histogram.

2.3.2 Distances to the center of the magnet. The distances need to be normalized. In sev-

eral applications, distances, and other features are normalized by referencing them to a tem-

plate [25, 26]. When registration takes place, the resulting transformation matrices are used to

calculate the real distances in the studied subjects. Here instead, we use the distance normaliza-

tion strategy proposed in nibabel [27], where the images are referred to the isocenter of the

scanner. Therefore, the distance to every voxel to the center of the scanner can be obtained by

applying the transformation included in the affine field provided by the nibabel object after an

image has been successfully loaded. This procedure does not involve any interpolation; thus,

the information used is the one initially obtained in the scanner. See Fig 2 for reference.

Fig 2. Normalized distances feature. On the left, a figure depicting the ND concept. Every voxel is assigned its distance to the scanner central voxel

(SCV). In the figure at the right, we have colored the ND feature creating a fading fashioned effect. Here it is evident how every voxel in and out of the

learning masks is overlayed with a different number. Although this feature creates separation, voxels radially equidistant with different intensity value

would be difficult to assess for any statistical learning algorithm. Therefore, another feature to eliminate this possible ambiguity is needed.

https://doi.org/10.1371/journal.pone.0193152.g002
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Next, each voxel is accompanied by a normalized distance entry which is obtained as fol-

lows.

NDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � SCVxÞ
2
þ ðyi � SCVyÞ

2
þ ðzi � SCVzÞ

2
q

� Vsize 8 Vi 2 Im ð1Þ

Where SCV stands for scanner central voxel, xi, yi, zi are the coordinates of voxel Vi and

Vsize, stands for voxel size which is obtained as the product of the in-plane resolution factors

and the slice thickness.

2.3.3 Cardinality. The distances as presented in Subsection 2.3.2 have a major drawback.

They are radially repeated and, if working together with the intensity, the computer can find it

difficult to learn that two voxels located at the same distance have different values. This lack of

consistency is highly probable due to the asymmetry of the structures inside the brain, espe-

cially in the presence of abnormalities. To overcome this issue, we added a third feature to the

analysis; the concept of cardinality. In this feature, we divide the FOV in m isometric cubes

with length size n. Later, each sub-cube is assigned a number consecutively incremented in x,

then y and finally the z-axes. See Fig 3 for reference.

For the cardinality feature, let Dx, Dy and Dz be arbitrary dividers of the image axis. Then,

using the length of the axes R, let Divx ¼
Rx
Dx
;Divy ¼

Ry
Dy

and Divz ¼
Rz
Dz

be the size of segments

created with the D dividers. With this information in place, the voxels will hold a integer factor

given by:

cardi ¼
xi
Divx
þ Divy �

yi
Divy

 !

þ ðDivzÞ
2
�

zi
Divz

� �

þ 1 8Vi 2 Im ð2Þ

2.3.4 Neighboring. This neighboring feature works like a boundary detector if translated

to the image domain. But, computationally speaking, provides every voxel with a knowledge of

Fig 3. The cardinality feature. In the card feature concept (left), the whole volume is divided into units bigger than a voxel, and each division is

assigned a consecutive number. In the card example shown in the right, the grid size has been exaggerated for visualization purposes. Note how there is

not only differentiation in the row, but also fading colors at a column level. This FOV demarcation voids the learning discrepancy presented in the ND

feature regarding its potential radial ambiguity.

https://doi.org/10.1371/journal.pone.0193152.g003
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its 26 neighbors—or less if the voxel is at one limit of the FOV—in its three-dimensional

neighborhood. The mechanism defines a direction starting from the voxel under study that

points to one of its intimate neighbors (Vn), the intensity of this pixel is saved. Then, the analy-

sis is propagated to one more voxel in the selected direction to a second voxel which is the

neighbor (Vnn) of the initially selected voxel (Vn). Then, if the differential of intensity between

Vn and Vnn is 20% greater from the one between the current voxel and (Vn), the (Vn) won’t be

considered a neighbor. In case Vn must be labeled as a neighbor, a counter is incremented;

therefore, this index is framed between 0 and 26 for any voxel in the image, excepting the ones

on the border of the FOV.

Refer to Fig 4 for the neighboring feature generalization explained below. Assume that

voxel V is in a position given by coordinates (x, y, z). Assume also that each coordinate can

be independently varied with the values in array step = [−1, 0, 1]. This allows the system to

query the intensity of all voxels VN. Also, when querying the intensity of a VN reached with

step = [a,b,c], the VNN is located at (VNx+a, VNy+b, VNz+c).
The outputs in the following expression are saved in the array c.

ck ¼
1; if absðIðVÞ � IðVNÞÞ > 0:2 � ðabsðIðVN � IðVNNÞÞÞ

0; otherwise
8 step!

(

And then,

Neigi ¼
Xk

ck 8 Vi 2 Im ð3Þ

Recall that step = [0, 0, 0] is an exception in the formulation above because it points to the

voxel under test.

2.3.5 The statistical estimator. The four features explained in sections 2.3.1 through

2.3.4, produce a number with their span. This information is scaled using the method Stan-
dardScaler of the class preprocessing available in scikit-learn. In all stages where needed, the

data is fed by its reference to the subject e.g. in the estimator creation, data is separated

Fig 4. The neighboring feature. The Neig concept (left) creates boundaries where the voxels are too different in

intensity. In the normal brain (right), its contribution is nil. However, in case of abnormalities or the presence of other

elements inside the ventricles such a CSF diverting shunt, this feature provides meaningful information.

https://doi.org/10.1371/journal.pone.0193152.g004
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0.75:0.25 (training: testing). The information is separated by subject. Therefore in each itera-

tion of the 6-folding experiment, the information of 33 subjects is used as the training dataset,

and 11 subjects are used as testing data. With this particular manner of gathering the informa-

tion we avoid the problem of feeding the algorithm with data that do not represent the whole

segmenting structure, which is possible when working in a voxel-based fashion. Once the esti-

mator is created, we abandon the training stage and proceed to the classification that yields the

automatic ventricular separation. The manually segmented masks of the 10 tested cases are

also provided to support the comparison scheme presented in the Table 1. Fig 5 conceptualizes

the creation and use of the statistical estimator.

The CHLA IRB approved the use of this retrospective data, and all the health insurance por-

tability accountability act (HIPPA) directives were carefully followed during the development

of the hypothesis.

3 Results

Manual segmentations of the ten studied images selected were performed for comparison with

the automatic ventricular volume estimator (AVVE). In this comparison, the volume differ-

ences and the Jaccard index [28] are used. The volume differences define the overall discrepan-

cies between manual and automatic assessments. The Jaccard index says how well the two

compared structures overlap. When compared with its manual counterpart, the AVVE

Fig 5. Learning and performing the segmentation processes. The features are extracted for each voxel in the training images, and a support vector

machine creates the separating hyperplane. Once the separating hyperplane is created, the automatic segmentation in any new subject is performed by

extracting the same features used in the training process and the statistical estimator.

https://doi.org/10.1371/journal.pone.0193152.g005
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underestimated the volumes in all cases, except in the one where an arachnoid cyst adjacent to

the ventricles misled the algorithm, see panel d in Fig 6.

See on Fig 7, the results of the manual and automatic segmentations for subject S1 in

Table 1, that was scanned before and after a shunting procedure.

Fig 6. Overlapping between manual (cyan) and AVVE (magenta) segmentations. These axial views obviate big portions of the surface. For a

complete reference, see the companion video. The large discrepancy in (d) is secondary to an arachnoid cyst containing CSF adjacent to the occipital

horn of the right lateral ventricle.

https://doi.org/10.1371/journal.pone.0193152.g006

Fig 7. Before and after shunt procedure masks. Manual (cyan) and AVVE (magenta) delineations are overlapped. See companion video for a 360˚

visualization.

https://doi.org/10.1371/journal.pone.0193152.g007
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4 Discussion

The machine learning implementation proposed here reached a 94% of accuracy and it holds

promises to improve further in the light of the unlimited amount of available data in the PACS

with which to learn. Also, other meaningful features can be considered in the future, including

those associated with age factors that are available in the DICOM headers within the PACS

[29].

An arachnoid cyst (AC) adjacent to the segmenting structure results in subject d having a

low Jaccard index. The AC appears in the boundary of the segmenting structure thus some of

the voxels in the AC are read as part of the lateral ventricles. The CSF within the AC appears

the same as CSF in the ventricles and subarachnoid space. The reason why the algorithm failed

is due to the absence of AC samples in the training data. In other words, we have not designed

the instrument to deal with this rare occurrence.

The incidence of an AC within the central nervous system is approximately 2-3% but only

those AC within or adjacent to the ventricles would mislead the segmentation process and

constitute a fraction of 1% of all AC [30]

Current solutions that can be classified as registration-based [5, 6] cannot be clinically

implemented since they require a minimum-of-structuralism present in the treated images to

extract a transformation matrix that links the analytics done in the template with the subject

under study. This minimum-of-structuralism requirement may not be fulfilled in clinical stud-

ies, where very often the FOV is chosen to select only a particular region of the whole organ.

Regarding thresholding methods such as [31], they have not proved to be fully adaptable to

the point of being launched alone as an absolute solution. They are usually presented together

with other strategies like in [10, 32]. Moreover, these algorithms have not be reported to be

useful clinically or in the presence of abnormalities. Other authors have also proposed voxel-

based approaches similar to the one we detail in this manuscript. In [11] segmentation is

asserted by a k-nearest neighbor (kNN) classifier that uses spatial information and voxel inten-

sities from different image modalities the availability of which is limited. In [13], it uses a prob-

abilistic atlas to create initial labels in the voxels. The labeling process requires a registration

step which is unattainable in the PACS. In [15], an atlas-based kNN classifier is used to per-

form segmentation using multi-modal MRI data. Here both, the of atlases and multi-modality

schemes preclude clinical applicability.

The authors in [12] use a three-layered segmentation procedure where each layer has its

classifier. The data consists of images acquired with sedation and reportedly uses the same

acquisition protocol regarding not only as to modality but also to spatial resolution. In [12]

two structural images are required (T1 and T2), but may not always be available together.

Finally [16] presents a work that uses a one-pass SVM classifier similar to the one we imple-

mented in our solution. However, the solution requires registration and is multi-modality.

One of the most useful aspects of our design is the capacity to extract the necessary features

from a single modality image and proceed without the need of any external information,

avoiding the need for registration.

Recent sophisticated methods have been presented where the preliminary evidence suggests

sufficiency for solving the problem such as [33, 34]; however, are unlikely to be implemented

clinically due to their lack of being automatic and need for human interaction.

The presented solution is seen as a plug-in for the PACS platform previously developed [4].

As stated in the abstract, our PACS implementation gives access to images at a bit level so that

quantification and analysis can be accomplished. But this opens a significant confidentiality

concern. HIPPA laws will be broken if humans interact with the images at bit-level through a

graphical user interface mostly because in the network, each unit of information has headers
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that allow easy identification and association to the individual being imaged. With the auto-

matic nature of the AVVE algorithm, we avoid all these issues. From a final user perspective,

the analytics is done by the same storing platform, and no human interaction is needed, except

to link the studies and the analytical procedures to be run.

The capability to learn makes the presented strategy available for a more comprehensive

purpose, hypothetically accomplishing segmentations in any part of the human body and in

the presence of any abnormality.

5 Conclusion

A common clinical neurological problem is optimally managing hydrocephalus for which

many MR/CT studies are done to determine if the ventricular volume has changed. It is antici-

pated that soon, the neuroradiology report will routinely include a number indicating ventric-

ular volume. This technique can be applied to any cerebral structure that can be segmented

such as GM,WM, various nuclei, tumors, aneurysms, etc. Treatment effect can be better moni-

tored and characterized if one is able to measure any volume change accurately.

Supporting information

S1 Video. A set of 360˚ visualizations with overlapped manual and AVVE ventricular seg-

mentations. The video complements the images presented in Figs 6 and 7.

(MP4)

Author Contributions

Conceptualization: Fernando Yepes-Calderon, J. Gordon McComb.

Data curation: Fernando Yepes-Calderon.

Formal analysis: Fernando Yepes-Calderon.

Funding acquisition: J. Gordon McComb.

Investigation: Fernando Yepes-Calderon, J. Gordon McComb.

Methodology: Fernando Yepes-Calderon.

Project administration: Marvin D. Nelson, J. Gordon McComb.

Resources: Marvin D. Nelson, J. Gordon McComb.

Software: Fernando Yepes-Calderon.

Supervision: Marvin D. Nelson, J. Gordon McComb.

Validation: Fernando Yepes-Calderon, Marvin D. Nelson, J. Gordon McComb.

Writing – original draft: Fernando Yepes-Calderon, J. Gordon McComb.

Writing – review & editing: Fernando Yepes-Calderon, Marvin D. Nelson, J. Gordon

McComb.

References
1. Tieche M, Gump J, Rieck ME, Schneider A. This white paper explores the decade of PACS technology,

changes, growth in numbers of vendors, and installations in hospitals in the United States. The Dorenf-

est Institute. 2010.

Automatically measuring brain ventricular volume within PACS

PLOS ONE | https://doi.org/10.1371/journal.pone.0193152 March 15, 2018 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193152.s001
https://doi.org/10.1371/journal.pone.0193152


2. Bellon E, Feron M, Neyens P, Peeters K, Sweertvaegher M, Maes F, et al. Incorporating novel image

processing methods in a hospital-wide PACS. International Congress Series. 2005; 1281:1016—1021.

https://doi.org/10.1016/j.ics.2005.03.210

3. Bellon E, Feron M, Deprez T, Reynders R, den Bosch BV. Trends in PACS architecture. European

Journal of Radiology. 2011; 78:199–204. https://doi.org/10.1016/j.ejrad.2010.05.025 PMID: 20566253

4. Yepes-Calderon F, Wihardja F, Melamed E, Song M, Paladini G, Lepore N, et al. Extending PACS func-

tionality: towards facilitating the conversion of clinical necessities into research-derived applications.

Proc SPIE. 2017; 10160:1016015–1016015–8. https://doi.org/10.1117/12.2264350

5. Prastawa M, Gilmore JH, Lin W, Gerig G. Automatic segmentation of MR images of the developing

newborn brain. Medical Image Analysis. 2005; 9:457—466. https://doi.org/10.1016/j.media.2005.05.

007 PMID: 16019252

6. Murgasova M, Dyet L, Edwards D, Rutherford M, Hajnal J, Rueckert D. Segmentation of Brain MRI in

Young Children. Acad Radiol. 2007; 14:1350—1366. https://doi.org/10.1016/j.acra.2007.07.020 PMID:

17964459

7. Qiu W, Chen Y, Kishimoto J, de Ribaupierre S, Chiu B, Fenster A, et al. Automatic segmentation

approach to extracting neonatal cerebral ventricles from 3D ultrasound images. Medical Image Analy-

sis. 2017; 35(7–8):181—191. https://doi.org/10.1016/j.media.2016.06.038 PMID: 27428629

8. Ciofolo C, Barillot C. Atlas-based segmentation of 3D cerebral structures with competitive level sets and

fuzzy control. Medical Image Analysis. 2009; 13(3):456—470. https://doi.org/10.1016/j.media.2009.02.

008 PMID: 19362876

9. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Bihan DL. Assessment of the early

organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using

quantitative diffusion tensor imaging and tractography. NeuroImage. 2006; 30:1121—1132. https://doi.

org/10.1016/j.neuroimage.2005.11.022 PMID: 16413790

10. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour

segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage.

2006; 31:1116—1128. https://doi.org/10.1016/j.neuroimage.2006.01.015 PMID: 16545965

11. Anbeek P., Vincken K.L., Van Bochove G.S., Van Osch M.J.P., van der Grond J. Probabilistic segmen-

tation of brain tissue in MR imaging. Neuroimage 27 (2005) 795–804. https://doi.org/10.1016/j.

neuroimage.2005.05.046 PMID: 16019235

12. Moeskops Pim, Benders Manon J.N.L., ChiţǎSabina M., Kersbergen Karina J., Groenendaal Floris,
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Automatic brain tissue segmentation in MR images using Random Forests and Conditional Random

Fields. Journal of Neuroscience Methods 270 (2016) 111–123. https://doi.org/10.1016/j.jneumeth.

2016.06.017

15. de Boer R., Vrooman H.A., van der Lijn F., Vernooij M.W., Ikram M.A., van der Lugt A., Breteler M.M.B.,

Niessen W.J. White matter lesion extension to automatic brain tissue segmentation on MRI. Neuro-

image 45, (2009) 1151–1161. https://doi.org/10.1016/j.neuroimage.2009.01.011 PMID: 19344687

16. A. van Opbroek, F. van der Lijn, and M. de Bruijne, Automated brain-tissue segmentation by multi-fea-

ture SVM classification. Proceedings of the MICCAI Workshops—The MICCAI Grand Challenge on MR

Brain Image Segmentation (MRBrainS’13) The Midas Journal, September 2013.

17. Heinig Stephen J, RE M, Quon Adrews SW, Korn D. The Changing Landscape for Clinical Research.

Academic Medicine. 1999; 74(6):726–745. https://doi.org/10.1097/00001888-199906000-00024 PMID:

10386106

18. NS S, Crowley WF J, M G, et al. Central challenges facing the national clinical research enterprise.

JAMA. 2003; 289(10):1278–1287. https://doi.org/10.1001/jama.289.10.1278

19. Simon Thorpe DFCM. Speed of processing in the human visual system. Letters to nature. 1996;

381:520–22. https://doi.org/10.1038/381520a0

20. Grill-Spector K, Kanwisher N. Visual Recognition. Psychological Science. 2005; 16(2):152–160. https://

doi.org/10.1111/j.0956-7976.2005.00796.x PMID: 15686582

21. Hounsfield GN. Computerized transverse axial scanning (tomography): Part 1. Description of system.

British Jornal of Radiology. 1974; 46(552).

Automatically measuring brain ventricular volume within PACS

PLOS ONE | https://doi.org/10.1371/journal.pone.0193152 March 15, 2018 13 / 14

https://doi.org/10.1016/j.ics.2005.03.210
https://doi.org/10.1016/j.ejrad.2010.05.025
http://www.ncbi.nlm.nih.gov/pubmed/20566253
https://doi.org/10.1117/12.2264350
https://doi.org/10.1016/j.media.2005.05.007
https://doi.org/10.1016/j.media.2005.05.007
http://www.ncbi.nlm.nih.gov/pubmed/16019252
https://doi.org/10.1016/j.acra.2007.07.020
http://www.ncbi.nlm.nih.gov/pubmed/17964459
https://doi.org/10.1016/j.media.2016.06.038
http://www.ncbi.nlm.nih.gov/pubmed/27428629
https://doi.org/10.1016/j.media.2009.02.008
https://doi.org/10.1016/j.media.2009.02.008
http://www.ncbi.nlm.nih.gov/pubmed/19362876
https://doi.org/10.1016/j.neuroimage.2005.11.022
https://doi.org/10.1016/j.neuroimage.2005.11.022
http://www.ncbi.nlm.nih.gov/pubmed/16413790
https://doi.org/10.1016/j.neuroimage.2006.01.015
http://www.ncbi.nlm.nih.gov/pubmed/16545965
https://doi.org/10.1016/j.neuroimage.2005.05.046
https://doi.org/10.1016/j.neuroimage.2005.05.046
http://www.ncbi.nlm.nih.gov/pubmed/16019235
https://doi.org/10.1016/j.neuroimage.2015.06.007
https://doi.org/10.1016/j.neuroimage.2015.06.007
http://www.ncbi.nlm.nih.gov/pubmed/26057591
https://doi.org/10.1016/j.neuroimage.2007.05.018
http://www.ncbi.nlm.nih.gov/pubmed/17572111
https://doi.org/10.1016/j.jneumeth.2016.06.017
https://doi.org/10.1016/j.jneumeth.2016.06.017
https://doi.org/10.1016/j.neuroimage.2009.01.011
http://www.ncbi.nlm.nih.gov/pubmed/19344687
https://doi.org/10.1097/00001888-199906000-00024
http://www.ncbi.nlm.nih.gov/pubmed/10386106
https://doi.org/10.1001/jama.289.10.1278
https://doi.org/10.1038/381520a0
https://doi.org/10.1111/j.0956-7976.2005.00796.x
https://doi.org/10.1111/j.0956-7976.2005.00796.x
http://www.ncbi.nlm.nih.gov/pubmed/15686582
https://doi.org/10.1371/journal.pone.0193152


22. Bushong SC. Computed Tomography. McGraw-Hill; 2000.

23. Kuperman V. Magnetic Resonance Imaging. Academic Press; 2000.

24. Bonnet N, Cutrona J, Herbin M. A ‘no-threshold’ histogram-based image segmentation method. Pattern

Recognition. 2002; 35(10):2319—2322. http://dx.doi.org/10.1016/S0031-3203(02)00057-2.

25. Richards John E, MP M, Sanchez Carmen, Xiea W. A database of age-appropriate average MRI tem-

plates. NeuroImage. 2016; 124(1):1254—1259. https://doi.org/10.1016/j.neuroimage.2015.04.055

PMID: 25941089

26. Wang S, Shana D, Jiankun Dai YMFLHL Haichen Niu. A database of age-appropriate average MRI

templates. NeuroImage. 2013; 220(1):9–17.

27. Nibabel World Coordinates. http://nipy.org/nibabel/nifti_images.html.

28. Real R, Vargas JM. The Probabilistic Basis of Jaccard’s Index of Similarity. Systematic Biology. 1996;

45(3):380—85. https://doi.org/10.1093/sysbio/45.3.380

29. Huang H. PACS and Imaging. Basic Principles and Applications. Jhon Wiley & Sons Inc.; 2004.

30. McComb JG. Pediatric Cranial Arachnoid Cysts in Wester K (ed) Arachnoid Cysts: Clinical and Surgical

Management, Academic Press 2018, 253–269 isbn:978-0128143780.

31. Kikinis R, Shenton ME, Gerig G, Martin J, Anderson M, Metcalf D, et al. Routine Quantitative Analysis

Spaces with MR Imaging. JMRI. 1982; 2(1):619–627.

32. Aljabar P, Bhatia KK, Murgasova M, Hajnal JV, Boardman JP, Srinivasan L, et al. Assessment of brain

growth in early childhood using deformation-based morphometry. Neuroimage. 2008; 39:348—358.

https://doi.org/10.1016/j.neuroimage.2007.07.067 PMID: 17919930

33. Mandell JG, Langelaan JW, Webb AG, Schiff SJ. Volumetric brain analysis in neurosurgery: Part 1. Par-

ticle filter segmentation of brain and cerebrospinal fluid growth dynamics from MRI and CT images. J

Neurosurg Pediatr. 2015; 15:113—124. https://doi.org/10.3171/2014.9.PEDS12426 PMID: 25431902

34. Mandell JG, Kulkarni AV, Warf BC, Schiff SJ. Volumetric brain analysis in neurosurgery: Part 2. Brain

and CSF volumes discriminate neurocognitive outcomes in hydrocephalus. J Neurosurg Pediatr. 2015;

15: 125—132. https://doi.org/10.3171/2014.9.PEDS12427 PMID: 25431901

Automatically measuring brain ventricular volume within PACS

PLOS ONE | https://doi.org/10.1371/journal.pone.0193152 March 15, 2018 14 / 14

http://dx.doi.org/10.1016/S0031-3203(02)00057-2
https://doi.org/10.1016/j.neuroimage.2015.04.055
http://www.ncbi.nlm.nih.gov/pubmed/25941089
http://nipy.org/nibabel/nifti_images.html
https://doi.org/10.1093/sysbio/45.3.380
https://doi.org/10.1016/j.neuroimage.2007.07.067
http://www.ncbi.nlm.nih.gov/pubmed/17919930
https://doi.org/10.3171/2014.9.PEDS12426
http://www.ncbi.nlm.nih.gov/pubmed/25431902
https://doi.org/10.3171/2014.9.PEDS12427
http://www.ncbi.nlm.nih.gov/pubmed/25431901
https://doi.org/10.1371/journal.pone.0193152

