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Abstract: It is well known that terrestrial environments host an immense microbial biodiversity.
Exposed to different types of stress, such as UV radiation, temperature fluctuations, water availability
and the inter- / intra-specific competition for resources, terrestrial microorganisms have been evolved
to produce a large spectrum of bioactive molecules. Bacteria, archaea, protists, fungi and algae have
shown a high potential of producing biomolecules for pharmaceutical or other industrial purposes
as they combine a sustainable, relatively low-cost and fast-production process. Herein, we provide
an overview of the different bioactive molecules produced by terrestrial microorganisms with skin
protecting applications. The high content in polyphenolic and carotenoid compounds produced
by several strains, as well as the presence of exopolysaccharides, melanins, indole and pyrrole
derivatives, mycosporines, carboxylic acids and other molecules, are discussed in the context of their
antioxidant, photo-protective and skin-whitening activity. Relevant biotechnological tools developed
for the enhanced production of high added value natural products, as well as the protecting effect of
some antioxidant, hydrolytic and degrading enzymes are also discussed. Furthermore, we describe
classes of microbial compounds that are used or have the potential to be used as antimicrobials,
moisturizers, biosurfactants, pigments, flavorings and fragrances.

Keywords: terrestrial microorganisms; antioxidant; photo-protective; skin-whitening; cosmetics

1. Introduction

Microorganisms are extremely diverse organisms, including bacteria, archaea, protists, fungi and
algae. In recent decades, there has been great progress on exploiting the immense chemical diversity
available from the abundant microbial world [1,2]. After the discovery of the fungal metabolite
penicillin in 1928, which was the beginning of the golden age of microbial-derived natural products and
pharmaceuticals, treatments for fungal and parasitic infections as well as for several types of cancers
followed [3]. In the forties and early fifties, almost all groups of important antibacterial antibiotics
(tetracyclines, cephalosporins, aminoglycosides, macrolides) were discovered, while in the fifties and
sixties, antitumor, antiviral and non-antibiotic-enzyme-inhibitory-metabolites were isolated, mainly
from Streptomyces species [4].

The successful and wide utilization of microbial metabolites in various therapeutic areas (e.g.,
cyclosporine as immunosuppressant, doxorubicin as anticancer, and statins as cardio protective agents),
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as well as the wide application in livestock and agriculture (e.g., the antiparasitic avermectin, the
feed additive monensin and the herbicide glufosinate) [5] were important features for broadening the
research of bioactive microbial products in other sectors. In fact, in the last decade, microorganisms
have attracted a great deal of attention as potential leading producers of promising compounds for
cosmetic and/or cosmeceutical purposes [6]. Among these compounds, polyphenols, quinones and
aldehydes have been reported in several studies as functional active ingredients for the maintenance
of skin homeostasis (e.g., antioxidants, UV protecting, skin whitening) as well as coloring, flavoring,
stabilizing and antibacterial agents [2].

Among the various environmental factors affecting skin homeostasis, ultraviolet (UV) irradiation
is the most dangerous component, as it can cross the epidermis and reach the upper dermis. Additional
parameters that affect all skin layers and thus contribute to skin aging are dietary (e.g., high fat
diet) and lifestyle habits (e.g., smoking), various air pollutants, as well as internal factors such as
metabolism, hormones, inflammatory processes, etc. [7–9] (Figure 1). Damaging agents modulate
numerous molecular events and signaling pathways that (among others) lead to mitochondrial
dysfunction, increased genome and proteome damage; increased synthesis and activity of matrix
metalloproteases, decreased collagen production, triggering of stress-induced premature senescence
(SIPS) and accumulation of the inflammatory senescence-associated secretory phenotype (SASP) [8–11].
The maintenance of a highly effective intra- or extracellular defense system capable of protecting
against the adverse effects of irradiation and other stressors is crucial for safeguarding skin homeostasis.
Adverse effects are macroscopically characterized by the loss of skin tone and an increase of wrinkles,
dehydration (due to increased epidermal thickness), hyperpigmentation and sallowness (yellowing or
pale tinted skin) (Figure 1).

Despite the large number of individual studies and evidences for the potential use of terrestrial
microorganisms in the fast-growing cosmetic sector, so far no systematic review has addressed their
applications. It is worth mentioning that the global market for cosmetic and cosmeceutical products
was valued at USD 532.4 billion in 2017, and is expected to reach a market value of USD 805.6 billion
by 2023, registering a CAGR (Compound Annual Growth Rate) of 7.14% during 2018–2023 [12].

In the current study, we provide an overview of the different bioactive compounds with skin
protecting effect (and thus of cosmetic and cosmeceutical interest) isolated, from a broad range of
terrestrial microorganisms including bacteria, algae, fungi and protists. Examples of biomolecules
with skin protecting interest that are heterologously produced and/or biotransformed are included.
The term “terrestrial” encompasses microorganisms from soil and freshwater, plant endophytes,
and lichens. Marine microorganisms and mushrooms (all Basidiomycota and Ascomycota) are
excluded, as they have been recently reviewed [2,13]. Representative bioactive compounds from
terrestrial microorganisms with antioxidant, photo-protective, and skin-whitening activity, along with
antimicrobial and moisturizing agents, pigments, fragrances and flavors are discussed. A detailed
table including bioactive molecules, the source organisms and their habitat, the biological activity, as
well as their presence in the list of cosmetic substances and ingredients of the European Union (CosIng
inventory [14]) is provided.
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Figure 1. During lifetime, skin is exposed to numerous environmental stressors such as UVA and UVB,
ionizing radiation and air pollutants, as well as to stressors that may originate from diet (e.g., high fat
diets), internal sources (e.g., metabolism or tissue inflammation) and/or lifestyle (e.g., smoking). While
young, these stressors are effectively neutralized by cell protective mechanisms (e.g., the antioxidant
transcription factor Nrf2). During aging, defenses are compromised, resulting in accumulating ROS,
genome and proteome damage; damage of biomolecules then disrupts normal cell signaling and
homeodynamics, resulting in (among others) coarse wrinkles, hyperpigmentation and skin shallowness.

2. Antioxidants

Oxidative stress is one of the prevailing causes of skin aging due to increased production
and/or accumulation of Reactive Oxygen (ROS) and Nitrogen Species (RNS). Imbalance between their
production and the endogenous antioxidant defense mechanisms may result in cellular oxidative
stress, causing wrinkling, drying, photo-aging, pigmentation and elastosis of the skin. In addition,
accumulation of free radicals may be responsible for cutaneous inflammation and skin cancer [15].

Reactive oxygen species (ROS) are formed as either by-products of normal metabolism (e.g.,
mitochondrial oxidative phosphorylation), as well by NAD(P)H oxidases, or by exogenous sources
such as atmospheric pollutants, UV light, X- or gamma-rays [16]; if their concentration exceeds the
cellular antioxidant capacity, ROS cause oxidative stress and damage to all cellular biomolecules [10].

Topical antioxidant products could act as scavengers of reactive species, inhibiting the initiation
of chain reactions, responsible for cellular oxidative stress [17]. Many reports have demonstrated the
ability of marine microorganisms to biosynthesize antioxidant compounds [2]. Concerning terrestrial
microbes, compounds with a significant inhibition of oxidation reactions, like polyphenols, carotenoids
or exopolysaccharides, are extensively discussed in the following sections.

Bioassays involving the neutralization of different radicals such as the stable radical
2,2-diphenyl-1-picrylhydrazyl (DPPH), the cation radical 2,2′-azino-bis-3-ethylbenzotiazolin-6-sulfonic
acid (ABTS), as well as the hydroxyl and nitric oxide radicals are widely applied for determining the
in vitro antioxidant potential. Even if the relation to the in vivo antioxidant efficacy was not clearly
described, the measured antioxidant activity can give an estimation of the amount of the compounds
that can be oxidized under conditions of the assays [18].
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2.1. Phenolic Compounds

Phenolic compounds are well known for their strong antioxidant and radical scavenging activity,
as well as for their interaction with different pharmacological targets. The strong correlation between
the microbial phenolic content and the antioxidant activity has been shown by several authors using
different microorganisms. Huang et al. confirmed this positive correlation during their investigation
of fungal endophytes isolated from medicinal Chinese plants [19]. The strong contribution to the
antioxidant activity was also confirmed in Aspergillus austroafricanus, an endophytic fungus isolated
from Zingiber officinale rhizome. HPLC analysis of the crude extract showed mainly the presence of
hydroxycinnamic acids such as ferulic acid (1), p-coumaric acid (2) and cinnamic acid (3) [20] (Figure 2).
Those molecules are well known in the plant kingdom and have been extensively studied for their
antioxidant capacity (Table 1).

Similar conclusions were drawn using cultures of the microalgae Arthrospira platensis [21] and
of other Arthrospira sp. [22,23]. Simple phenolics and hydroxycinnamic acids, such as gallic acid,
chlorogenic acid, ferulic acid, and caffeic acid have been isolated from different species of microalgae
e.g Chlorella vulgaris, Haematococcus pluvialis, Diacronema lutheri, Phaeodactylum tricornutum, Tetraselmis
suecica, Ankistrodesmus sp., Spirogyra sp., Euglena cantabrica, Caespitella pascheri, and Porphyridium
purpureum [24–26].

Studies on terrestrial cyanobacterial species from the genera Anabaena, Nostoc, Nodularia,
Microcheate, Oscillatoria, Synechocystis, Hapalosiphon, Mastigocladus, Scytonema, Westiellopsis,
Cylindrospermum, Aulosira, Chroococcus, Lyngbya, Calothrix, Dichothrix, Phormidiochaete,
Limnothrix and Phormidium have also reported the correlation of their antioxidant activity with
their total phenolic content. Chlorogenic and gallic acid were identified as main phenolics in several
cyanobacterial species, with Dichothrix sp. being one the most efficient producer of those compounds
(77.9 µg/g and 24.4 µg/g fresh weight, respectively) [26].

Resveratrol (4), another well-known natural compound produced by plants, has recently been
reported from endophytes isolated from grapevine varieties [27,28]. It is considered one of the most
famous compounds for its unique anti-aging properties (Figure 2). It has been widely reported to be a
strong inhibitor of ROS production and protein oxidation and a more effective agent than vitamins
E and C against lipid peroxidation [29]. Microorganisms have been successfully considered for the
production of resveratrol, since its synthesis and/or its extraction from plants is considered inefficient
due to high requirements of organic solvents, biomass and low final yield. Resveratrol was first
industrially produced in 2009, using Saccharomyces cerevisiae. Since this development, different methods
such as bioconversion and genetic engineering have been used in order to obtain higher yields. For
instance, resveratrol has been produced by Alternaria sp. (1.4 µg/L), and by genetically modified
S. cerevisiae (531.4 mg/L), and E. coli (2370 mg/L) [30]. The molecules discussed, as well as additional
microbial phenolic compounds that have antioxidant or other related biological activities, are presented
in Table 1.
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Table 1. Bioactive molecules produced by terrestrial microorganisms.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

A
nt

io
xi

da
nt

s1

Hydroxycinnamic acids

p-Coumaric acid

Fungi;
A. austroafricanus;

Trichocomaceae

Isolated from
Z. officinale
rhizome.

Antioxidant (DPPH,
hydroxyl and nitric oxide

radical-scavenging
methods)

Skin-whitening (inhibition
of human tyrosinase and

melanogenesis).

[31,32]

Ferulic acid

Antioxidant (DPPH,
hydroxyl and nitric oxide

radical-scavenging
methods)

Photo-protective
(SPFs: 1.3).

Antimicrobial

Cinnamic acid

Antioxidant (DPPH,
hydroxyl and nitric oxide

radical-scavenging
methods).

Perfuming & skin
conditioning agent

Chlorogenic acid
Cyanobacteria;
Dichothrix sp.;
Rivulariaceae

Antioxidant
(DPPH radical scavenging
activity, IC50: 6.41 µg/mL
ABTS radical scavenging

activity, IC50: 13.15 µg/mL
Deoxyribose protective

activity, IC50: 8.53 µg/mL)

Antioxidant,
skin-conditioning &

skin-protecting agent

[26]

Caffeic acid
Cyanobacteria;

Aulosira fertilissima;
Fortieaceae

Antioxidant
(DPPH radical scavenging
activity, IC50: 6.34 µg/mL
ABTS radical scavenging

activity, IC50: 18.04 µg/mL
Deoxyribose protective

activity, IC50: 4.76 µg/mL)

Antioxidant & masking
agent
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Table 1. Cont.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Stilbenes Resveratrol

Fungi; Alternaria sp.;
Pleosporaceae

Isolated from
grapes of Vitis

vinifera

Antioxidant (inhibition of
8-OH-dG formation in
DNA, IC50: 10.9) [33]2

Skin-whitening (inhibition
of mushroom tyrosinase

and of melanogenesis) [34]2

Preventive effect on lipid
peroxidation [29]2

Antioxidant & skin
protecting agent

[30]

Fungi;
S. cerevisiae;

Saccharomycetaceae
[35]

Bacteria;
E. coli;

Enterobacteriaceae
[36]

Fungi;
S. cerevisiae;

Saccharomycetaceae

Isolated from
Sugarcane. [37]

Bacteria; E. coli;
Enterobacteriaceae

Obtained from a
Genetic Stock
Center, New
Haven, CT.

[36]

Bacteria; Bacillus sp.;
Bacillaceae

Isolated from
leaves of Populus

alba L.
[38]

Biphenyls

Altenusin Fungi;
Botryosphaeria

dothidea;
Botryosphaeriaceae

Collected from
stems of white

cedar (Melia
azedarach).

Antioxidant (DPPH radical
scavenging activity, IC50:

17.6 µM). [39]
5’, Methoxy-6-

methylbiphenyl-
3,4,3’-triol

Antioxidant (DPPH radical
scavenging activity, IC50:

18.7 µM).

Naphthoquinone spiroketals Palmarumycin C3 Fungi; Berkleasmium
sp.; Dematiaceae

Isolated from
healthy rhizomes
of the medicinal
plant Dioscorea
zingiberensis.

Antioxidant (DPPH radical
scavenging activity, IC50:

37.57 µM).
[40]
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Table 1. Cont.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Benzoic acids

Gallic acid

Cyanobacteria;
Limnothrix

obliqueacuminata;
Pseudanabaenaceae

Antioxidant
(DPPH radical scavenging
activity, IC50: 3.53 µg/mL
ABTS radical scavenging
activity, IC50: 8.85 µg/mL
Deoxyribose protective

activity, IC50: 7.84 µg/mL)

Antioxidant

[26]

Vanillic acid

Cyanobacteria;
Mastigocladus

laminosus;
Hapalosiphonaceae

Antioxidant
(DPPH radical scavenging
activity, IC50: 416.7 µg/mL
ABTS radical scavenging

activity, IC50: 132.1 µg/mL
Deoxyribose protective

activity, IC50: 91.1 µg/mL)

Registered with no
reported functions

Thiol peptides Glutathione

Fungi; P. pastoris;
Saccharomycetaceae

Antioxidant (minimizes
lipid peroxidation in

cellular membranes and
other such targets that is

known to occur with
oxidative stress) [41]2

Skin-whitening (tyrosinase
inhibitor) [42]2

Reducing agent

[43]

Bacteria; E. coli;
Enterobacteriaceae [44]

Carotenoids

Astaxanthin

Fungi; X.
dendrorhous;

Filobasidiaceae
Antioxidant (in vitro

protection of biological
membranes by an

antioxidant mechanism)
[45]2

Skin-whitening (inhibition
of pigmentation, inhibition

of melanin-generation)

Skin conditioning agent

[46]

Chlorophyta; H.
pluvialis;

Haematococcaceae

Obtained from
Algal Culture
Center, Plant
Physiology

Institute,
University of

Gottingen,
Germany.

[47]
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Table 1. Cont.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

β-carotene Bacteria; E. coli;
Enterobacteriaceae

Antioxidant (αTEAC,
FRAP and CL assay) [48]2

Skin conditioning agent [1]
Lycopene Antioxidant [49]

Canthaxanthin
Bacteria;

Brevibacterium;
Brevibacteriaceae

Antioxidant (in vitro
protection of biological

membranes by an
antioxidant mechanism)

[45]2

Pigment

Cosmetic colorant [50]

Lutein

Chlorophyta;
Muriellopsis sp.;

Chlamydomonadales
incertae sedis

Isolated from the
Natural Park of

the Empordá
Marshes in

Catalonia, Spain.

Antioxidant
(Superoxide radical

scavenging activity, IC50:
21 µg/mL

Hydroxyl radical
scavenging activity, IC50:

1.75 µg/mL
Inhibition of lipid

peroxidation: 2.2 µg/mL
DPPH radical scavenging
activity, IC50: 35 µg/mL

ABTS radical scavenging
activity: >100µg/mL Nitric
oxide radical scavenging
activity, IC50: 3.8 µg/mL)

[51]2

Photo-protective
(absorption of UVA rays)

Skin conditioning agent [52]

Cis-canthaxanthin Actinobacteria; D.
maris; Dietziaceae

Isolated from soil
sample collected
from the Kargil

district of Jammu
and Kashmir,

India.

Antioxidant (inhibition of
ROS generation in THP-1

cells, >80%)
[53]



Molecules 2019, 24, 1836 9 of 35

Table 1. Cont.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Polysaccharides
(PSs)

Exopolysaccharides
(EPSs)

EPS fraction
(PS-I); rhamno

galactan

Fungi; F. solani;
Nectriaceae

Isolated from A.
scholaris.

Antioxidant (scavenging
potency, IC50:
578.54 µg/mL)

[54]

Unknown EPS Bacteria; B. cereus;
Bacillaceae

Isolated from A.
annua L.

Antioxidant:
(DPPH radical scavenging
activity, EC50: 3–5 mg/mL

Superoxide radical
scavenging activity, EC50:

2.6 mg/mL)

[55]

Crude EPS Bacteria; P.
polymyxa;

Paenibacillaceae

Isolated from S.
japonica (Blume)

Miquel.

Antioxidant (hydroxyl
radical scavenging activity:

87.58% at 1 mg/mL)
[56,57]

Mannose:
fructose: glucose

(2.6:29.8:1)

Antioxidant (hydroxyl
radical scavenging activity:

76.73% at 1 mg/mL)
[56]

Mannose:
fructose: glucose

(4.2:36.6:1)

Antioxidant (hydroxyl
radical scavenging activity:

68.55% at 1 mg/mL)

Deproteinized
EPS

Algae; R. reticulata;
Rhodellaceae

Isolated from
freshwater.

Antioxidant (superoxide
anion radical scavenging

activity: 328.48 U/L)
[58]

Mannose:
galactose
(89.4:10.6)

Fungi; Aspergillus
sp.; Trichocomaceae

Isolated from
leaves of Ipomoea

pes-caprae L.

Antioxidant

Mannose as humectant
and galactose as

skin-conditioning agent
[59]

Rhamnose:
glucose:

glucuronic acid
(2:2:1)

Bacteria; B. tropica;
Burkholderiaceae

Isolated from
Sugarcane.

Rhamnose as
humectant & masking,
glucose as humectant
and glucuronic acid as
humectant, chelating &

buffering agent

[60]

Unknown EPS

Chlorophyta;
Graesiella sp.;

Chlamydomonadales
incertae sedis

Isolated from the
hot spring ‘Ain
Echffa’ (water

temperature of 60
◦C), Tunisia.

[61]
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Table 1. Cont.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Cell wall &
exoskeleton PSs

Chitosan

Fungi; R. oryzae;
Mucoraceae

Obtained from
Culture Collection

University of
Gothenburg,

Sweden.

Antimicrobial
(higher activity on

gram-positive bacteria, ex:
Minimum inhibitory

concentration (MIC) for
S. aureus: 20 ppm)
Moisturizing effect

Film forming & hair
fixing agent

[62,63]

Fungi; R. japonicus;
Mucoraceae

Shanghai Institute
of

Industrial
Microbiology,

China.

Fungi; M. indicus;
Mucoraceae

Obtained from
Culture Collection

University of
Gothenburg,

Sweden.

[64]

Fungi; A. niger;
Trichocomaceae

Isolated from the
lichen R.

montagnei.
[65]

Chitin-glucan - [66]
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Table 1. Cont.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Ph
ot

o-
Pr

ot
ec

ti
ve

ag
en

ts
1

Melanins -
Bacteria; S. kathirae;

Streptomycetaceae
Isolated from soil

samples.
Photo-protective

(determination of SPF)
Skin protecting agent [67]

Bacteria; Bacillus
safensis; Bacillaceae [68]

Indole derivatives

Violacein

Bacteria; C.
violaceum;

Neisseriaceae

Isolated from soil
sample collected
from the vicinity
of an oil refinery

wastewater
treatment plant in
Negeri Sembilan,

Malaysia.

Photo-protective: broad
absorption band extended

out to 700 nm [69]
Antibacterial (more

efficient on Gram positive
bacteria, ex: S. aureus, IC50:

6.99 µM)

Antimicrobial,
antioxidant & cosmetic

colorant

[70]

Bacteria; Duganella
sp.; Oxalobacteraceae.

Isolated from the
glaciers of

Tianshan, China.
[71]

Scytonemin
Bacteria; N.
commune;

Nostocaceae

Collected from
sandy soil in

Ningbo
University, China.

Photo-protective: UV
absorbent (UV-A and UV-B

region) [72]
Antioxidant

(dose-dependent DPPH
scavenging activity of 12%,

33%, and 57% at
concentrations of 0.5, 1.0,

and 2.0 mg/mL,
respectively. Ascorbic acid

used as positive control)

[73]

Streptochlorin
Bacteria; S.

roseolilacinus;
Streptomycetaceae

Isolated from soil.
Skin-whitening

(anti-tyrosinase activity,
IC50: 9 mM)

[74]

Prodigiosin

Bacteria; S.
marcescens;

Enterobacteriaceae

Isolated from
fields

contaminated
with pesticides.

Photo-protective
Antibacterial (more

efficient on Gram positive
bacteria, ex: S. aureus, IC50:

0.68 µM)

[75]

Bacteria; Vibrio sp.;
Vibrionaceae

Isolated from
estuarine waters
of the Northern

Adriatic Sea.

[76]
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Table 1. Cont.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Mycosporines

Palythine

Cyanobacteria;
Lyngbya sp.;

Oscillatoriaceae

Isolated from the
bark of the rain

tree Albizia saman
(Jacq) Merr,

Bangkok,
Thailand.

Photo-protective
(protection of HaCaT

keratinocytes from
solar-simulated radiation
(SSR)-induced cell death),

[77]2

[78]Asterina Photo-protective

Unknown
mycosporine-like

amino acid

Antioxidant (DPPH
scavenging activity of

14.5%, 53.0%, and 68.9% at
0.115, 0.230, and 0.460

mg/mL of MAAs,
respectively. Ascorbic acid

used as positive control)

Mycosporine-
glutaminol-glucoside

Fungi; R. minuta;
Sporidiobolaceae

Isolated from
Patagonian

natural
environments

Photo-protective (UVB
resistance of X. dendrorhous
related to MGG production)

[79]
Fungi; R. slooffiae;
Sporidiobolaceae
Fungi; R. lactosa;
Sporidiobolaceae

Fungi;
C. liquefaciens;
Tremellaceae

Isolated from a
cold Arctic

environment.

[80]

Mycosporine–
glutamicol–glucoside

Fungi; C.
cladosporioides;
Cladosporiaceae
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Table 1. Cont.

Classes of Natural Products Bioactive Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Sk
in

-w
hi

te
ni

ng
ag

en
ts

1

Pyrones

Kojic acid

Fungi; A. flavus;
Trichocomaceae

Isolated from V.
unguiculata.

Skin-whitening
(anti-tyrosinase activity,

IC50: 0.014 mM)
Antioxidant

[81]

Fungi; A. oryzae;
Trichocomaceae -

[82,83]

Fungi; A. parasiticus;
Trichocomaceae Isolated from soil.

Fungi; A. candidus;
Trichocomaceae Isolated from soil.

Fungi; A. flavus;
Trichocomaceae

Obtained from
Department of

Bioprocess
Technology,

University Putra,
Malaysia.

(3R)-5-hydroxymellein Endolichenic
fungus

Isolated from the
thalli of the lichen

Parmotrema
austrosinense
(KoLRI no.

009806) collected
from Jeju Island,

Korea.

Photo-protective (damage
recovery caused by UVB
irradiation and inhibition

of melanin synthesis)
Antioxidant (DPPH radical

scavenging, IC50: 30.8)

[84]

Phenolic lactones
Ellagic acid (get by

fungal bioconversion
of ellagitannins)

Fungi; A. niger;
Trichocomaceae

Obtained from
DIA/UAdeC

collection
(Universidad
Autonoma de

Coahuila,
Mexico).

Antioxidant (ABTS radical
scavenging activity at

20 µg/mL: 93.9%).
Skin-whitening (inhibition

of melanogenesis)

Skin-conditioning agent [85]
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Table 1. Cont.

Classes of Natural Products Bioactive
Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Carboxylic acids

Lactic acid Fungi; R. oryzae;
Mucoraceae

Obtained from
CBS-Centraalbureau

voor
Schimmelcultures,

Utrecht, The
Netherlands.

Skin-whitening
[86]2

pH adjuster
Exfoliant

Humectant, buffering &
skin-conditioning agent [87]

Poly γ-glutamic
acid

Bacteria; Bacillus sp.;
Bacillaceae

Isolated from a soil
sample collected at

the Sugimoto
campus of Osaka
City University,

Japan.

Skin-whitening
Moisturizing

(water-holding capacity:
56.9%)

Antibacterial (more
efficient on Gram-positive

bacteria)

[88]

Azelaic acid
Fungi; Malassezia

furfur;
Malasseziaceae

Skin-whitening
(competitive inhibitor of

tyrosinase: KI azelaic acid:
2.73x10-3 M) [89]2

Anti-bacterial and anti-acne
effect

Treatment of rosacea

Buffering & masking
agent [90,91]

Tocopherols

Novel vitamine E
succinate

(bioconversion of
vitamin E by

modified
Candida antarctica

lipase B)

Fungi; C. antarctica;
Saccharomycetacea Skin-whitening effect [92]

Teichoic acids Lipoteichoic acid Bacteria; L. fermenti;
Lactobacillaceae

Obtained from the
National Collection

of Type Cultures,
Colindale, London.

Skin-whitening (inhibition
of the intracellular activity
of tyrosinase to 57.6% and
44.6% at 10 and 100 µg/mL

of lipoteichoic acid)

[93]
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Table 1. Cont.

Classes of Natural Products Bioactive Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Quinones

Arbutin undecylenic
acid ester

Bacteria; B. subtilis;
Bacillaceae

Skin-whitening
(anti-tyrosinase activity,

IC50: 4.10-4 M)
[94]

A
dd

it
iv

es
an

d
ot

he
r

ac
ti

ve
in

gr
ed

ie
nt

s1

Purpurogenone
Fungi; P.

purpurogenum;
Trichocomaceae

Pigment [95]

Unknown
Anthraquinone

derivative

Fungi; P. oxalicum
var. Armeniaca;
Trichocomaceae

Obtained from
soil. [96]

Peptides & amino acid
derivatives

Ectoine
Bacteria; C.
glutamicum;

Corynebacteriaceae

Photo-protective (in vitro
inhibition of UVA- induced

signal transduction in
human keratinocytes as

well as inhibition of
UVA-induced formation of

mitochondrial DNA
mutations in human

dermal fibroblasts), [97]2

Moisturizing effect

Skin conditioning agent [98,99]

Phenylalanine Bacteria; E. coli;
Enterobacteriaceae

New England
Biolabs (NEB,
Ipswich, MA).

Hair and skin conditioning
effect [100]

Azaphilones Mitorubrin
Fungi; P.

purpurogenum;
Trichocomaceae

Pigment [95]

Aromatic Aldehydes & alcohols

Benzaldehyde Bacteria; E. coli;
Enterobacteriaceae

New England
Biolabs (NEB,
Ipswich, MA).

Flavor, perfume
(almond flavor)

Denaturant, flavoring,
masking & perfuming

agent
[100]

Benzyl alcohol Bacteria; E. coli;
Enterobacteriaceae

Flavor, perfume
Preservative
Bacteriostatic

Perfuming,
preservative, solvent &

viscosity controlling
agent

Vanillin

Bacteria; E. coli;
Enterobacteriaceae Flavor, perfume (vanilla

flavor)
Masking agent

[101]

Bacteria; E. coli;
Enterobacteriaceae [102]

Bacteria; B.
fusiformis; Bacillaceae Isolated from soil. [103]

2-phenylethanol
Fungi; A. gossypiii;
Saccharomycetaceae

Flavor, perfume
(rose flavor)
Preservative

[104]

Fungi; K. marxianus;
Saccharomycetaceae [105]
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Table 1. Cont.

Classes of Natural Products Bioactive Compound

Microorganism
Classification

(Kingdom; Species;
Family)

Habitat Biological Activity CosIng Inventory3 References

Terpenes Limonene Bacteria; E. coli;
Enterobacteriaceae

Flavor, perfume
(sweet citrus odor)

Deodorant, perfuming
& solvent [106]

Glycolipids
Rhamnolipid

Bacteria; P.
aeruginosa;

Pseudomonadaceae

Moisturizing and
surfactant

Emollient, emulsifying
& stabilizing agent [107]

2,3,4,2’-trehalose
tetraester

Bacteria; R.
erythropolis;
Nocardiaceae

Isolated from soil. Surfactant [108]

1 Compounds were grouped into four categories as described in the main text. Additional activities or common uses are reported. 2 Independent studies evaluating the specific compound.
3 EU Cosmetic ingredient database [14].
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2.2. Carotenoids

Carotenoids are the most common natural pigments; they are well known for their powerful
antioxidant activity, as they are very efficient physical quenchers of singlet oxygen and scavengers of
other ROS. Carotenoids are also well known for their capacity to act as quenchers of photosensitization
products, giving them photo-protective properties [109].

In the last decade, the interest in microbial fermentation for the production of natural carotenoids
has increased. Carotenoid production by bacteria, asporogenous yeasts, filamentous fungi [110]
and microalgae [111] has been extensively reported, with cyanobacteria to be the most prominent
source [112]. Accordingly, carotenogenic microbes Xanthophyllomyces dendrorhous, Blakeslea trispora,
and Haematococcus pluvialis have been widely used in large-scale processes. Furthermore, the
transformation of the non-carotenogenic microbes E. coli, S. cerevisiae, Candida utilis, and Zymomonas
mobilis, with carotenoid genes from selected microbes has been successfully applied for the production
of carotenoids [113]. In fact, E. coli in fed-batch fermentation produced 72.6 mg/g cdw (cell dry
weight) of β-carotene [1] and 1.44 g/L of lycopene [49], while astaxanthin production was enhanced
1.4-fold compared to the X. dendrorhous parental strain, reaching 1.25 mg/L (Table 1) [46]. Astaxanthin
(5), β-carotene (6) and lutein are the carotenoids with the highest added value (Figure 2) [114].
The oxycarotenoid lutein is mainly produced by microalgae of the genus Chlorella, Dunaliella, and
Haematococcus [114]. Its profound effect on the antioxidant defense system is attributed to its chemical
structure. In in vitro systems, it significantly scavenged the superoxide (IC50: 21 µg/mL), the hydroxyl
(IC50: 1.75 µg/mL), the nitric oxide (IC50: 3.8 µg/mL), and the DPPH (IC50: 35 µg/mL) radical and
inhibited lipid peroxidation (2.2 µg/mL). In in vivo systems, it has been proved to be an effective
scavenger of superoxide radical (IC50: 21 µg/mL) [51].

2.3. Exopolysaccharides (EPSs)

EPSs are high-molecular-weight carbohydrate polymers demonstrating strong scavenging
activities, metal chelating ability and lipid peroxidation inhibition. These compounds are among the
most exploited bioactive substances for their anti-aging capacity [115].
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EPSs are mainly biosynthesized by bacteria and fungi. The ability of a microorganism to produce
antioxidant EPSs was first introduced with the study of Paenibacillus polymyxa. This endophytic
bacterium, isolated from the root of Stemona japonica, produces different EPSs with strong scavenging
activity against the superoxide and the hydroxyl radical [116,117] (Table 1). When tested at a
concentration of 1 mg/mL, the scavenging effect of the crude EPS against the superoxide radical was
74.38%, while the activity of the purified EPS-1 and EPS-2 was higher than ascorbic acid. At the
same concentration, EPS, EPS-1, EPS-2 were also very effective against the hydroxyl radical [56].
EPS-1 and EPS-2 were composed of mannose, fructose and glucose in molar ratios of 2.6:29.8:1 and
4.2:36.6:1, respectively. Since this discovery, many endophytes were found to produce antioxidant
EPSs. A characteristic case is the purified rhamno-galactan fraction of Fusarium solani and Bacillus
cereus isolated from Alstonia scholaris and Artemisia annua L., respectively. This EPS fraction showed a
significant scavenging activity against the DPPH, (IC50:0.6 mg/mL), the superoxide (IC50: 2.6 mg/mL)
and the hydroxyl radical (IC50: 3.1 mg/mL) [54,55].

Optimization of cultivation parameters of P. polymyxa using sucrose, yeast extract and CaCl2
showed an EPSs yield of 35.26 g/L (18.74%), which was 1.55-fold higher compared to the original
medium [57]. EPSs structures are in a great variety. EPSs isolated from the culture medium of the
endophytic fungus Aspergillus sp. were mainly composed of mannose and galactose (89.4:10.6) [59],
while EPSs isolated from the endophytic bacteria Burkholderia tropica were mainly composed of
rhamnose, glucose and glucuronic acid (2:2:1) [60]. Antioxidant EPSs have also been isolated from the
terrestrial microalgae Rhodella reticulata. Its extracellular polysaccharides showed strong antioxidant
activity, significantly higher than α-tocopherol. The radical scavenging ability against the superoxide
radical of the deproteinized extracellular polysaccharide reached 328.48 U/L, compared to 174.03 U/L
of α-tocopherol [118].

2.4. Enzymes

Enzymes are produced by microorganisms as a primary cell protective detoxification mechanism
(e.g., from ROS) as they catalyze the removal of ROS through the formation of less reactive molecules
such as oxygen or water. Superoxide dismutases, catalases, and peroxidases are involved in
these mechanisms.

Superoxide dismutases (SODs) catalyze the neutralization of two superoxide radicals by the
addition of two hydrogen ions to form hydrogen peroxide and oxygen. Belonging to the family of
metalloisozymes, SODs are differentiated in their metal cofactor: Ni-SOD, CuZn-SOD, Fe-SOD and
Mn-SOD; the last three are commonly found in microalgae. SOD biosynthesis is directly correlated with
level of cellular ROS. In fact, a study carried out on microalgae Scenedesmus vacuolatus and Pinnularia
viridis showed that the concentration and SOD activity is correlated with ROS related stress [119,120].
Similarly, the elimination of ROS in most Streptococcus and Lactococcus bacterial spp., conforms to
this general antioxidant defense system since both genera express MnSOD. However, these bacteria
possess only one type of SOD, namely the Mn-containing enzyme (MnSOD), rendering this enzyme an
essential part of the antioxidant cell machinery [121].

Catalases contain porphyrin heme active sites that degrade hydrogen peroxide into water and
oxygen [119]. One molecule of catalase is able to convert six billion molecules of hydrogen peroxide
each minute [122]. In the yeast S. cerevisiae, the overexpression of catalase reduces lactic acid-induced
oxidative stress [123]. Furthermore, a study involving the single-cell green alga Chlamydomonas
reinhardtii showed that hydrogen peroxide from the media was faster degraded when the catalase
inhibitor aminotriazole was absent; thus, catalase is one of the major enzymes involved in ROS
detoxification [124].

Finally, peroxidases catalyze the oxidation of several substrates by hydrogen peroxide. Ascorbate,
cytochrome C, pyrogallol, and glutathione are examples of these substrates. As for the other antioxidant
enzymes, the induction of peroxidases activity upon ROS accumulation seem to be concentration- and
time-dependent [119].
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3. Photo–Protective Agents

Ultraviolet A (UVA, 315–400 nm) and ultraviolet B (UVB, 280–315 nm) play a major role in skin cell
damage. UVA is mainly involved in the creation of ROS while UVB heavily affects DNA and proteins
integrity. To protect themselves against UV radiation, terrestrial microorganisms have developed
several strategies, one of which is the accumulation of photo-protective compounds [2].

Despite the evidence that several compounds from microorganisms have photo-protective
activities, there has been surprisingly little work carried out involving in vivo skin models. This might
be partially explained by the fact that the EU has banned the in vivo testing of cosmetics since 2013.
Thus, potential skin protecting effects have been established based on existing in vitro studies [125].

3.1. Melanins

Bacteria, fungi and protists are able to produce a diverse group of pigments. Melanized fungi are
mostly black yeasts, and melanized bacteria belong mainly to Actinobacteria [126].

The basic role of melanins in microorganisms are still a matter of controversy and speculation.
The fact that these compounds are interceptors of UV photons leads to a lower vulnerability of
micro-ecosystems to UV radiation. Melanins are also involved in energy production due to their ability
to accept electrons. Finally, in some pathogenic microorganisms, these compounds act like virulence
factors, lowering the defense mechanisms of the host [127].

The term melanin encompasses three polymeric substances; eumelanins, pheomelanins and
allomelanins. Bacteria contain mostly eumelanins and allomelanins, whereas fungi mostly express
allomelanins [126]. Fungal melanins have been isolated from Cryptococcus neoformans, Candida albicans,
Aspergillus sp., Sporothrix schenckii, Fonsecaea pedrosoi, Paracoccidioides brasiliensis, Coccidioides sp., and
Histoplasma capsulatum [128]. Melanins are also widespread in a variety of bacteria, like E. coli, B. cereus,
Klebsiella sp., Pseudomonas aeruginosa, Pseudomonas stutzeri, Bacillus thuringiensis, Vibrio cholera and
Streptomyces kathirae [129]; the last has been selected as an ideal microorganism for melanin production.
Under optimal conditions, the yield was maximized at 13.7 g/L. In that study S. kathirae was identified
as an excellent candidate for industrial-scale production of melanins [67].

3.2. Indole and Pyrrole Derivatives

Scytonemin (7) is a yellow to brown alkaloid pigment composed of an indolic and a phenolic
subunit. Until now, only four different derivatives have been reported: dimethoxyscytonemin (8),
scytonin (9), scytonemin-3a-imine (10) and tetramethoxyscytonemin (11) (Figure 3). Known for their
strong UV-absorbing function and free radical scavenging capacity, scytonemin and its derivatives
are excellent candidates for skin protecting purposes. Scytonemin prevents up to 90% of solar UV
radiations from entering the cell. The strong radical scavenging activity of this compound (IC50: 36
µM against the ABTS radical), combined with its localization in the bacterial cell wall explains its
protective role and the inability of UV-A radiation to cross the cellular envelope [130,131].

Almost exclusively synthesized by cyanobacteria from extreme environments, scytonemin (7)
has been described in more than 300 cyanobacterial species, many of them terrestrial; e.g., Nostoc
commune, Nostoc microscopicum, Phormidium sp. and Pleurocapsa sp. Scytonemin is also found in
Scytonema hoffmani together with dimethoxyscytonemin (8), tetramethoxyscytonemin (11) and scytonin
(9) [132]. To induce scytonemin (7) biosynthesis, modulation of temperature or photo-oxidative stress
has to be combined with osmotic stress and periodic desiccation [126]. For industrial applications, the
production of the UV-protecting scytonemin has been optimized in N. commune to yield 758 µg/g [73]
(Table 1).

Prodigiosin (12) is characterized by a common pyrrolyl dipyrromethene skeleton containing a
4-methoxy-2,2′-bipyrrole ring system (Figure 3). This red pigment is mainly produced by strains
belonging to the bacterial genus Serratia [75]. Well known for its antimalarial, antibacterial, and
anticancer activity, prodigiosin has also demonstrated UV protective activity. When used as an additive
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in commercial sunscreens (4% w/w prodigiosin), the sunscreen protection factors (SPF) increased by
20–65%. In the same study, addition of 4% (w/w) of prodigiosin in photo-protective leaf extracts of
Aloe vera and Cucumis sativus fruits showed an increasing of SPFs up to 3.5 orders of magnitude [133].
Bacteria Pseudomonas magneslorubra, Vibrio psychroerythrous, Vibrio gazogenes, Alteromonas rubra, and
Rugamonas rubra, along with actinomycetes, such as Streptomyces rubrireticuli and S. longisporus ruber,
have been studied for their capacity to produce prodigiosin or its derivatives [133]. Improvement in
the production of prodigiosin (277 mg/L) was reported by the addition of a ram horn peptone (RHP,
0.4% w/v) in the culture media of S. marcescens MO-1 [75] (Table 1).Molecules 2019, 23, x FOR PEER REVIEW  16 of 30 
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Violacein (13) is a purple pigment that presents an unusual structure consisting of a 2-pyrollidone
and an oxindole ring system connected by a double bond, and a 5-hydroxyindole unit (Figure 3) [134].
Known to possess antibacterial effects against Staphylococcus aureus and other Gram-positive pathogens,
violacein can also act as a photo-protective agent against UV irradiation. This compound absorbs
at visible wavelengths and presents a broad absorption band extended out to 700 nm [69]. When
used as an additive in commercial sunscreens (4% w/w violacein), the SPFs increased by 10–22%.
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Furthermore, the addition at 4% (w/w) of violacein in photo-protective extracts of A. vera leaves and
C. sativus fruits, showed an increasing of SPFs up to 3.5 orders of magnitude [133]. Violacein is mainly
produced by the bacterial strains Janthinobacterium lividum, Pseudoalteromonas sp. and Chromobacterium
violaceum (Table 1). It is worth mentioning that the medium pH, culture volume, concentration of
potassium nitrate, and L-tryptophan, affect significantly violacein production. In fact, the cultivation
of C. violaceum, isolated from various plant waste sources, in a medium supplemented with sugar
bagasse and L-tryptophan 10% (v/v), increased the final yield production of violacein to 0.82 g/L [70].
Similarly, optimized cultivation parameters of Duganella sp. increased by 4.8 folds the final yield of
crude violacein (1.62 g/L) [71].

3.3. Mycosporines and Mycosporine-Like Amino Acids (MAAs)

Originally detected in the mycelia of terrestrial basidiomycetes, mycosporines present a central
cyclohexenone or cyclohexenimine ring and a wide variety of substitutions. Mycosporine-like amino
acids are imine derivate of mycosporines. The ring absorbs UV light and dissipates energy as heat,
without generating ROS. Cyanobacteria and microalgae can synthesize mycosporines and MAAs,
while fungi produce only mycosporines [126] (Table 1).

Mainly known for their photo-protective activity, MAAs are also efficient antioxidants and
scavengers of ROS. These activities have led to several patents in the research of natural UV filters [135].

As in other cases, the production of microbial MAAs can be optimized following modification of
culturing parameters. Khosravi et al. showed that the combination of UV irradiation and elevated
salinity significantly increase the bioaccumulation of MAAs [136]. Indeed, the exposure of terrestrial
fungi to UV radiation, desiccation and nutrient scarcity significantly increased the production of the
UV-absorbing compound mycosporine-glutaminol-glucoside (14) (Figure 3) [137].

4. Skin-Whitening Agents

Skin-whitening agents are commercially available for cosmetic and clinical purposes, to obtain
lighter skin complexion and treat hyperpigmentary disorders [138]. Uneven pigmentation of the skin
may lead to blotches, patches of brown to grey discoloration or freckling which may require cosmetic
interventions [13]. Whitening agents act at various levels of melanin production of the skin, either by
inhibiting the activity of tyrosinase, the key enzyme in melanogenesis in plants and animals, or by
inhibiting the transport of melanosomes from melanocytes to surrounding keratinocytes [139–141].

4.1. Pyrones

Kojic acid (15) is an inexpensive water-soluble fungal secondary metabolite (Figure 4). It has two
OH- groups, the primary at C-7 and the secondary at C-5, which is essential to the radical scavenging
and tyrosinase interference activity (IC50: 14 µM) [142,143]. The skin depigmenting activity of kojic
acid results from the inhibition of the creolase and catecholase activities of tyrosinase. It prevents the
conversion of the O-quinone to DL-DOPA and dopamine to its corresponding melanin. Decreased
melanin content is demonstrated in melanocytes after their treatment with kojic acid [143]. This
compound has been extensively used for skin depigmentation (and consequently as a cosmetic agent)
with an excellent whitening effect, due to its ability to inhibit tyrosinase activity.

Mainly produced by Penicillium sp. and Acetobacter sp., kojic acid has also been isolated from other
terrestrial microorganisms, such as Aspergillus flavus, an endophytic fungus of Vigna unguiculata [81].
To produce this compound, fermentation of Aspergillus sp., is widely used. Other strains are also
commonly employed, such as A. oryzae (0.26 g kojic acid/g glucose), A. parasiticus (0.089 g/g glucose)
and A. candidus (0.3 g/g sucrose). A high yield of 0.453 g/g glucose was obtained with the culture of
A. flavus [82,83,144] (Table 1).
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4.2. Phenolic Lactones

Ellagic acid (16) is an antioxidant polyphenol that has generated commercial interest due to
recommendations for topical use as a skin-whitening agent (Figure 4). This compound inhibits
melanogenesis via the chemical reduction of O-quinones (O-dopaquinone) and semiquinones [145].

Ellagic acid can be produced from plant tannins via fermentation using different A. niger
strains [146,147]. A yield of 6.3 and 4.6 mg of ellagic acid/g of dried pomegranate husk were obtained
by converting of pomegranate ellagitannins into ellagic acid in a solid state fermentation [85] (Table 1).

4.3. Carboxylic Acids

Azelaic acid (17) is a saturated dicarboxylic acid which is produced by Malassezia furfur (also
known as Pityrosporum ovale), a yeast that lives on normal skin [91] (Figure 4) (Table 1). It is
effective in treating several skin conditions, such as acne, inflammation and hyperpigmentation. As a
competitive inhibitor of tyrosinase in vitro, it has been used to treat melasma, Lentigo maligna and
post-inflammatory hyperpigmentation. The minimum concentration at which azelaic acid demonstrates
its anti-enzymatic activity is 10−3 mol/L and it is approximately equal to the 20% content of azelaic acid
in a cream applied topically [148,149]. Furthermore, the efficacy of 20% azelaic acid cream is superior
than a 2% hydroquinone (HQ) cream while severe side effects were not reported [90,150]. Clinical
trials demonstrated that this cream was also effective against melasma when used in parallel with a
broad-spectrum sunscreen. Thus, the ability of azelaic acid to reduce the amount of melanin in a specific
region of skin tissue as well as the lack of side effects makes it widely used in cosmetic formulations.

Lactic acid is also used as skin whitener (Table 1). At a dose of 500 µg/mL it inhibits melanin
formation in a dose-dependent manner without affecting cell growth [151]. Recent studies have
shown that species of Rhizopus could offer a valuable alternative source for lactic acid production [152].
The filamentous fungus R. oryzae converts both glucose and xylose under aerobic conditions into
l(+)-lactic acid with yields varying between 0.55 and 0.8 g/g [87].

Poly γ-glutamic acid (γ-PGA) is a natural polymer produced by different species of Bacillus (yields
vary from 10 to 50 g/L depending on the species) [88] (Table 1). Studies related to the inhibitory effect
against mushroom tyrosinase and tyrosinase in B16 melanoma cells reported a dose dependent activity.
γ-PGAs, and especially the low molecular weight polymers, has attracted much attention owing to its
great potential in cosmetics as skin-whitening agents [153].

4.4. Enzymes and Derived Products

The possibility of using melanolytic enzymes in skin lightening was examined by screening
the potential melanolytic activity of wild fungal isolates. Among them, Sporotrichum pruinosum was
the most promising from the very limited number of fungi that decolorize synthetic melanin [154].
As described in the US 20030077236 Patent, compositions containing melanin-degrading enzymes
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derived from Aspergillus fumigatus or S. cerevisiae were twice as effective as kojic acid in producing a
whitening effect on the skin.

A large variety of compounds with potential skin protecting applications can be obtained through
biotechnological processes by using enzymes isolated from terrestrial microorganisms. This is the
case of retinol, the most active form of Vitamin A, a skin-whitening agent that has been synthesized
by the esterification of palmitic acid using a modified lipase B from Candida antarctica (CALB) and a
modified lipase from Pseudomonas fluorescens, in order to maximize its solubility in water and minimize
skin irritation. Other Vitamin A modifications include the esterification with oleic, lactic, succinic or
methylsuccinic, catalyzed by CALB or by Rhizomucor miehei lipase [155].

A better dermal absorption and a 10% higher skin-whitening activity, as compared to the
well-known tyrosinase inhibitor arbutin, was demonstrated by its derivative arbutin undecylenic
acid ester which has been enzymatically synthesized using an alkaline protease from Bacillus
subtilis [94,155]. In addition, α-arbutin glycosides were synthesized by the trans glycosylation
reaction of cyclomaltodextrin glucanotransferase from Bacillus macerans. Synthesized glucosides
exhibited higher inhibition on human tyrosinase than α-arbutin [156].

5. Additives and Other Active Ingredients

Additive products provide long-term physical stability, inhibit germination and influence the
sensory perception. Recently, the cosmetic industry has been strongly criticized for the addition of
chemicals such as formaldehyde, dioxane, parabens, and phthalates. Controversies regarding the
human health impact of those synthetic molecules and their analogues has encouraged the research of
new additives from natural sources.

5.1. Antimicrobial Agents

One of the most widely used antimicrobial agents against bacteria, viruses and fungi contamination
in cosmetics is chitosan (18) (Figure 5). This polysaccharide is composed mostly of glucosamine and
a variable number of N-acetylglucosamine residues. Although chitosan is present in large amounts
in the exoskeleton of crustaceans, insects, crabs, and shrimps, its production is limited due to factors
such as seasonality, production sustainability and processing cost. To face these difficulties, chitosan
can be produced by an alternative and more effective sources of microbial origin since 22–44% of
the cell wall of fungi is composed of chitosan [2]. An optimal production was found in Rhizopus
oryzae (0.5 g/L), R. japonicus (0.6 g/L) and Mucor indicus (0.75 g/L) (Table 1) [63], while A. niger, isolated
from the lichen Roccella montagnei, showed a higher yield of 1.3 g/L, which was further increased to
1.93 g/L when glucose was added [65]. In addition to the antimicrobial activity, chitosan is known for
its emulsifying and delivering properties. This compound has a better water-binding capacity than
methyl-cellulose, which is commonly used in cosmetics [2]. Consequently, chitosan and its derivatives,
like the copolymer chitin-glucan, can present potential candidates for cosmetic and cosmeceutical
formulations. Other examples with anti-aging activity that also combine antimicrobial activity are
presented in Table 1.
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5.2. Moisturizers and Biosurfactants

Concerning moisturizing care, ectoine (19) is commonly used for its strong hydration properties
(Figure 5). This cyclic amino acid is produced by several bacterial species in response to osmotic
stress. Corynebacterium glutamicum is widely studied as a microbial cell factory for the biotechnological
production of ectoine. The optimization of some cultivation parameters led to the production of
6.7 g/L/day of ectoine [98] (Table 1).

Glycolipids represent an important class of biosurfactants. Among them, sophorolipids and
trehalolipids are efficient biosurfactants. Sophorolipids are mainly produced by yeasts belonging to
the genus Candida (formerly called Torulopsis), like C. bombicola, C. petrophilum and C. apicola, while
trehalolipids by Rhodococcus sp., Mycobacterium sp., Nocardia sp., and Corynebacterium sp. Trehalolipids
represent structures with a variation in the number of carbon atoms and the degree of unsaturation.

Rhamnolipids are commonly used in cosmetics as moisturizers and biosurfactants [108].
Rhamnolipids, primarily crystalline acids, are composed of a β-hydroxy fatty acid attached by
the carboxyl end to a rhamnose sugar molecule and are classified as mono and di-rhamnolipids [157].
Compared to chemical surfactants, biosurfactants have several advantages, because of their better
compatibility, lower toxicity and higher biodegradability [158]. Rhamnolipids are mainly produced by
Pseudomonas aeruginosa as well as by other Pseudomonas sp. They are also used in the pharmaceutical
industry for their antiviral and antimicrobial properties [159,160] and for others targets related to
skin regeneration such as wound healing with reduced fibrosis, cure of burn shock and treatment of
wrinkles [161].

5.3. Pigments

Microorganisms produce several compounds that can be used as natural pigments. A lot of
synthetic dyes have been commercialized, but few of them are eligible in cosmetics. Natural pigments
are more stable and less allergenic compared to synthetics [162]. Pigments commonly biosynthesized
by fungi include aromatic polyketides such as quinones, anthraquinones, naphthoquinones, melanins,
flavins and ankaflavins. Purpurogenone (20) and mitorubrin (21) are two characteristic examples,
produced by the fungus Penicillium purpurogenum [95] (Figure 5) (Table 1). Recently, the potential use
of terrestrial fungi as a source of natural pigments has been considerably investigated [163–165].
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Cyanobacteria are an interesting source of pigments, that have the ability to produce
phycobiliproteins, which are brilliantly colored fluorescent proteins. Among phycobiliproteins,
phycocyanins are already used in diagnostic assays such as flow cytometry, fluorescence activated cell
sorting, histochemistry, etc. Their intense blue color allows their use in cosmetics as natural dyes [166].
Phycocyanins are mainly produced by the photoautotrophic cyanobacterium Arthrospira platensis
(3.2 g/L) [167]. However, the unicellular rhodophyte Galdieria sulphuraria showed excellent results;
this red alga, growing usually in acidic springs, produced c-phycocyanin with a yield of 2.9 g/L [168]
(Table 1).

5.4. Flavoring and Fragrances

Many flavoring and fragrance compounds on the market are still produced through plant and
animal sources. However, a rapid and sustainable alternative is given as such high value compounds
can be also produced by microorganisms [169]. Numerous yeasts and terrestrial fungal and bacterial
strains are able to synthesize potentially valuable fragrance compounds, including alcohols, aldehydes,
esters, fatty acids, ketones, lactones, aromatic compounds and pyrazines [170]. In support, several
articles and reviews have been published and offer sufficient information regarding the use of microbial
cultures or enzyme preparations for the production of flavor compounds valuable for the cosmetic
industry [171–174]. Vanillin (22) is a very good example of a natural fragrance where the increasing
demand and value have led to the development of alternative strategies for its production [175] (Figure 5).
Strains including Pseudomonas putida, Aspergillus niger, Corynebacterium glutamicum, Corynebacterium
sp., Arthrobacter globiformis and Serratia marcescens were successfully introduced for its production by
converting eugenol or isoeugenol to vanillin [170].

Benzaldehyde (23) is among the most commonly used flavoring agent, with a strong cherry and
almond-like aroma. An E. coli strain was successfully engineered to produce this aromatic [100,176],
while the fungus Ashbya gossypii has been tested for its ability to synthetize the rose flavour
2-phenylethanol (24) [104]. Among terpenes, limonene (25) is one of the most widely used terpene
due to its unique citrus scent [169]. Optimization of the expression pathway in E. coli led to a yield of
435 mg/L with 1% of glucose as carbon source [177]. When the impact of a different carbon source
have been explored, the fermentation using glycerol led to the titers of 2.7 g/L [106] (Figure 5) (Table 1).

6. Other Targets of Skin Protecting Interest

Elastase and collagenase inhibitors of microbial origin are promising cosmeceutical agents that
worth to be further explored. Elastase, a member of the chymotrypsin family of serine proteases, is
responsible primarily for the breakdown of elastin, which is an important protein found within the
extracellular matrix of the skin, whose damage has a significant impact in skin ageing. Nostopeptins A
and B isolated from the freshwater cyanobacterium Nostoc minutum are the only reported inhibitors of
elastase (IC50: 1.3 and 11.0 µg/mL) [178]. On the other hand, collagen, the major constituent of the
skin (80% of skin dry weight), is responsible for the tensile strength. The metalloproteinases named
collagenases are capable of cleaving collagen and elastin. To the best of our knowledge, terrestrial
microorganisms, apart from the aforementioned example of nostopeptins A and B, have not been
investigated thoroughly yet for their ability to produce metabolites with elastase and collagenase
inhibitory effects although that large screening programs on terrestrial microorganism and endophytes
have been recently presented [179,180].

7. Targets for Future Developments

Beyond the above applications of microbial-derived natural products, it is worth mentioning
some new cosmeceutical targets with great potential for future development.

It is well known that skin retains its young-looking appearance for many years due to numerous
cell genome and proteome protective mechanisms; these are mostly driven by protein machines that
execute both DNA and proteome damage responses. Proteome quality control is carried out through
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the curating activity of the proteostasis network (PN) and is critical for cellular functionality [7,10,11].
Key components of the PN are the two main degradation machineries, namely the autophagy-lysosome
and the ubiquitin-proteasome pathways; several short-lived transcription factors are also considered
to be part of the PN as they mobilize genomic cytoprotective responses [11]. These, among many
others, include Nrf2, which responds to oxidative, electrophilic, and/or proteotoxic stress [11,181,182].
Deregulation of the PN functionality is associated with ageing and it is considered a major risk
factor for a wide spectrum of age-related protein conformational diseases such as immunological
and metabolic disorders, cardiovascular and neurodegenerative diseases and cancer [11,183]. On the
other hand, several studies have shown that the activation of proteostatic modules by genetic, dietary
and/or pharmacological interventions increases organismal health- and/or life-span and delays cellular
senescence [7,182].

Concomitantly, natural compounds that activate the PN have also been reported to possess
anti-aging properties at either cell-based or in vivo models [7,11,182]; likewise, natural products
significantly delay the appearance of the aged skin hallmarks. To the best of our knowledge, only few
molecules of microbial origin were reported to activate proteostatic modules. Betulinic acid was recently
isolated from the endophytic fungi Phomopsis sp. and its preferentially activating the chymotrypsin-like
proteasomal activity with no or minimal effects on trypsin-like and caspase-like activities [184,185].
The second case of a microbial natural product, that is well known for its anti-aging proprieties is
rapamycin. This molecule isolated from Streptomyces hygroscopicus, delay cellular senescence through
(among others) the inhibition of the TOR pathway and the downstream induced alterations to both
autophagy and the rate of protein synthesis [7].

8. Conclusions

Naturally derived molecules are traditionally used in skin protection products (Table 1, CosIng
inventory). Consequently, natural compounds isolated and/or produced using biotechnological tools
from microorganisms are already used for dermatologic purposes in topical cosmetic formulations.
These products can aesthetically improve the skin’s appearance but can also prevent and/or treat
age-related skin disorders. Beyond the “established” molecules, there are several small molecules
and/or enzymes derived from microorganisms that have great potential to be used in cosmetics or
cosmeceutical formulations (Table 1).

Interestingly, several biomolecules that are already included in the European Inventory of accepted
cosmetic ingredients (CosIng inventory) [14] are registered for one of their biological activities, but are
used differently in cosmetic applications. A characteristic example is kojic acid, which is registered as
“antioxidant”, while the main application in cosmetics is its strong anti-tyrosinase activity, and thus its
application as a skin whitening agent (Table 1).

Considering the immense microbial biodiversity and microbial adaptation to virtually any
environment on earth, it is to be expected that microbes represent an extraordinary inventory of highly
diverse structural scaffolds of biomolecules with potential skin protective activities. Although research
on marine environment has started match later that the terrestrial environment, we have several cases
where cosmetic applications and patents are in favor of marine-derived microorganisms. As mentioned
in the case of MAAs known for their photo-protective activity, they are included in several patents
for natural UV filters. However most of them were developed with microorganisms from marine
environments (72.2%), while patents developed on terrestrial and fresh water microorganisms have
not exceeded 21.4% and 2.4%, respectively [135]. This study reflects that to date, in some cases the
terrestrial environment has been neglected.

Overall, taking into consideration that most of the world’s microbial terrestrial biodiversity
remains largely uninvestigated and that microorganisms offer a sustainable, relatively low-cost
and fast production process, we remain confident that in the near future, systematic research will
reveal additional microorganisms that can be used as cell factories for producing high added value
biomolecules with applications in the cosmetic industry as active ingredients.
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Abbreviations

ABTS 2,2′-Azino-bis-3-ethylbenzthiazolin-6-sulphonic acid
CALB Candida antarctica lipase B
CAGR: compound annual growth rate
CDW cell dry weight
DPPH 2,2-Diphenyl-1-picrylhydrazyl
EPSs exopolysaccharides
HQ hydroquinone
LTA lipoteichoic acid
MAAs mycosporine-like amino acids
MIC minimum inhibitory concentration
γ-PGA poly- γ-glutamic acid
RNS reactive nitrogen species
ROS reactive oxygen species
SPFs sunscreen protection factors
SSR solar-simulated radiation
SOD superoxide dismutases
UVA ultraviolet A
UVB ultraviolet B
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