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Recurrent hypoglycemia (RH) is a common and debilitating side effect of therapy in
patients with both type 1 and, increasingly, type 2 diabetes. Previous studies in rats have
shown marked effects of RH on subsequent hippocampal behavioral, metabolic, and
synaptic processes. In addition to impaired memory, patients experiencing RH report
alterations in cognitive processes that include mood and anxiety, suggesting that RH
may also affect amygdala function. We tested the impact of RH on amygdala function
using an elevated plus-maze test of anxiety together with in vivo amygdala microdialysis
for norepinephrine (NEp), a widely used marker of basolateral amygdala cognitive pro-
cesses. In contrast to findings in the hippocampus and prefrontal cortex, neither RH nor
acute hypoglycemia alone significantly affected plus-maze performance or NEp release.
However, animals tested when hypoglycemic who had previously experienced RH had
elevated amygdala NEp during plus-maze testing, accompanied by increased anxiety
(i.e., less time spent in the open arms of the plus-maze). The results show that RH has
widespread effects on subsequent brain function, which vary by neural system.
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INTRODUCTION

The opening paragraph of a recent commentary (1) describes the significance of recurrent hypo-
glycemia (RH) vividly: “[RH] is the limiting factor in the glycemicmanagement of diabetes. It causes
recurrentmorbidity inmost people with type 1 diabetes andmanywith advanced type 2 diabetes and
is sometimes fatal. It impairs defenses against subsequent hypoglycemia and, thus, causes a vicious
cycle of recurrent hypoglycemia. The barrier of hypoglycemia generally precludes maintenance of
euglycemia over a lifetime of diabetes.”

Hypoglycemia is a common side effect of insulin therapy in both type 1 and type 2 diabetes
mellitus (T1 and T2DM). RH, and specifically the impact of RH on the brain (both in actuality
and in patients’ worry about such impact), is the biggest obstacle to optimal, intensive insulin
therapy aimed at tightly preventing hyperglycemia and restoring normal blood glucose (2–4). The
majority of work studying RH and the brain has been in the context of RH-induced hypoglycemia-
associated autonomic failure (HAAF): unawareness of and inability to respond to hypoglycemia that
can in extremes lead to coma and death, focusing on detection of glucose levels in the ventromedial
hypothalamus (VMH) (5–8). However, RH is also clinically associated with marked cognitive
and behavioral impairments such as mood swings, impaired judgment and mental flexibility,
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memory loss, and debilitating anxiety (9–17), many of which are
likely to be associated with alterations in amygdala function. Cog-
nitive impairment is especially prevalent during subsequent hypo-
glycemia, which can have profound consequences: for instance,
car accidents are a leading cause of death among diabetic patients,
linked to impaired judgment during hypoglycemia (10–13, 18).

Despite this, the neural and cognitive impact of RH has been
relatively little studied outside the VMH. Our recent review (19)
concluded that there is strong evidence that RH can alter cognitive
and neural function, but studies of RH in human beings have often
had difficulty in controlling for confounding disease states and/or
variable prior history of hypoglycemia (6, 15, 17, 20, 21). In three
previous reports that examined RH in rats, we have characterized
the impact of RH on subsequent hippocampal function including
spatial memory (22, 23) and on mental flexibility, mediated by
the prefrontal cortex (24). The rat model of RH used in those
studies accurately simulates the effects of RH andHAAF in human
beings (22–28), and we have continued to use this model in the
present work. Here, we examined the impact of RH on amygdala
function. The amygdala plays a key role in anxiety and mood,
which are reported to be dysregulated after RH in human beings,
and previous studies have shown that similarly to the hippocam-
pus, cognitive processing in the amygdala is limited by glucose
metabolism (29, 30), suggesting that RH may alter subsequent
amygdala function.

A key finding from the studies of RH and hippocampal
function is that the impact of RH varies with acute glycemic
state: although hippocampal function is preserved and perhaps
enhanced when tested at euglycemia, marked impairment is seen
during a subsequent hypoglycemic episode (22, 23), matching
symptoms seen in humans. In contrast, mental flexibility and PFC
glucose metabolism were impaired after RH even when measured
at euglycemia, suggesting that the impact of RHmay vary by brain
region. That hypothesis is supported by the findings reported here:
we show using an elevated plus-maze task that after RH, rats show
no change in anxiety or amygdala norepinephrine (NEp) release
when measured at euglycemia, but are significantly more anxious
during subsequent hypoglycemia, accompanied by elevated amyg-
dala NEp release. NEp release in the basolateral amygdala (BLA)
has been widely shown to be a marker for amygdala cognitive
modulation (31–33).

MATERIALS AND METHODS

Experimental Timeline
All procedures were approved by the Institutional Animal Care
and Use Committee at the University at Albany. 36 male Sprague-
Dawley rats (Charles River, Wilmington, MA, USA) were pair
housed in enriched conditions (toys, plastic tubing, paper cups,
etc.) From 11weeks of age, rats are handled daily for a minimum
of 10min; this reduces stress hormone release at the time of testing
to baseline levels (22). At 13–14weeks, animals underwent stereo-
tactic implantation of a microdialysis guide cannula (CMA12,
CMA/Microdialysis) into the left BLA, then 1week of single-
housed recovery with close monitoring and continued handling.
At 14–15weeks, animals were treated with either i.p. insulin or
i.p. saline once daily for 3 days, then tested on the fourth day,
humanely killed, and samples taken for analysis. At the start of

treatment, animals were randomly assigned to either control or
RH conditions; on the day of testing, animals were randomly
assigned to either hypoglycemic or euglycemic conditions. This
created four groups with between 8 and 10 animals in each group
in a 2× 2 factorial design.

Surgical Procedures
Rats were anesthetized with 5% isoflurane. Standard sterile stereo-
taxic surgical procedures were used as described previously (34–
36) to implant the microdialysis guide cannula, secured in place
with acrylic cement and two screws, and a dummy stylet was
inserted. Rats recovered in a heated chamber and returned to their
home cages once they had regained consciousness and full motor
control. Animal recovery was monitored for 3 days. Rimadyl once
daily was used for post-surgical analgesia. Correct cannula place-
ment was confirmed visually in all animals at the time of tissue
extraction by locating the tract path created by the cannula which
terminated in the BLA: all animals had correctly placed cannulae.

Microdialysis
As published (22, 30, 37–40): a fresh probe was inserted, and
animals were acclimated for 2 h prior to testing. The dialysis
membrane was 1mm. Rats moved freely, avoiding any confound
from restraint stress. Probes were perfused with an artificial
extracellular fluid [aECF; composition in millimolar: 153.5 Na,
4.3 K, 0.41 Mg, 0.71 Ca, 139.4 Cl, 1.25 glucose, buffered at pH 7.4
(40)] at 1.5 μL/min. Microdialysis samples were frozen for later
NEp analysis.

Hypoglycemia
Hypoglycemia was induced with 10U/kg insulin (Humulin, Eli
Lilly) given i.p. to animals made hypoglycemic for the first time,
or either 8 or 6U/kg (because of reduced counter-regulation) to
RH animals (22, 23, 41); control animals receive volume-matched
sterile saline.

RH Model
The model used here (3 h of moderate hypoglycemia on each of
three consecutive days, followed by testing on the fourth day)
has been validated as accurately recreating adaptation seen in
human patients with RH. Animals received i.p. insulin (Humulin,
Eli Lilly) at 10, 8, and 6U/kg over the 3 days, with reduction in
doses compensating for reduced counterregulation due to HAAF.
This reliably produced 2–3 h between 40 and 50mg/dL plasma
glucose; any animal not spontaneously recovering after 3 h was
returned to normoglycemia using i.p. glucose. Results from this
model closely track those obtained in a 16-month study using
once-weekly 3-h hypoglycemia (23), matching the experience of
human patients receiving insulin therapy (42–45). In our previous
studies, data from T1DM and non-diabetic animals did not differ
(22), supporting RH studies in non-diabetic animals to avoid
confound from disease-state variables; these data were consistent
not only for behavior but also for hippocampal metabolism (22)
and synaptic electrophysiology (23). During hypoglycemia, ani-
mals were randomly sampled via thigh prick to confirm target
hypoglycemia.
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Performance Variable Controls
In studies to date, RH in our model has not impaired or reduced
motor activity, visual acuity, or, e.g., motivation: for example, RH
animals make the same number of maze-arm choices (22, 23),
have the same latency to seek reward (24), and perceive both
visual and textural stimuli as well as or better than control animals
(24). We confirmed that RH had no measureable effects on motor
performance, motivation, or sensory acuity using small separate
cohorts of animals, treated identically to those reported here and
tested on a simple Y-maze alternation task.

Elevated Plus-Maze Testing
With microdialysis throughout, animals were placed into the
center of a four-arm plus-maze constructed from opaque black
plexiglas and allowed to explore freely for 10min, then returned
to home cages. Two, opposing, arms of the four-arm maze had no
walls; the other two arms had 20 cm-high walls. Animals spend
the majority of time in a closed arm with periodic forays to
explore the open arms and/or cross the maze center. Increased
time spent in the open arms is taken as a measure of decreased
anxiety. Microdialysis is performed in the BLA, where this task is
mediated (46–49).

Sample Analysis
Microdialysis samples were measured for NEp using HPLC on an
ESA Coulochem III.

Data Analysis
Data were analyzed in GraphPad Prism using a two-way ANOVA
design with RH (or control) and acute glycemic state as the two
factors. Where significant main effects were seen, post hoc group
comparisons using Tukey’s multiple comparisons test identified
specific inter-group differences.

RESULTS

Plus-Maze Performance
Both RH treatment and acute glycemic state had significant effects
on anxiety, as measured by time spent in the open arms during
plus-maze testing (both p< 0.001). As shown in Figure 1, post hoc
comparisons showed that animals in the RH-hypo group spent
significantly less time in the open arms than animals in all other
groups, indicating increased anxiety (all p< 0.001). No other
inter-group comparisons showed significant differences. Impor-
tantly, no effect of RH was seen on number of center-crossings,
supporting the conclusion from our performance control experi-
ments that this difference in open-arm time was not the result of
altered motor function or motivation in the RH-hypo group.

Amygdala Norepinephrine Release
Mean microdialysis sample NEp concentration during the plus-
maze testing is shown in Figure 2, reported as a percentage
of baseline NEp concentration (with baseline defined as the
mean of the three samples immediately prior to placement on
the plus-maze; absolute baseline NEp levels did not vary across
groups). Consistent with the behavioral data, significant effects

FIGURE 1 | Animals in the RH-hypo group spent significantly less time
in the open arms of the plus-maze, on average, than did animals in
other groups. * indicates significant difference vs all other groups, p<0.001.
This is interpreted as increased anxiety in the RH-hypo animals. N=8 for
control and hypo groups, and N= 10 for RH and RH-hypo groups.

FIGURE 2 | Animals in the RH-hypo group had significantly higher
levels of NEp in microdialysis samples from the basolateral amygdala
during elevated plus-maze testing, on average, than did animals in
other groups. * indicates significant difference vs all other groups, p<0.05.
This is interpreted as increased anxiogenic processing in the amygdala of
animals in the RH-hypo group. N= 8 for control and hypo groups, and
N= 10 for RH and RH-hypo groups.

of both treatment and glycemic state were seen (both p< 0.05) in
which post hoc comparisons revealed to be due to a significantly
increased NEp concentration in samples from RH-hypo animals
compared to those in all other groups (all p< 0.05, no other
significant inter-group differences).

DISCUSSION

Our data are both consistent with, and extend, previous studies
that have examined the impact of RH on subsequent cognitive
and neural function: when tested during a hypoglycemic episode,
animals with prior RH treatment showed both heightened anx-
iety and increased amygdala activity, assessed by NEp levels in
the BLA.
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Our previous work (22–24, 50) suggested that neural adapta-
tions seen following RH might be maladaptive during subsequent
hypoglycemia. This is consistent with the clinical experience of
patients, where RH is associated with, e.g., increased risk of death
while driving. Patients also report symptoms, including alterations
in mood and anxiety, that are suggestive of altered emotional pro-
cessing subsequent to RH: the present data support these reports
and suggest that amygdala responsiveness to an aversive stimulus
such as exposure on an elevated, open platform may be increased
when hypoglycemic after RH. Because amygdala cognitive pro-
cessing causes increased local glucose metabolism (29), meeting
themetabolic requirements of such increased amygdala activation
might further diminish the brain’s ability to function optimally at
times of reduced glucose availability.

On the other hand, it is possible to speculate (based on the small
amount of data presented here) that increased anxiety, fear, or
similar emotional arousal might be at least somewhat adaptive in
that it could serve as a signal for danger at times of hypoglycemia,
alerting the patient to an acute need for fuel.One commoneffect of
RH is diminished release of stress hormones during hypoglycemia
[known as HAAF; (5, 51, 52)]: increased amygdala responsiveness
caused by RH could, perhaps, be a beneficial adaptation that
would oppose and attenuate reduced awareness of hypoglycemia.
Stress hormones including epinephrine and glucocorticoids are
key modulators of cognitive function, and especially of improved
performance at times of moderate stress (31, 53–55), effects that
are transduced via the amygdala; it is hence possible that an
increase in amygdala responsiveness may be adaptive in acting
to positively modulate other brain regions [in particular, the
hippocampus; (55–57)] even when systemic hormone release is
attenuated. Importantly, though, one study that examined amyg-
dala metabolism in humans, during hypoglycemia, found that in
contrast to the present findings fluorodeoxyglucose uptake was
better maintained in the amygdala of aware vs unaware patients
(58); this is in contrast to our data that suggest increased amygdala
activity in the RH animals whichwould be expected to correspond
to hypoglycemia-unaware patients. Although there are significant
methodological differences as well as a species difference between
the studies, this finding does constrain the ability to generalize
from the small dataset presented here. It is also true that stress-
related hormones, particularly epinephrine, are released when

hypoglycemic but such release diminishes after RH: thus, the
enhanced anxiety in the RH-hypo group observed here is some-
what paradoxical and the amygdala’s response to stress hormones
under such conditions may repay further study.

The role of hypoglycemia-associated hormone release in alter-
ation of cognitive processes subsequent to RH merits further
attention. One of the best supported molecular causes of HAAF,
in the VMH, is hypoglycemia-associated GC release, and sev-
eral studies show that prevention of GC signaling in the VMH
during RH prevents HAAF (7, 59–61). Similar causality may be
involved in the cognitive impact of RH: glucocorticoid receptors
(GRs) are expressed at high levels in the hippocampus (62, 63),
and GCs have been extensively shown to mediate hippocam-
pal damage from metabolic stressors (such as hypoglycemia):
specifically, GCs exacerbate damage from inadequate glucose sup-
ply (64–66) and are linked to excitotoxic cell death following
severe hypoglycemia. Conversely, when fuel supply is adequate,
GCs enhance hippocampal memory and glutamate release (54,
55, 67): this pattern closely matches the impact of RH on hip-
pocampal function seen in our previous work (22, 23). We did
not measure GC levels either systemically or centrally during
these studies, but future work should consider including such
measurements.

Taken together with our previous studies, the findings here
indicate that RH affects multiple neural systems and brain struc-
tures, with the impact of RH varying by region and system. For
instance, during subsequent euglycemia, RH enhances hippocam-
pal memory (22, 23), impairs mental flexibility processes in the
prefrontal cortex (24), but does not affect performance in an
elevated plus-maze test of anxiety (present data). The ability of a
rodent model of RH to accurately mimic many of the cognitive
effects seen in human patients after RH suggests that this is an
appropriate system for further studies aimed at identifying the
molecular mechanisms transducing the cognitive, neural, and
metabolic impact of RH, with a goal of identifying appropriate
therapeutic approaches to prevention and intervention.
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