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Abstract

Boosting techniques from the field of statistical learning have grown to be a popular tool for

estimating and selecting predictor effects in various regression models and can roughly be

separated in two general approaches, namely gradient boosting and likelihood-based boost-

ing. An extensive framework has been proposed in order to fit generalized mixed models

based on boosting, however for the case of cluster-constant covariates likelihood-based

boosting approaches tend to mischoose variables in the selection step leading to wrong esti-

mates. We propose an improved boosting algorithm for linear mixed models, where the ran-

dom effects are properly weighted, disentangled from the fixed effects updating scheme

and corrected for correlations with cluster-constant covariates in order to improve quality of

estimates and in addition reduce the computational effort. The method outperforms current

state-of-the-art approaches from boosting and maximum likelihood inference which is

shown via simulations and various data examples.

1 Introduction

Linear mixed models [1] proved to be a very popular tool for analysing data with repeated

measurements, especially clustered longitudinal data from clinical surveys. Nevertheless, they

are applicable to much broader fields and various overviews can be found in [2–4]. Fitting

these models can be achieved with a variety of R packages available [5, 6] and classical methods

for inference like tests [7] or selection criteria [8, 9] have been developed.

In order to use mixed models for prediction analysis, various approaches to regularized

regression like lasso [10, 11] and boosting techniques [12] have been proposed. Lasso type

approaches can be found in [13] for linear and in [14] for generalized linear mixed models.

Boosting in general can be distinguished between gradient boosting [15, 16] and likelihood-

based boosting [17, 18]. Both boosting methods are capable of fitting mixed models and for

the latter an extensive framework has been proposed towards this matter in [19–21] and is

included in the R package GMMBoost [22] available on CRAN. Apart from improving predic-

tion analysis, component-wise boosting methods are due to an iterative and component-wise

fitting process suitable for high dimensional data and implicitly offer variable selection. Good
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insights into component-wise boosting can be found in [23] for gradient boosting and in [24]

for gradient and likelihood-based boosting as well. Please note that when talking about boost-

ing, we always refer to the component-wise variant.

However, the bGLMM algorithm from the GMMBoost package tends to struggle with clus-

ter-constant covariates, e.g. baseline covariates like gender or treatment group in longitudinal

studies. The specified selection and updating procedure of the bGLMM algorithm tends to

favour cluster-varying covariates while the simultaneously updated random intercepts partly

account for effects actually evolving from cluster-constant covariates. As shown in Fig 1, this

malfunction already occurs in a very basic data example with the popular Orthodont dataset,

which is available in various R packages. The dataset depicts the evolution of an orthodontal

measurement of 27 children and contains two covariates. A basic linear mixed model with ran-

dom intercepts returns the two coefficient estimates b̂ lme
gender ¼ � 2:32 by lmer and b̂b

gender ¼

0:00 by bGLMM for the effect of the cluster-constant covariate gender. The reason for this dif-

ference becomes clear when looking at the random intercepts, where bGLMM tends to compen-

sate the missing effect for gender by assigning every female subject a random intercept

lowered by 2.32. Although the structure of the Orthodont data set is very simple and does not

require boosting, it is evident that the described weak spot of bGLMM is not confined to more

complex datasets and thus can occur for any clustered data containing cluster-constant

covariates.

We therefore propose an updated algorithm with various changes in order to avoid the phe-

nomenon of random intercepts growing too quickly. These changes include the usage of

smaller starting values and weaker random-effects updates to prevent the random effects from

growing too fast as well as undocking the random effects update from the fixed effects boosting

scheme, which guarantees a fair comparison between the single covariates for the fixed effects.

Most importantly, we introduce a correction step for the random effects estimation to avoid

possible correlations with observed covariates. The contribution of the present work is there-

fore a novel and better performing boosting algorithm regarding both estimation accuracy and

runtime for mixed models, particularly in the presence of cluster-constant covariates. The

algorithm not only solves the prescribed identification issues but in addition states the only

regularization approach for mixed models, which explicitly accounts for estimation bias aris-

ing from possible correlations between random and regularized effects. While existing

approaches bypass these issues by excluding affected covariates from the regularization

Fig 1. Comparison between random intercept estimates by lmer and bGLMM for Orthodont.

https://doi.org/10.1371/journal.pone.0254178.g001
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approach, the presented algorithm addresses the phenomena directly by correcting falsely esti-

mated random effects.

The remainder of the paper is structured as follows: Section 2 formulates the underlying

model and the updated boosting algorithm as well as a detailed discussion of the changes. The

algorithm is then evaluated and compared to other regularization approaches using an exten-

sive simulation study described in Section 3. As an illustrating data example we have chosen

the Primary Biliary Cirrhosis data, which further underlines the strengths and weaknesses of

the compared methods and is discussed in Section 4. Finally, the results and possible exten-

sions are discussed.

2 Methods

We propose a novel and improved boosting algorithm for linear mixed models in the follow-

ing subsections.

2.1 Model specification

For clusters i = 1, . . ., n with observations j = 1, . . ., ni we consider the linear mixed model

yij ¼ b0 þ xTijβþ zTijgi þ εij;

with covariate vectors xTij ¼ ðxij1; . . . ; xijpÞ and zTij ¼ ðzij1; . . . ; zijqÞ referring to the fixed and

random effects β and γi, respectively. The random components are assumed to follow normal

distributions, i.e. εij � N ð0; s2Þ for the model error and gi � N �q
ð0;QÞ for the random

effects. This leads to a cluster-wise notation

yi ¼ b01þ Xiβþ Ziγi þ εi

with yi ¼ ðyi1; . . . ; yiniÞ
T
, 1 = (1, . . ., 1), Xi ¼ ðxi1; . . . ; xiniÞ

T
, Zi ¼ ðzi1; . . . ; ziniÞ

T
and

εi ¼ ðεi1; . . . ; εiniÞ. Finally, we get the common matrix notation

y ¼ b01þ Xβþ Zγ þ ε ð1Þ

of the full model with observations y ¼ ðyT
1
; . . . ; yTn Þ

T
, design matrices X ¼ ½XT

1
; . . . ;XTn �

T
and

the block-diagonal Z ¼ diagðZ1; . . . ;ZnÞ. The random components ε ¼ ðεT
1
; . . . ; εTn Þ

T
and g ¼

ðgT
1
; . . . ; gTn Þ

T
have corresponding covariance matrices σ2 IN and diag(Q, . . ., Q) where IN is the

N = ∑ni dimensional unit matrix.

In order to perform likelihood inference, let ϑ = (β0, βT, γT) denote the effects and ϕ = (σ2,

τ) information of the random components, where τ contains the values of Q. The marginal

log-likelihood of the model can be obtained via

‘ðϑ; �Þ ¼
Xn

i¼1

log
Z

Fðyijϑ; �Þpðgij�Þdgi;

where f(�|ϑ, ϕ) and p(�|ϕ) denote the normal densities of the model error and the random

effects. Laplace approximation following [25] results in the penalized log-likelihood

‘
pen
ðϑ; �Þ ¼

Xn

i¼1

log Fðyijϑ; �Þ �
1

2

Xn

i¼1

gTi Q
� 1gi; ð2Þ

which is going to be maximized simultaneously for ϑ and ϕ by likelihood-based boosting-tech-

niques discussed in the following subsection.
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2.2 Boosting algorithm

The lbbLMM (likelihood-based boosting for linear mixed models) algorithm iteratively fits the

linear mixed model (1) via component-wise likelihood-based boosting. The fitting procedure

in general is carried out by Fisher-scoring [26], a variant of Newton’s optimization method

[27], which iteratively optimizes a given cost function based on quadratic approximations. It

therefore obtains updates based on first order and second order derivatives, which are, in the

context of Fisher scoring, represented by score vector and Fisher matrix of the underlying cost

function. We first give a brief description of the algorithm and discuss the single steps in more

detail in the following subsection.

Algorithm lbbLMM

• Initialize estimates with starting values ϑ̂ ½0� and �̂ ½0�. Choose total number of iterationsmstop

and step length ν.

• form = 1 tomstop do

• step1: Update fixed effects

For r = 1, . . ., p define βr :¼ ðb̂
½m� 1�

0 ; b̂ ½m� 1�
r Þ

T
with b̂ ½m� 1�

r denoting the rth component of

β̂½m� 1�. Compute score vector and Fisher matrix

srðβrÞ ¼
@‘

pen

@βr
; FrðβrÞ ¼ � E

@
2
‘
pen

@βr@β
T
r

� �

with respect to the current intercept b̂
½m� 1�

0 and the rth linear effect b̂ ½m� 1�
r . Obtain p possible

updates

ur ¼ FrðβrÞ
� 1srðβrÞ 2 R

2

and find the best performing component � 2 {1, . . ., p} minimizing AIC or BIC. This yields

the update u� = (u0, u�) containing the update u� for the effect � with corresponding intercept

update u0. Receive b̂
½m�
0 , β̂ ½m� by updating

b̂
½m�
0 ¼ b̂

½m� 1�

0 þ nu0;

b̂ ½m�r ¼

b̂ ½m� 1�
r if r 6¼ �;

b̂ ½m� 1�
r þ nu� if r ¼ �;

8
><

>:
r ¼ 1; � � � ; p:

ð3Þ

• step2: Update random effects

Update random effects using an additional Fisher scoring step based on the penalized log-

likelihood by calculating

sranðgÞ ¼
@‘

pen

@g
; FranðgÞ ¼ � E

@
2
‘
pen

@g@gT

� �

and weakly updating

ĝ ½m� ¼ ĝ ½m� 1� þ nCFranðgÞ
� 1sranðgÞ:

The incorporation of the correction matrix C at this step is crucial and its derivation is dis-

cussed further below.
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• step3: Update variance-covariance-components

Update variance-covariance-components

Q̂ ½m� 1� ! Q̂ ½m�

using an approximate EM-algorithm.

• end for

• Stop the algorithm at the best performingm� with respect to the specified information crite-

rion. Return ϑ̂ ½m�� and �̂ ½m�� as the final estimates.

2.3 Computational details of the algorithm

We give a stepwise description of the computational details of the lbbLMM algorithm. For

simplicity, we omit iteration indices and hats indicating estimated values whenever

appropriate.

2.3.1 Starting values. The parameters actually underlying the selection process are neces-

sarily set to zero, thus β̂ ½0� ¼ 0. Initial intercept and model error are set to b̂
½0�

0 ¼ �y, ŝ2½0� ¼

VarðyÞ and random effects are initialized as ĝ ½0� ¼ 0 with small covariance-matrix, e.g.

Q̂½0� ¼ diagð0:1; . . . ; 0:1Þ. An alternative approach which is also proposed in [19] would be fit-

ting a standard linear mixed model for intercept and random effects

y ¼ b01þ Zgþ ε

by using e.g. the function lmer from the R package lme4 and extracting the starting values

from the model fit.

2.3.2 Fixed effects boosting process. The computation of the rth update is straight for-

ward by calculating

srðβrÞ ¼ s� 2 ~XT
r ðy � ηÞ; FrðβrÞ ¼ s� 2 ~XT

r
~X r;

where ~X ¼ ð1;X�rÞ is a N × 2 matrix containing a column of ones and the rth column of X
associated with the rth covariate and η denoting the current fit. This leads to p possible param-

eter vectors ϑr, where only the intercept and rth component received an update according to

ur. The best performing component is the one leading to minimal AICr or BICr [28, 29] given

by

AICr ¼ � 2
Xn

i¼1

log Fðyijϑr; �Þ þ 2df ;

BICr ¼ � 2
Xn

i¼1

log Fðyijϑr; �Þ þ logðnÞdf :

Here, df = ϕ + #{i� p: βi 6¼ 0} denotes the model complexity according to the marginal likeli-

hood where #ϕ is the total number of variance-covariance parameters in ϕ.

2.3.3 Random effects update. By calculating

sranðgÞ ¼
@‘

pen

@g
; FranðgÞ ¼ � E

@
2
‘
pen

@g@gT

� �
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a weak and corrected update

ĝ ½m� ¼ ĝ ½m� 1� þ nCFranðgÞ
� 1sranðgÞ:

for the random effects is obtained. Note that this differs from the approach in [19] as the ran-

dom effects are updated separately and in addition also receive an update scaled by the step

length ν. The weak update ensures that the random effects don’t grow to quickly compared to

the fixed effects. The disentanglement of the random effects update from the fixed effects

updating scheme on the other hand guarantees a fair comparison of the single fixed effects,

where the random effects do not play a crucial role. In addition, the Fisher matrix

FranðgÞ ¼ diagðF1; � � � ; FnÞ; Fi ¼ s� 2ZTi Zi þ Q� 1

has block-diagonal form making the inversion much easier and thus strongly reducing the

computational effort.

2.3.4 Deriving the correction matrix C. The single random intercepts or random slopes

are corrected independently of each other using distinct sets of covariates. For the correction

of the sth random effect consider ~γ s ¼ ðgs1; . . . ; gsnÞ
T

with covariates Xcs 2 MatRðn; psÞ
MatRðn;mÞ denotes the space of all n ×mmatrices with values in R. where ps denotes the total

number of correction-covariates used for the sth random effect. Note that Xcs has n rows as it

contains only one representative observation from each cluster. The correction matrix con-

tains all cluster-constant covariates for random intercepts and just a column of ones for ran-

dom slopes, which corresponds to centering the given random slope. The correction matrix Cs
for the sth random effect is obtained by

Cs ¼ XcsðX
T
csXcsÞ

� 1Xcs; s ¼ 1; � � � ; q

so that the product ðIn � CsÞ~γ s corrects the sth random effect for any covariates contained in

the corresponding matrix Xcs by counting out the orthogonal projections of the sth random

effect estimates on the subspace generated by the covariates Xcs. This ensures the coefficient

estimate for the random effects to be uncorrelated with any observed covariate. These separate

corrections are summarised in one single correction matrix by defining the block diagonal

~C ¼ diagðC1; . . . ;CqÞ and computing

C ¼ P� 1ðInq � ~CÞP;

where P is a permutation matrix mapping γ to

Pg ¼ ~g ¼ ð~gT
1
; � � � ; ~gTq Þ

T
:

The product Cγ then corrects every random effect simultaneously. This concept also proved

useful for an improved estimation of mixed models via model-based gradient-boosting [30].

2.3.5 Updating variance-covariance-components. The covariance matrix Q of the ran-

dom effects is updated with an approximate EM-algorithm using the posterior curvatures Fi of

the random effects model [31]. An update is received by computing

Q̂ ¼
1

n

Xn

i¼1

F� 1

i þ ĝi ĝ
T
i

� �
:

Each iteration’s model error is obtained by

ŝ2½m� ¼ Varðy � η̂ ½m�Þ:
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2.3.6 Choice of steplength. The steplength 0< ν� 1 controls the weakness of each update

and is substantial in order to avoid overfitting and give each candidate variable equal opportu-

nity to get selected. We stick to the choice of ν = 0.1 for both fixed and random effects updates,

which is well established in the boosting community and thus makes a fairer comparison. This

ensures that neither of the coefficient estimates is growing too quickly.

2.3.7 Stopping iteration. The algorithm is stopped based on AIC or BIC, i.e.

m� ¼ arg min
m¼1;���;mstop

AIC½m�;

m� ¼ arg min
m¼1;���;mstop

BIC½m�;

where AIC[m] and BIC[m] denote the information criteria afterm iterations. An alternative and

computationally more burdensome stopping rule would rely on cluster-wise cross-validation

[32], which is however asymptotically equivalent to the marginal AIC as used above [33].

3 Simulation study

The algorithm is evaluated with a simulation study. The single simulation scenarios are

described in the first subsection, while results are discussed in the latter two. Primary focus is

to show, that the algorithm solves the identification problem of the random effects and thus is

compared to the bGLMM function of the GMMBoost package available on CRAN. Furthermore,

its performance is compared to the classical method implemented in the lmer function of the

lme4 package as well as the glmmLasso function of the same-named package, which is

another popular approach to regularized regression with potentially high numbers of candi-

date variables. Please note that we did not include mboost in the comparison, as its approach

to random effects is not able to estimate variance components for random intercepts not to

mention covariance matrices for multiple slopes. The bGLMM was also compared to the

glmmPQL function [4] in [19].

The comparison focuses on mean squared errors of estimates for fixed effects and the ran-

dom structure as an indicator for overall performance and to address the identification prob-

lem. Variable selection properties are evaluated via true and false positive as well as well as

false discovery rates. As a side note, we compare computational effort.

3.1 Setups

The first setups’ random structure consists of random intercepts only. Overall, the setup

includes four informative covariates and in addition varying numbers of non-informatives.

For i = 1, . . ., 50 and j = 1, . . ., 5 we consider the random intercepts setup

yij ¼ b0 þ b1xi1 þ b2xi2 þ b3xij3 þ b4xij4 þ
XP

r¼5

brxijr þ g0i þ εij ð4Þ

with values β0 = 1, β1 = 2, β2 = 4, β3 = 3, β4 = 5 and βr = 0, r> 5 for the fixed effects, xir; xijr �
N ð0; 1Þ for the cluster-constant and cluster-varying covariates and g0i � N ð0; t2Þ and εij �
N ð0; s2Þ for the random components with σ = 0.4 and τ 2 {0.4, 0.8, 1.6}. The total amount of

covariates is evaluated for the six different cases p 2 {10, 25, 50, 100, 250, 500} ranging from

low to high dimensional setups.
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The second setup is a slightly altered scenario with two additional random slopes, one for a

cluster-constant and one for a cluster-varying covariate, i.e.

yij ¼ b0 þ b1xi1 þ b2xi2 þ b3xij3 þ b4xij4 þ
XP

r¼5

brxijr

þ g0i þ g1ixi2 þ g2ixij4 þ εij

ð5Þ

with

ðg0i; g1i; g2iÞ � N �3
ð0;QÞ; Q :¼

t2 t� t�

t� t2 t�

t� t� t2

0

B
B
B
@

1

C
C
C
A
;

where τ 2 {0.4, 0.8, 1.6} and τ� is chosen so that cor(γki, γli) = 0.6 for all k, l = 1, 2, 3 holds.

For β = (β0, . . ., βp)
T we consider mean squared errors

mseβ :¼ kβ � β̂k2
; mses :¼ ðs � ŝÞ

2
; mset :¼ ðt � t̂Þ

2
; mseQ :¼ kQ � Q̂k2

F

as an indicator for estimation accuracy with k�kF denoting the Frobenius norm of a given

matrix. Variable selection properties are evaluated by calculating false positives (FP), true posi-

tives (TP) and false discovery rates (FDR)

FP ¼
�Psel
�P tot

; TP ¼
Psel
Ptot

and FDR ¼
�Psel

�Psel þ Psel
;

where Psel and Ptot denote the amounts of selected informative and total informative candidate

variables with �Psel and �P tot as the equivalents for non-informative covariates. Finally, the

elapsed time is measured in seconds where each simulation run was carried out on a 2 x 2.66
GHz-6-Core Intel Xeon CPU (64GB RAM).

Every single simulation setup was independently executed 100 times and, in order to

account for skewness of the mean squared error distributions, median values are reported for

estimation accuracy and average values for variable selection properties and computation

time. The bGLMM boosting algorithm was initialized withmstop = 500, while lbbLMM was iter-

ated up tomstop = 1500. To determine the optimal penalization parameter for glmmLasso,

the grid {500, 495, 490, . . ., 0} was used. All of the included regularization approaches were

tuned using the BIC.

3.2 Results: Random intercepts

3.2.1 Estimation accuracy. Table 1 summarizes results for estimation accuracy. In gen-

eral, the lbbLMM algorithm produces very precise estimates while the bGLMM function suffers

from the prescribed identification problem yielding a minimum mean squared error of 22 + 42

= 20 as the cluster-constant covariates are not being selected. All methods get less precise as

the values of τ and p increase, only lbbLMM has stable error rates regarding the amount of

candidate variables p. Overall, lbbLMM outperforms its competitors in every single scenario.

Estimation accuracy of the random structure is described in Table 2. Estimates by lbbLMM
behave similarly well as by lmer while the identification problem in bGLMM results in high

error rates. While lying in the same range as lmer, lbbLMM clearly outperforms the remain-

ing regularization approaches.

PLOS ONE Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques

PLOS ONE | https://doi.org/10.1371/journal.pone.0254178 July 9, 2021 8 / 17

https://doi.org/10.1371/journal.pone.0254178


3.2.2 Variable selection. Table 3 depicts variable selection properties. While selection

quality of glmmLasso improves as p increases, both boosting approaches yield perfect prop-

erties with respect to false positives. However, the identification problem of bGLMM leads to a

low true positives rate, as informative effects of cluster-constant covariates are being captured

Table 1. Median mseβ of 100 independent simulation runs for each random intercepts setup with corresponding interquartile range.

lmer glmmLasso bGLMM lbbLMM

τ p mseβ (iqr) mseβ (iqr) mseβ (iqr) mseβ (iqr)

0.4 10 0.018 0.01 0.026 0.02 20.134 0.40 0.012 0.01

0.4 25 0.032 0.01 0.044 0.04 20.168 0.44 0.012 0.01

0.4 50 0.060 0.02 0.212 0.45 20.155 0.41 0.014 0.01

0.4 100 0.151 0.04 1.097 0.92 20.198 0.52 0.014 0.01

0.4 250 - - 1.917 1.61 20.191 0.55 0.011 0.01

0.4 500 - - 2.759 2.89 20.172 0.42 0.010 0.01

0.8 10 0.046 0.04 0.060 0.05 20.177 0.48 0.040 0.04

0.8 25 0.064 0.05 0.121 0.08 20.175 0.46 0.044 0.04

0.8 50 0.092 0.05 0.260 0.30 20.194 0.54 0.046 0.05

0.8 100 0.185 0.05 1.069 0.78 20.185 0.45 0.037 0.04

0.8 250 - - 2.243 1.84 20.174 0.42 0.035 0.04

0.8 500 - - 2.459 2.96 20.114 0.30 0.035 0.03

1.6 10 0.149 0.17 0.175 0.19 20.194 0.51 0.145 0.17

1.6 25 0.190 0.18 0.215 0.20 20.190 0.57 0.170 0.18

1.6 50 0.187 0.17 0.265 0.30 20.174 0.48 0.137 0.17

1.6 100 0.282 0.17 0.819 0.93 20.214 0.49 0.147 0.17

1.6 250 - - 2.204 2.04 20.126 0.34 0.130 0.14

1.6 500 - - 3.303 2.70 20.331 0.93 0.117 0.14

https://doi.org/10.1371/journal.pone.0254178.t001

Table 2. Median mseτ and mseσ of 100 independent simulation runs for each random intercepts setup.

lmer glmmLasso bGLMM lbbLMM

τ p mseτ mseσ mseτ mseσ mseτ mseσ mseτ mseσ

0.4 10 0.001 2e-04 0.002 0.013 2.911 0.002 0.001 0.002

0.4 25 0.001 2e-04 0.003 0.012 2.930 0.002 0.001 0.002

0.4 50 0.001 2e-04 0.006 0.051 2.970 0.002 0.001 0.002

0.4 100 0.002 4e-04 0.012 0.409 3.001 0.002 0.001 0.002

0.4 250 - - 0.014 0.693 2.994 0.002 0.001 0.002

0.4 500 - - 0.014 1.108 2.948 0.002 0.001 0.002

0.8 10 0.003 2e-04 0.096 0.137 1.750 0.002 0.003 0.002

0.8 25 0.002 2e-04 0.098 0.142 1.782 0.002 0.002 0.002

0.8 50 0.004 2e-04 0.090 0.165 1.797 0.002 0.005 0.002

0.8 100 0.004 2e-04 0.081 0.617 1.781 0.002 0.003 0.002

0.8 250 - - 0.081 1.191 1.769 0.002 0.003 0.002

0.8 500 - - 0.078 1.292 1.706 0.002 0.004 0.002

1.6 10 0.008 2e-04 0.204 0.008 0.328 0.002 0.010 0.002

1.6 25 0.012 2e-04 0.294 0.041 0.336 0.002 0.014 0.002

1.6 50 0.012 2e-04 0.481 0.156 0.334 0.002 0.014 0.002

1.6 100 0.015 4e-04 1.117 1.064 0.343 0.002 0.014 0.002

1.6 250 - - 1.160 2.336 0.310 0.002 0.015 0.002

1.6 500 - - 1.161 2.777 0.311 0.002 0.022 0.002

https://doi.org/10.1371/journal.pone.0254178.t002
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by the random intercepts. lbbLMM on the other hand has perfect selection properties with

respect to both, true and false positives.

3.3 Results: Random slopes

3.3.1 Estimation accuracy. Table 4 summarizes results for estimation accuracy. Except

for the increased error rates in general, the behaviour is similar to the random intercepts setup

(4). lbbLMM again performs stable as p increases and clearly outperforms the other regulariza-

tion approaches. However, lmer has slightly better error rates in low-dimensional scenarios

with higher values for τ, which can be also seen in Table 5.

3.3.2 Variable selection. Table 6 depicts variable selection properties for the random

slopes setup. Results are almost identical to the random intercepts setup described in Table 3.

The presence of the identification problem in bGLMM is reflected in high errors for fixed

and random effects and low true positives rates. Based on its good values for mseβ, mseτ, mseQ

and TP it can be stated that lbbLMM not only solves the problems occurring in bGLMM but

Table 3. Variable selection properties averaged over 300 runs for each p-dimensional random intercepts setup. True positives (TP), false positives (FP) and false dis-

covery rate (FDR). Since no noticeable variability regarding the choice of τ occurred, results are summarized.

glmmLasso bGLMM lbbLMM

p FP TP FDR FP TP FDR FP TP FDR

10 0.83 1.00 0.55 0.00 0.65 0.00 0.00 1.00 0.00

25 0.90 1.00 0.80 0.00 0.64 0.00 0.00 1.00 0.00

50 0.73 1.00 0.78 0.00 0.64 0.00 0.00 1.00 0.00

100 0.29 1.00 0.60 0.00 0.64 0.00 0.00 1.00 0.00

250 0.05 1.00 0.57 0.00 0.65 0.00 0.00 1.00 0.00

500 0.02 1.00 0.61 0.00 0.65 0.00 0.00 1.00 0.00

https://doi.org/10.1371/journal.pone.0254178.t003

Table 4. Median mseβ of 100 independent simulation runs for each random slopes setup with corresponding interquartile range.

lmer glmmLasso bGLMM lbbLMM

τ p mseβ (iqr) mseβ (iqr) mseβ (iqr) mseβ (iqr)

0.4 10 0.025 0.02 0.064 0.06 40.955 1.98 0.023 0.03

0.4 25 0.043 0.02 0.096 0.08 40.979 1.97 0.026 0.03

0.4 50 0.083 0.03 0.233 0.31 41.017 1.94 0.027 0.04

0.4 100 0.204 0.06 1.395 0.94 41.067 1.94 0.028 0.04

0.4 250 - - 2.552 1.72 41.077 1.77 0.031 0.04

0.4 500 - - 2.578 2.43 40.807 1.38 0.022 0.03

0.8 10 0.068 0.06 0.125 0.12 41.048 1.86 0.084 0.12

0.8 25 0.091 0.06 0.176 0.18 41.048 1.80 0.088 0.14

0.8 50 0.133 0.07 0.241 0.27 41.185 1.64 0.101 0.16

0.8 100 0.300 0.10 1.040 1.14 41.113 1.53 0.107 0.14

0.8 250 - - 2.323 2.01 40.985 1.59 0.082 0.10

0.8 500 - - 3.320 2.46 40.917 1.59 0.099 0.12

1.6 10 0.260 0.22 0.473 0.53 41.741 3.17 0.346 0.49

1.6 25 0.297 0.22 0.457 0.52 41.751 2.96 0.413 0.59

1.6 50 0.311 0.26 0.532 0.51 41.340 2.92 0.446 0.53

1.6 100 0.547 0.33 0.903 0.74 41.211 2.32 0.351 0.45

1.6 250 - - 3.860 3.31 41.794 2.79 0.410 0.48

1.6 500 - - 4.364 4.10 41.711 3.17 0.337 0.26

https://doi.org/10.1371/journal.pone.0254178.t004
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also offers a reliable and good performing regularization approach to linear mixed models in

general.

3.4 Computation time

Table 7 depicts average computation times for the random intercepts (4) and random slopes

(5) setup. All regularization approaches roughly show a linear scaling with increasing amount

of candidate variables p. In most cases, glmmLasso runs noticeably faster than its two boost-

ing competitors. However, a direct comparison is hard to interpret as the computation time of

glmmLasso strongly depends on the fineness of the grid used in order to determine the opti-

mal penalization parameter. In addition, the corrupt updating process of bGLMM leads to sub-

stantial faster convergence, as the algorithm is due to its identification issue capable of fitting

multiple effects in one single iteration and thus achieves faster convergence, which is also the

reason why bGLMM runs faster in the random slopes setup.

Table 5. Median mseQ and mseσ of 100 independent simulation runs for each random slopes setup.

lmer glmmLasso bGLMM lbbLMM

τ p mseQ mseσ mseQ mseσ mseQ mseσ mseQ mseσ

0.4 10 0.017 3e-04 0.092 0.029 888.217 0.008 0.017 0.004

0.4 25 0.017 4e-04 0.091 0.032 894.852 0.009 0.017 0.004

0.4 50 0.017 4e-04 0.082 0.057 901.488 0.009 0.016 0.004

0.4 100 0.025 8e-04 0.074 0.469 902.736 0.009 0.017 0.004

0.4 250 - - 0.074 1.039 872.132 0.009 0.019 0.004

0.4 500 - - 0.076 1.073 830.769 0.008 0.016 0.003

0.8 10 0.196 3e-04 1.543 0.092 857.413 0.009 0.245 0.002

0.8 25 0.220 4e-04 1.538 0.136 885.362 0.009 0.237 0.002

0.8 50 0.222 2e-04 1.583 0.223 883.447 0.009 0.256 0.002

0.8 100 0.245 7e-04 1.744 0.627 892.735 0.009 0.237 0.002

0.8 250 - - 1.762 1.704 863.080 0.008 0.212 0.002

0.8 500 - - 1.776 2.184 901.223 0.009 0.180 0.003

1.6 10 3.297 3e-04 21.546 0.052 901.261 0.008 3.823 0.003

1.6 25 3.207 4e-04 21.314 0.186 911.947 0.009 3.823 0.004

1.6 50 3.112 4e-04 23.035 0.331 889.823 0.009 3.761 0.005

1.6 100 3.338 5e-04 27.822 1.024 875.406 0.008 3.043 0.004

1.6 250 - - 29.964 2.889 940.885 0.009 2.779 0.004

1.6 500 - - 32.257 5.413 844.134 0.008 3.026 0.004

https://doi.org/10.1371/journal.pone.0254178.t005

Table 6. Variable selection properties averaged over 300 runs for each p-dimensional random slopes setup. True positives (TP), false positives (FP) and false discovery

rate (FDR). Since no noticeable variability regarding the choice of τ occurred, results are summarized.

glmmLasso bGLMM lbbLMM

p FP TP FDR FP TP FDR FP TP FDR

10 0.81 1.00 0.55 0.00 0.68 0.00 0.00 1.00 0.00

25 0.94 1.00 0.83 0.00 0.68 0.00 0.00 1.00 0.00

50 0.90 1.00 0.89 0.00 0.68 0.00 0.00 1.00 0.00

100 0.61 1.00 0.80 0.00 0.67 0.00 0.00 1.00 0.00

250 0.21 1.00 0.68 0.00 0.67 0.00 0.00 1.00 0.00

500 0.03 1.00 0.66 0.00 0.67 0.00 0.00 1.00 0.00

https://doi.org/10.1371/journal.pone.0254178.t006
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However, the computational effort for bGLMM is very sensitive to increasing numbers of

total observations N. Table 8 and Fig 2 depict averaged computation times of the random

intercepts scenario (4) with τ = 0.4 and p = 10 fixed, but varying values ni 2 {5, 10, 15, 20}, i.e.

the number of observations per cluster. While glmmLasso and lbbLMM have a linear rela-

tionship between N and elapsed computation time, bGLMM increases exponentially making

the method less applicable even to data sets with fewer candidate variables when the number

of total observations is large.

4 Primary biliary cirrhosis

The primary biliary cirrhosis (PBC) dataset from 1994 [34] tracks the change of the serum bili-

rubin level for a total of 312 PBC patients randomized into a treatment and a placebo group

and additionally contains baseline covariates as well as follow-up measurements of several bio-

markers. The dataset is, among others, available in the JM package [35] and Table 9 gives an

overview of the single covariates included in the data and how they are coded in the model for-

mula. The serum bilirubin level, here modelled as the response variable, is considered a strong

indicator for disease progression, hence an appropriate quantification of the impact of the

Table 7. Averages of elapsed computation time of 100 independent simulation runs for each random intercepts (tint) and slopes (tslp) setup.

lmer glmmLasso bGLMM lbbLMM

τ p tint tslp tint tslp tint tslp tint tslp

0.4 10 0.14 0.26 16.24 54.16 61.34 52.75 58.53 137.17

0.4 25 0.15 0.35 32.19 83.51 142.45 119.60 96.17 217.57

0.4 50 0.18 0.51 58.11 131.92 281.60 229.62 159.68 363.74

0.4 100 0.27 1.19 121.26 233.59 551.97 449.22 276.32 674.16

0.4 250 - - 304.95 451.52 1352.46 1103.51 663.02 1735.15

0.4 500 - - 585.84 863.54 2739.12 2195.73 1344.99 2799.55

0.8 10 0.13 0.28 20.21 93.14 61.00 52.72 59.88 123.91

0.8 25 0.15 0.36 35.33 108.02 142.30 119.11 97.24 195.48

0.8 50 0.18 0.57 59.34 154.90 276.57 229.47 155.17 338.10

0.8 100 0.27 1.27 114.51 239.32 539.65 449.19 281.19 608.19

0.8 250 - - 296.17 434.89 1379.50 1099.60 685.09 1246.12

0.8 500 - - 586.13 863.36 2706.37 2194.56 1323.87 2541.26

1.6 10 0.14 0.37 45.36 207.99 60.11 52.42 60.25 130.47

1.6 25 0.17 0.50 51.06 212.15 140.23 118.34 95.72 195.48

1.6 50 0.19 0.79 72.13 236.06 269.85 229.78 158.76 321.88

1.6 100 0.29 1.73 124.38 284.19 542.70 451.25 291.27 587.04

1.6 250 - - 278.47 429.77 1368.52 1098.15 682.92 1272.76

1.6 500 - - 583.67 873.84 2725.24 2194.31 1396.19 2623.04

https://doi.org/10.1371/journal.pone.0254178.t007

Table 8. Averages of elapsed computation time of 100 independent simulation runs regarding varying values for ni with τ = 0.4 and p = 10 fixed.

lmer glmmLasso bGLMM lbbLMM

ni N tint tint tint tint

5 250 0.13 15.21 60.14 59.04

10 250 0.14 32.51 978.16 72.25

15 750 0.16 56.92 5799.48 113.55

20 1000 0.16 84.46 13841.07 172.29

https://doi.org/10.1371/journal.pone.0254178.t008

PLOS ONE Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques

PLOS ONE | https://doi.org/10.1371/journal.pone.0254178 July 9, 2021 12 / 17

https://doi.org/10.1371/journal.pone.0254178.t007
https://doi.org/10.1371/journal.pone.0254178.t008
https://doi.org/10.1371/journal.pone.0254178


given covariates on the serum bilirubin level will lead to an adequate prediction model for the

health status of PBC patients. Using boosting to carry out this quantification will optimize the

prediction properties. For yij denoting the jth measurement of serum bilirubin for the ith
patient, we formulate the random intercept model

yij ¼ b0 þ b1drugi þ b2agei þ b3sexi þ b4asci

þ b5hepi þ b6spii þ b7tij þ b8t2ij þ b9albij

þ b10alkij þ b11SGOTij þ b12plaij þ b13proij þ g0i þ εij

ð6Þ

Fig 2. Differing computational effort of the regularization routines bGLMM, lbbLMM and glmmLasso for varying

cluster sizes.

https://doi.org/10.1371/journal.pone.0254178.g002

Table 9. Variables of the PBC data set. drug and sex are dummies for treatment group and female gender. Ascites

is the abnormal buildup of fluid in the abdomen and spiders are blood vessel malformations in the skin. SGOT is short

for serum glutamic oxaloacetic transaminase.

time-constant continuous age at baseline age

discrete treatment group gender drug

gender sex

time-varying continuous albumin alb

alkaline alk

SGOT SGOT

platelet count pla

prothrombin time pro

time in years t
discrete ascites asc

spiders spi

enlarged liver hep

https://doi.org/10.1371/journal.pone.0254178.t009
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with g0i � N ð0; t2Þ and an included square time effect, since the effect of time might be non-

linear. Both boosting approaches were initialized withmstop = 500 and the grid {0, 0.1, 0.2, . . .,

30} was chosen for glmmLasso. Based on BIC, bGLMM determinedm� = 389 and lbbLMM
m� = 161 as the best performing number of iterations and the optimal tuning parameter for

glmmLasso was λ� = 12.4. The coefficient estimates are compared to an unregularized model

(lmer) displayed with corresponding p-values in Table 10 and the well known coefficient

paths for lbbLMM are depicted in Fig 3.

Table 10. Variable selection and shrinkage of various regularization approaches compared to lmer.

glmmLasso bGLMM lbbLMM lmer P (lmer)

(Intercept) 3.94 4.16 4.05 3.95 < 0.001

drug -0.23 - -0.24 -0.24 0.26

age -0.12 - - -0.15 0.49

sex 0.07 - - 0.10 0.65

asc 0.79 0.69 0.71 0.79 < 0.001

hep 0.35 0.23 0.26 0.35 < 0.001

spi 0.41 0.30 0.30 0.39 < 0.001

t 0.78 1.04 0.60 0.90 < 0.001

t2 -0.30 -0.37 - -0.42 0.02

alb -0.44 -0.36 -0.35 -0.41 < 0.001

alk 0.04 -0.04 - 0.08 0.35

SGOT 1.02 0.84 0.95 1.05 < 0.001

pla -0.11 -0.05 - -0.10 0.33

pro 0.16 - - 0.19 0.01

t̂ 3.55 4.20 3.79 3.55

time 1465 60543 101 0.15

https://doi.org/10.1371/journal.pone.0254178.t010

Fig 3. Coefficient progression for the PBC data obtained by lbbLMM with m� = 161.

https://doi.org/10.1371/journal.pone.0254178.g003
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In general, the results reflect what was already observed in the simulation study.

glmmLasso struggles with proper variable selection in lower dimensional scenarios and

bGLMM does not select any cluster-constant covariates due to misspecification. Although the

effect of drug has a comparatively high p-value, the coefficient estimate by bGLMM stands out

among all regularization approaches while the value for τ is simultaneously pretty large, which

indicates possible bias arising from wrongly identified random intercepts. On the other hand,

the rest of the variables which were selected by lbbLMM tend to be of high impact depending

on the chosen significance level. For lower choices, e.g. α 2 {0.01, 0.005} [36], the selection pro-

cess of lbbLMM matches with the selected covariate having significant impact while at the

same time receiving shrinkage by the regularization mechanism. Regarding computational

effort, bGLMM runs with approximately 17 hours (60543 seconds) tremendously long and

needs around 600 times more computation time than its direct competitor lbbLMM.

5 Discussion

The updated algorithm is due to its minor and major tweaks capable of dealing with cluster-

constant covariates in linear mixed models by preventing the random effects from taking up

too much space. In addition, it preserves the well-known advantages of boosting techniques in

general by offering variable selection and a good functionality even in high dimensional setups.

As a very important side effect the computational effort receives a tremendous decrease mak-

ing the algorithm more applicable to real world scenarios.

Primary hindrance of the lbbLMM algorithm is a missing approach for model choice as the

random effects structure has to be specified in advance and does not underlie any selection

process. Although reasonable options regarding the random structure are limited in most real

world applications and could also be evaluated afterwards using appropriate information crite-

ria, it remains and interesting question, how one could incorporate proper model selection

during the updating process while simultaneously preserving the advantages gained by the

lbbLMM algorithm.

Canonical extensions of the successful concept include incorporating non-linear predictor

functions, i.e. estimation of smooth effects based on P-splines or extending the algorithm from

linear mixed models to generalized mixed models to allow more flexible inference for a wider

class of data structures. Both have been incorporated in [37] for classical likelihood-based

boosting and it is assumed that the proposed tweaks in the present work would improve per-

formance of the more flexible approaches as well.
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