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A B S T R A C T   

Accurate reservoir inflow forecasting is crucial for efficient water management. In this study, 
different deep learning models, including Dense, Long short-term memory (LSTM), and one- 
dimensional convolutional neural networks (Conv1D), were used to build ensembles. Seasonal- 
trend decomposition using loess (STL) was applied to decompose reservoir inflows and pre-
cipitations into random, seasonal, and trend components. Seven ensemble models, namely STL- 
Dense, STL-Conv1D, STL-LSTM, STL-Dense-LSTM-Conv1D, STL-Dense multivariate, STL-LSTM 
multivariate, and STL-Conv1D multivariate, were proposed and evaluated using daily inflows 
and precipitation decomposed data from the Lom Pangar reservoir from 2015 to 2020. Evaluation 
metrics, such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE), and Nash Sutcliff Efficiency (NSE), were applied to assess model per-
formance. Results showed that the STL-Dense multivariate model was the best ensemble among 
the thirteen models with MAE of 14.636 m3/s, RMSE of 20.841 m3/s, MAPE of 6.622%, and NSE 
of 0.988. These findings stress the importance of considering multiple inputs and models for 
accurate reservoir inflow forecasting and optimal water management. Not all ensemble models 
were good for Lom pangar inflow forecast as the Dense, Conv1D, and LSTM models performed 
better than their proposed STL monovariate ensemble models.   

1. Introduction 

A model for optimal water resource management requires a robust and efficient water management system [1] In the study of 
efficient water use, statistical and machine learning methods have been employed [2–4] with interesting output results. Due to the 
random nature of water resources, there is difficulty in modeling these systems using classical methods. To solve this problem, machine 
learning methods have been applied to model them for efficient sustainability [5]. In an attempt to further increase these models’ 
efficiency, deep learning neural network models have been applied to reservoir inflow forecasting with promising results [6–12] 
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Fig. 1. Location of the Lom Pangar reservoir.  

Fig. 2. STL decomposition of Lom pangar daily reservoir inflow (a) into random (b), seasonal (c), and trend (d) components.  
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Fig. 3. STL decomposition of Lom pangar daily reservoir precipitations (a) into random (b), seasonal (c), and trend (d) components.  

Table 1 
General hyperparameters for the Dense, Conv1D, and LSTM models.  

General parameters for Dense model, Conv1D and LSTM 

Parameters Value Parameters value 

Activation function Relu Optimizer Adam 
Number of hidden layers 2 Epoch 100 
Loss function Mean absolute error Batch size 128 
Dense model 
The neuron of the first hidden layer 1000 The neuron of the second hidden layer 100 
The neuron of the output layer 1   
Conv1D model 
filters 128 Kernel_size 5 
padding Causal   
LSTM 
The neuron of the first hidden layer 1000 The neuron of the second hidden layer 100 
verbose 0    
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Recurrent Neural Networks (RNN), Gated Recurrent Unit (GRU), and Long-Short Tem Memory (LSTM) models have been used for 
reservoir inflow forecasting, with LSTM proving to be the most effective [13]. A hybrid framework using machine learning for reservoir 
inflow forecast has been proposed by Tian et al. [14] with interesting results as an outcome as compared to classical methods. Luo et al. 
[15] proposed an ensemble model combining the Deep believe network (DBN) and LSTM with the ensemble result better than that of 
the individual models. 

Ensemble modeling has been researched for reservoir inflow prediction due to its improved performance through the combination 
of the strengths from different base models. An ensemble model consisting of various models has been proposed for forecasting inflow 
into a reservoir [16–19]. The obtained result for the cited ensembles is better than their composition models. Hong et al. [20] utilized 
an ensemble of recurrent neural networks (RNN-LSTM) and convolutional neural network (CNN-LSTM) for reservoir inflow prediction, 
while Zhang et al. [21] proposed a fusion model of CNN, Partial Least Squares (PLS), and Extreme Gradient Boosting (XGBoost) for 
inflow prediction. Mendes et al. [22] applied an ensemble of High-Resolution Model (HRES) and the Ensemble Prediction System (EPS) 
products to forecast the inflow of the Aguieira reservoir in Portugal. These proposed ensembles outperform the single models based on 
evaluation criteria. Wang et al. [23] utilized a hybrid decomposition-based multi-model and multi-parameter ensemble method for 
stream flow forecasting of the Yalong River, resulting in increased accuracy and reduced uncertainty. Sushanth et al. [24] applied an 
explainable machine learning model with LSTM for real-time inflow and streamflow forecasting of Konar and Tenughat reservoirs with 
appreciable accuracy up to a 3-day lead. The shortcoming of the above-cited ensemble models is the proposal of a single ensemble to 
treat the problem. As a contribution, seven ensembles from different deep-learning models are proposed. 

The Lom Pangar reservoir is the largest in the Southern Interconnected Grid (SIG) of Cameroon, serving to regulate the flow rate of 
the Song bengue river for hydroelectricity production 466 km downstream in the Songloulou hydropower plant. The study of this 
reservoir inflow rate is crucial for electricity production as it is the largest reservoir in the watershed. Moreover, its outflow regulates 
the flow rate on the Song bengue river which serves as an inflow in the Songloulou hydropower plant downstream. Songloulou power 
plant as of now is the largest power plant on SIG, the largest grid in the nation, and supplies energy to six regions out of the ten regions. 
In this study, seven ensemble deep learning models are proposed from Seasonal-trend decomposition using loess (STL). These models 

Fig. 4. Deep learning models: (a) A dense model, (b) the Conv1D model, and (c) the LSTM model.  
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include STL-Dense, STL-Conv1D, STL-LSTM, STL-Dense-LSTM-Conv1D, STL-Dense multivariate, STL-LSTM multivariate, and STL- 
Conv1D multivariate. STL is used to decompose the reservoir inflow and precipitation into random, seasonal, and trend compo-
nents. STL was chosen over other decomposition methods such as classical decomposition, and SEATS (seasonal extraction in 
autoregressive integrated moving average (ARIMA) time series) due to its ability to handle different types of seasonality and user 
control of smoothness in trend-cycle interaction among others [25,26]. Deep learning models namely the dense model, LSTM model, 
and Conv1D have been implemented to forecast the STL decomposed components and the resultant reservoir inflow is the sum of the 
forecasted decomposed inflows of the reservoir. Thirteen deep learning models, namely the dense model, the Conv1D model, the LSTM 
model, the multivariate dense model, the multivariate Conv1D model, the multivariate LSTM model, the STL-dense model, 
STL-Conv1D model, STL-LSTM model, STL-Dense_LSTM_Conv1D model, STL-Dense multivariate model, STL-Conv1D multivariate 
model, and STL-LSTM multivariate model are evaluated using evaluation criteria for the best model. The mean absolute error (MAE), 
mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash Sutcliff Efficiency (NSE) 
are used as evaluation criteria. 

This manuscript is partitioned as follows: section 1 is the introduction, section 2 presents the study area, section 3 gives the 
methodology used, and section 4 summarizes the result and discussion. The conclusion of the work is in section 5. 

2. Study area 

The Lom Pangar reservoir is the largest in the Sanaga watershed. It is located in Bertoua in the East region of Cameroon. Due to the 
stochastic nature of the hydroelectricity production in the Southern interconnected grid of Cameroon, the reservoir was constructed to 
regulate the flow rate of water for hydroelectricity production [26]. The reservoir has the following coordinates 5022′16.87′′ N, 13 
030′44.67′′ E. Its minimum and maximum storage capacity are 100.000.000 m3 and 6280 000 000 m3 respectively. The surface area 
covered by the reservoir is 540 km2 [27]. The reservoir has a 30 MW installed capacity which is still under construction and will serve 
to supply hydroelectricity to the East region. Daily inflow data from 2015 to 2020 were used in this study to train and test the models. 
The study site is shown in Fig. 1. 

3. Methods 

3.1. Seasonal-trend decomposition using LOESS (STL) 

STL is a robust method for decomposing time series data into seasonal, trend, and remainder components. Loess is an algorithm for 

Fig. 5. Multivariate STL-Conv1D ensemble (a) and multivariate STL-Dense ensemble (b).  
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handling nonlinear correlations. STL is highly desirable for time series decomposition due to its ability to handle any type of sea-
sonality, its ability to be controlled by the user in trend-cycle smoothening, its ability to be robust to outliers, and its ability to allow the 
seasonal component to change over time [25,26,28]. From Figs. 2 and 3, the magnitude of the daily inflow and precipitation is not 
increasing with time as they show a seasonal pattern with a period of one year. As such, the additive time series decomposition method 
was chosen over the multiplicative time series decomposition to decompose the data for this study. Eq. (1) shows the various com-
ponents of the decomposition reservoir inflow data set. Eq. (1) applies to the precipitation data set. 

yi =Ri + Ti + Si (1) 

yi is the data, Ri is the remainder or random term, Ti is the trend term, and Si is the seasonal term of the Lom Pangar daily reservoir 
inflow and precipitation time series. Fig. 2 (a) represents the time series Lom pangar daily inflow data. STL was applied to decompose 
the data into random, seasonal, and trend components shown in Fig. 2 (b), Fig. 2 (c), and Fig. 2 (d) respectively. The precipitation time 
series data is shown in Fig. 3 (a). Its random, seasonal, and trend components as decomposed by STL are shown in Fig. 3 (b–d) 
respectively. 

3.2. Deep learning models 

Deep learning models utilize artificial neural networks with multiple hidden layers for computations. They are a type of machine 
learning that learns from historical data and contains multiple layers of the neural network [29]. In this study, the inflow of the Lom 
pangar reservoir is forecasted using thirteen deep-learning models. Three models, dense, Conv1D, and LSTM, were used as univariate 
and multivariate models for inflow forecast. Seven ensemble deep-learning models were proposed to forecast the inflow of the Lom 
pangar reservoir using train-test data sets from 2015 to 2020. These models include STL-Dense, STL-Conv1D, STL-LSTM, STL-Den-
se_Conv1D_LSTM, STL-Dense multivariate, STL-LSTM multivariate, and STL-Conv1D multivariate. 

Fig. 6. Multivariate STL-LSTM ensemble (a) and STL-Dense ensemble (b).  
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3.2.1. Dense model 
With the dense model, each neuron is connected to the neuron in the next layer. Information flows from one neuron to the next 

through matrix multiplication. It is used for time series regression problems [15]. The parameters and hyperparameters of the model 
are shown in Table 1. 

3.2.2. Conv1D model 
Convolutional neural networks are multilayer neural networks capable of handling input data as images for three-dimensional 

convolutional neural networks or regression problems for one-dimensional neural networks [30]. Table 1 represents the model’s 
parameters and hyperparameters. 

3.2.3. LSTM model 
The long short-term memory model (LSTM) is a variant of the recurrent neural network (RNN). Each LSTM cell has gates (input 

gate, output gates, and a forget gate) that can either allow the information to go through or block it through the forget gate. It forecast a 
time series problem with high efficiency [31,32]. Fig. 3 shows the structure of the three deep learning models respectively. Table 1 
gives the general characteristics of the LSTM model. The hyperparameters for the models were chosen empirically from hyper-
parameter tuning. 

Fig. 4 (a–c) represent the basic structure of the dense model, the Conv1D model, and the LSTM cell respectively. 

Fig. 7. STL-Conv1D ensemble (a) and STL-LSTM ensemble (b).  
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3.3. Deep learning ensemble models 

Combining deep learning models to obtain a single forecasting model is very important as the strength of all the other models is 
taken into consideration for forecasting and the variance is reduced [19,33]. Due to the seasonality of the case study data, STL-additive 
decomposition is applied as a decomposition method on the inflows and precipitation time series data and decomposed into three 
components. Figs. 5–8, are the schematics for the proposed ensemble models. 

In Fig. 5 (a) the seasonal inflows and seasonal precipitations were used as inputs into Conv1D 1 model. The trend inflows and trend 
precipitations were used as input into the Conv1D 2 model. The random inflows and random precipitations were used as inputs into the 
Conv1D 3 model. The seasonal, trend, and random inflows components were outputs from the Conv1D 1, Conv1D 2, and Conv1D 3 
models respectively. The sum of these decomposed outputs constitutes the final forecast for the Lom pangar reservoir as shown in Eq. 
(1). The same analogy is applied to the schematics of Figs. 5 (b), 6 (a, b), 7 (a, b) and 8. 

3.4. Evaluation criteria 

We used as evaluation criteria the mean absolute error (MAE), the mean square error (MSE), the root mean square error (RMSE), 
the mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) respectively as shown in Eq. (2), Eq. (3), Eq. (4), Eq. 
(5), and Eq. (6) [ [34,35]] to evaluate the different models. 

Fig. 8. STL-Dense-LSTM-Conv1D ensemble.  

Table 2 
Evaluation criteria for the different models.  

Deep learning Model MAE (m3/s) MSE (m3/s)2 RMSE (m3/s) MAPE (%) NSE 

Dense model 14.961 474.579 21.785 6.597 0.987 
Conv1D model 15.631 521.269 22.831 6.861 0.986 
LSTM model 15.575 518.863 22.779 6.881 0.986 
Multivariate dense model 15.072 488.127 22.094 6.592 0.987 
Multivariate Conv1D model 15.579 516.560 22.728 6.855 0.986 
Multivariate LSTM model 15.280 475.594 21.808 6.853 0.987 
STL-Dense model 15.178 468.785 21.651 6.757 0.988 
STL-Conv1D model 15.783 521.841 22.844 6.921 0.986 
STL-LSTM model 16.227 543.184 23.306 7.303 0.986 
STL-Dense-LSTM-Conv1D model 15.517 497.051 22.295 6.924 0.987 
STL-LSTM multivariate 15.984 506.955 22.516 7.276 0.987 
STL-Conv1D multivariate 15.349 489.776 22.131 6.808 0.987 
STL-Dense multivariate model 14.636 434.353 20.841 6.622 0.988  
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Fig. 9. Lom pangar inflows compared with (a) STL-Conv1D ensemble, (b) STL-Conv1D multivariate ensemble, (c) STL-Conv1D ensemble, and (d) 
STL-Dense multivariate ensemble. 
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Fig. 10. Lom pangar inflows compared with (a) STL-LSTM ensemble, (b) STL-Dense-LSTM-Conv1D ensemble, (c) STL-Dense ensemble, and (d) 
Multivariate Dense ensemble. 
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Where yi is the observed value, ŷi, the forecast value, and y the mean of the observed value. N represents the sample sizes. 

4. Results and discussion 

4.1. Results 

The result obtained when the models were applied to forecast a day reservoir inflow of the Lom pangar reservoir using a window 
size of the past seven days is shown in Figs. 9–12. The deep learning models were executed in Python 3.8 on a personal computer with 
AMD A6-3410MX APU Radeon (tm) HD Graphics 1.6 GHz processor. 80% of the data was used to train the models while 20% was used 
to test the models. This division was done since it provides a better result empirically [36]. 

The elaborate comparative result is shown in Table 2. The best result was obtained with the STL-dense-multivariate model with the 
least MAE of 14.636 m3/s. With the univariate deep learning models namely the dense model, conv1D model, and LSTM, the least error 
was obtained with the dense model followed by the LSTM model then conv1D. In general, there is not much variation in the NSE of the 
models. The values are between 0.986 and 0.988. 

Figs. 9–12 (a), represent the results obtained from forecasting the Lom pangar daily inflows using the thirteen deep learning 
models. Fig. 9 (a–d) represent the plot of the inflows with STL-Conv1D ensemble model, STL-Conv1D multivariate ensemble model, 
STL-Conv1D ensemble model, and STL-Dense multivariate ensemble model respectively. Fig. 10(a–d) represent the plot of the inflows 
with the STL-LSTM ensemble model, STL-Dense-LSTM-Conv1D ensemble model, STL-Dense ensemble model, and Multivariate Dense 
ensemble model respectively. Fig. 11(a–d) represent the plot of the inflows with the LSTM model, Conv1D model, Dense model, and 

Fig. 11. Lom pangar inflows compared with (a) LSTM model, (b) Conv1D model, (c) Dense model, and (d) Multivariate LSTM model.  
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Multivariate LSTM model. The detailed results from the evaluation criteria for the thirteen models are shown in Table 2. Fig. 1s(a–d) 
presents the results obtained from forecasting the decomposed components namely the trend, random, and seasonal components using 
the dense model. Table 3 presents the results obtained from the evaluation criteria. 

4.2. Discussion 

Unlike Qi et al. [37] which implement Empirical mode decomposition to forecast the reservoir inflow for univariate time series, this 
work takes into consideration the reservoir precipitation and constitutes a multivariate problem. Again, Qi et al. [37] applied LSTM to 
forecast the decomposed variable while in addition to LSTM, this work takes into consideration the dense model and Conv1D model to 
forecast the decomposed variables. The addition of these two deep learning models and the proposal of seven ensembles gives the 
planner a wide range of methods to choose from. This lack of numerous ensembles is the limitation of Qi et al. [37]. 

Fig. 12. Lom pangar inflows compared with (a) multivariate Conv1D model, (b) STL-trend inflow compared with its dense forecast, (c) STL-random 
inflow compared with its dense forecast, and (d) STL-seasonal inflow compared with its dense forecast. 

Table 3 
MAE for the different decomposition terms with Dense, conv1D, and LSTM models.  

MAE (m3/s.) Random inflow Lom pangar Seasonal inflow Lom pangar Trend inflow Lom pangar 

Dense model 13.871 5.706 0.137 
Conv1D model 13.781 8.639 0.129 
LSTM model 14.892 6.811 0.135  
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Also, the findings of this work are per Ding et al. [38] who equally use STL decomposition with the application of LSTM to forecast 
hydroelectricity production. The findings of Ding et al. [38] suggest that the proposed ensemble performed better than the LSTM 
model. The limitation of [38] concerning this work is the same as that of [37] which includes the proposal of a single ensemble as 
compared to seven ensembles proposed. Again, the advantage of these ensembles permits us to notice that contrary to Refs. [37,38] in 
which their proposed methods use LSTM to build the ensembles, this study shows that the LSTM ensemble is good but the best 
ensemble was obtained with the STL-Dense multivariate ensemble in forecasting the reservoir inflow for Lom pangar reservoir. 

Again, the least MAPE of 6.622% was obtained from the multivariate dense model still strengthening the advantage of the 
multivariate model considering precipitation over the univariate model for reservoir inflow forecast at the Lom Pangar reservoir. 

From Table 3, the three models namely Dense, Conv1D, and LSTM forecast the trend term with a very small MAE. Thus, the deep 
learning models used are suitable to forecast the trend term of the daily reservoir inflow of the Lom Pangar reservoir. For the univariate 
models, the dense model obtained the best MAE result for forecasting the seasonal inflow of Lom pangar. The Conv1D model forecast 
the random and trend inflow and obtains the minimum error among the three univariate deep learning models. These show the 
correlation between the decomposed data sets with the deep learning models, and also the strength of assembling other models to 
obtain a better fit. 

Surprisingly, from Table 2, the Dense, Conv1D, and LSTM models perform better than their monovariate STL decomposed models. 
The MAE of the models are 14.961 m3/s, 15.631 m3/s, and 15.575 m3/s as compared to 15.178 m3/s, 15.783 m3/s, and 16.227 m3/s 
respectively. This result shows that not all assemble are better than the individual deep learning model for forecasting the daily 
reservoir inflow of the Lom pangar reservoir. It gives the application of a new domain of research like using other ensemble methods 
such as bagging, boosting, and many others on the data set to study the correlations for more efficient ensembles. 

5. Conclusion 

Due to the stochastic nature of reservoir inflow, there is a need to forecast future inflows as this will help in optimal water 
management with applications to hydroelectricity production, irrigation, and many others. The limitation of classical methods to 
handle the study of reservoir inflows due to the stochastic nature of water gives room to advanced methods precisely deep learning 
ensembles to handle this problem. Seven ensemble deep learning models based on STL were proposed for reservoir inflow forecast. STL 
was chosen for decomposition over other methods due to its robust nature, its ability to handle all kinds of seasonality, and the 
parameter tuning properties. STL decomposition was applied to the decomposed reservoir inflows and precipitations data set to 
forecast a day inflow. The decomposed components namely the random component, the seasonal component, and the trend component 
of the inflow forecast using deep learning models. The final prediction obtained is the sum of the three decomposed components. The 
forecasting results obtained with application on the Lom Pangar reservoir with statistical parameters of the ensemble deep learning 
models were compared with the single deep learning models. Among the thirteen deep learning models used, the STL-Dense multi-
variate model was the best. The combining effect of using multiple models and the application of multivariate forecasting by 
considering precipitation as part of the input leads to this model outperforming the other models. Deep learning ensemble models for 
daily inflow forecast are proposed but we acknowledge their limitations due to uncertainty analysis. Also, better hyperparameter 
tuning can greatly improve the model’s performance. The unavailability of larger data sets in training and testing the models is part of 
the limitations of the proposed models. Not all ensemble models were better than their single model for the Lom pangar reservoir 
inflow forecast. The monovariate STL decomposition ensemble models perform poorly as compared to their deep learning models. This 
gives room for future research for which other ensemble methods like bagging, boosting, random forest, and many others could be 
taken into consideration for better ensembles. Also, varying hyperparameters to produce an ensemble deep learning model to forecast 
each of the decomposed components constitute the perspective of this work. 
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Njogho Kenneth Tebong, Théophile Simo, Armand Nzeukou Takougang: Conceived and designed the experiments; Performed the 
experiments; Analyzed and interpreted the data; Wrote the paper. 

Patrick Herve Ntanguen: Performed the experiments; Analyzed and interpreted the data; Wrote the paper. 

Data availability statement 

Data will be made available on request. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

References 

[[1] M. Rajesh, S. Anishka, P.S. Viksit, S. Arohi, S. Rehana, Improving Short-Range Reservoir Inflow Forecasts with Machine Learning Model Combination, Water 
Resources Management, 2022, pp. 1–16. 

N.K. Tebong et al.                                                                                                                                                                                                     

http://refhub.elsevier.com/S2405-8440(23)03663-0/sref1
http://refhub.elsevier.com/S2405-8440(23)03663-0/sref1


Heliyon 9 (2023) e16456

14

[2] Z. Cheng, Y. Zhao, T. Song, et al., White Elephant or Golden Goose? an Assessment of Middle Route of the South-To-North Water Diversion Project from the 
Perspective of Regional Water Use Efficiency, Water Resource Manage, 2023, https://doi.org/10.1007/s11269-022-03405-9. 

[3] Ravichandran Moorthy, Sumayya Bibi, Water security and cross-border water management in the kabul river basin, Sustainability 15 (1) (2023) 792, https:// 
doi.org/10.3390/su15010792. 

[4] Deli Jia, Jiqun Zhang, Yanchun Li, Li Wu, Meixia Qiao, Recent development of smart field deployment for mature waterflood reservoirs, Sustainability 15 (1) 
(2023) 784, https://doi.org/10.3390/su15010784. 

[5] M. Sapitang, M. Ridwan W, K. Faizal Kushiar, A. Najah Ahmed, A. El-Shafie, Machine learning application in reservoir water level forecasting for sustainable 
hydropower generation strategy, Sustainability 12 (15) (2020) 6121. 

[6] W. Xu, X. Zhang, A. Peng, Y. Liang, Deep reinforcement learning for cascaded hydropower reservoirs considering inflow forecasts, Water Resour. Manag. 34 (9) 
(2020) 3003–3018. 

[7] M. Pini, A. Scalvini, M.U. Liaqat, R. Ranzi, I. Serina, T. Mehmood, Evaluation of machine learning techniques for inflow prediction in Lake Como, Italy, Procedia 
Comput. Sci. 176 (2020) 918–927. 

[8] S. Lee, J. Kim, Predicting inflow rate of the soyang river dam using deep learning techniques, Water 13 (17) (2021) 2447. 
[9] S.D. Latif, A.N. Ahmed, E. Sathiamurthy, Y.F. Huang, A. El-Shafie, Evaluation of deep learning algorithm for inflow forecasting: a case study of Durian Tunggal 

Reservoir, Peninsular Malaysia, Nat. Hazards 109 (1) (2021) 351–369. 
[10] Z.C. Herbert, Z. Asghar, C.A. Oroza, Long-term reservoir inflow forecasts: enhanced water supply and inflow volume accuracy using deep learning, J. Hydrol. 

601 (2021), 126676. 
[11] J. Kraisangka, A. Rittima, W. Sawangphol, Y. Phankamolsil, A.S. Tabucanon, Y. Talaluxmana, V. Vudhivanich, Application of machine learning in daily 

reservoir inflow prediction of the bhumibol dam, Thailand, in: 2022 19th International Conference on Electrical Engineering/Electronics, Computer, 
Telecommunications And Information Technology (ECTI-CON), IEEE, 2022, May, pp. 1–4. 

[12] H.S. Choi, J.H. Kim, E.H. Lee, S.K. Yoon, Development of a revised multi-layer perceptron model for dam inflow prediction, Water 14 (12) (2022) 1878. 
[13] H. Apaydin, H. Feizi, M.T. Sattari, M.S. Colak, S. Shamshirband, K.W. Chau, Comparative analysis of recurrent neural network architectures for reservoir inflow 

forecasting, Water 12 (5) (2020) 1500. 
[14] D. Tian, X. He, P. Srivastava, L. Kalin, A hybrid framework for forecasting monthly reservoir inflow based on machine learning techniques with dynamic climate 

forecasts, satellite-based data, and climate phenomenon information, Stoch. Environ. Res. Risk Assess. 36 (8) (2022) 2353–2375. 
[15] B. Luo, Y. Fang, H. Wang, D. Zang, Reservoir inflow prediction using a hybrid model based on deep learning, 715, No. 1, in: IOP Conference Series: Materials 

Science and Engineering, IOP Publishing, 2020, 012044. 
[16] M. Rezaie-Balf, S.R. Naganna, O. Kisi, A. El-Shafie, Enhancing streamflow forecasting using the augmenting ensemble procedure coupled machine learning 

models: case study of Aswan High Dam, Hydrol. Sci. J. 64 (13) (2019) 1629–1646. 
[17] S. Kishore, B.S. Prasad, Reservoir inflow prediction using multi-model ensemble system, in: 2020 International Conference on Communication, Computing and 

Industry 4.0 (C2I4), IEEE, 2020, December, pp. 1–6 (. 
[18] F. Li, G. Ma, S. Chen, W. Huang, An ensemble modeling approach to forecast daily reservoir inflow using bidirectional long-and short-term memory (Bi-LSTM), 

variational mode decomposition (VMD), and energy entropy method, Water Resour. Manag. 35 (9) (2021) 2941–2963. 
[19] A. Gupta, A. Kumar, Two-step daily reservoir inflow prediction using ARIMA-machine learning and ensemble models, J. Hydro-Environ. Res. 45 (2022) 39–52. 
[20] J. Hong, S. Lee, J.H. Bae, J. Lee, W.J. Park, D. Lee, K.J. Lim, Development and evaluation of the combined machine learning models for the prediction of dam 

inflow, Water 12 (10) (2020) 2927. 
[21] W. Zhang, H. Wang, Y. Lin, J. Jin, W. Liu, X. An, Reservoir inflow predicting model based on machine learning algorithm via multi-model fusion: a case study of 

Jinshuitan river basin, IET Cyber-Sys. Robot. 3 (3) (2021) 265–277. 
[22] J. Mendes, R. Maia, Evaluation of ensemble inflow forecasts for reservoir management in flood situations, Hydrology 10 (2) (2023) 28. 
[23] J. Wang, X. Wang, S.T. Khu, A decomposition-based multi-model and multi-parameter ensemble forecast framework for monthly streamflow forecasting, 

J. Hydrol. (2023), 129083. 
[24] K. Sushanth, A. Mishra, P. Mukhopadhyay, R. Singh, Real-time streamflow forecasting in a reservoir-regulated river basin using explainable machine learning 

and conceptual reservoir module, Sci. Total Environ. 861 (2023), 160680. 
[25] R.J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, OTexts, 2018. 
[26] N.K. Tebong, T. Simo, A.N. Takougang, A.T. Sandjon, N.P. Herve, Application of deep learning algorithms to confluent flow-rate forecast with multivariate 

decomposed variables, J. Hydrol.: Reg. Stud. 46 (2023), 101357. 
[27] A.N. Pandong, B.T.N. Nsangue, E. Mbangue, M.V. Kontchou, A. Yoke, L. Tcham, M.A. David, Ichthyofaunic inventory and fish landings of Lom pangar 

hydropower dam reservoir in the eastern region of Cameroon, Open J. Mar. Sci. 10 (4) (2020) 245. 
[28] Q. Wen, J. Gao, X. Song, L. Sun, H. Xu, S. Zhu, RobustSTL: a robust seasonal-trend decomposition algorithm for long time series, Proc. AAAI Conf. Artif. Intell. 33 

(No. 01) (2019, July) 5409–5416. 
[29] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, M. Dehmer, An introductory review of deep learning for prediction models with big data, Front. Artif. Intell. 3 

(2020) 4. 
[30] E.U.H. Qazi, A. Almorjan, T. Zia, A one-dimensional convolutional neural network (1D-CNN) based deep learning system for network intrusion detection, Appl. 

Sci. 12 (16) (2022) 7986. 
[31] C. Li, Y. Bai, B. Zeng, Deep feature learning architectures for daily reservoir inflow forecasting, Water Resour. Manag. 30 (14) (2016) 5145–5161. 
[32] B.J. Kim, Y.T. Lee, B.H. Kim, A study on the optimal deep learning model for dam inflow prediction, Water 14 (17) (2022) 2766. 
[33] M. Skariah, C.D. Suriyakala, Forecasting reservoir inflow combining Exponential smoothing, ARIMA, and LSTM models, Arabian J. Geosci. 15 (14) (2022) 1–11. 
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