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Abstract: The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node
in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1
expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of
gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2
and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes
in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric
cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts
nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear
translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds
to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response
(ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like
endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer
progression in both metabolic and nonmetabolic manners.

Keywords: HMGCS1; mevalonate pathway; gastric cancer progression; integrated stress
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1. Introduction

Gastric carcinoma, one of the most common cancers, ranks as the third most frequent cause of
global cancer mortality [1]. The mechanisms responsible for the aggressiveness of gastric cancer have
not yet been clearly characterized. The mevalonate pathway for cholesterol synthesis and protein
prenylation is frequently dysregulated in tumors and has been implicated in cancer development and
progression [2,3]. Mevalonate metabolism is also involved in the maintenance of basal breast cancer
stem cells and is one of the potential therapeutic targets [4]. 3-hydroxy-3-methylglutaryl-coenzyme A
(HMG-CoA) reductase (HMGCR), which converts HMG-CoA into mevalonate, is the rate-limiting
enzyme of the mevalonate pathway [5]. Mounting evidence reveals that other enzymes besides
HMGCR can also serve as controlling points of cholesterol synthesis [6]. HMG-CoA synthase 1
(HMGCS1) is the cytoplasmic enzyme immediately upstream of HMGCR in the mevalonate pathway
and condenses acetyl-CoA and acetoacetyl-CoA to HMG-CoA [5]. It has been shown that HMGCS1 is
one of the potential regulatory nodes in the mevalonate pathway [7].

Statins, U.S. Food and Drug Administration (FDA)-approved drugs, suppress HMGCR activity
and are associated with reduced cancer-related mortality, including in gastric cancer patients [8,9].
However, some contradictory results found by meta-analyses for several cancers do not support the
protective effect of statins [10]. Mevalonate pathway genes, including HMGCR and HMGCS1 in
statin-insensitive multiple myeloma cells, are upregulated by statin treatment [11]. Both HMGCR and
HMGCS1 levels are induced by sterol regulatory element-binding protein 2 (SREBP2) [6] but reduced
by acyl-CoA binding protein (ACBP) [12]. Dipyridamole treatment suppresses the HMGCS1 level
through inhibition of cleavage of SREBF2 [13] and downregulates the expression of HMGCS1, c-Myc,
and cyclin D1 in colon cancer cells [14]. HMGCS1 expression is also controlled by mutant p53 [15].
Ferrous and ferric irons upregulate HMGCS1 expression in human vascular smooth muscle cells [16].
Mounting evidence shows the linkage of endoplasmic reticulum (ER) stress and lipid metabolism in
diseases [17,18]. Homocysteine-induced ER stress activates SREBPs and induces the biosynthesis of
cholesterol in cultured hepatocytes and smooth muscle cells [17]. STAT6 downregulation enhances
cholesterol synthesis and ER stress-mediated apoptosis in lung cancer cells [18].

Analyzing cancer genomics datasets showed that the HMGCS1 gene is amplified in various
cancers such as stomach, breast, and lung cancers [19]. High levels of HMGCS1 mRNAs are correlated
with poor prognosis and lower survival rates in breast cancer patients [3]. Recent data from a
meta-analysis suggested that HMGCS1 is one of the candidates involved in forming tumor stem-like
breast cancer cells [20]. Knockdown of HMGCS1 significantly sensitized A549 cells to statin-mediated
apoptosis [19]. Therefore, we investigated the biological functions of HMGCS1 in controlling tumor
development and the progression of gastric cancer cells and delineated the underlying mechanisms of
HMGCS1-mediated gastric cancer progression.

2. Results

2.1. HMGCS1 Expression is Upregulated in Stomach Adenocarcinoma Samples of Patients and Tumorspheres of
Gastric Cancer Cells

HMGCS1, one of the potential regulatory nodes in the mevalonate pathway, has been implicated
in controlling progression [2,3] and stemness [4] of cancer cells. Since the HMGCS1 gene is amplified in
stomach cancer [19], we investigated whether HMGCS1 affects gastric cancer progression. To examine
the clinical relevance of HMGCS1 mRNA expression, quantitative real-time PCR was first performed
in gastric cancer samples and the corresponding adjacent normal tissues of gastric cancer patients.
Levels of HMGCS1 mRNA in gastric tumor samples from patients were higher than those of adjacent
nontumor samples (Figure 1A). Notably, HMGCS1 mRNA expression was dramatically upregulated in
lymph node tumor samples from 26 gastric cancer patients with lymph node metastasis. According
to stage classification, the mRNA expression of HMGCS1 was increased in stomach adenocarcinoma
specimens from patients with advanced gastric cancer (stages I to III), compared with those of the
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adjacent nontumor tissues (Figure S1). The results of the Kaplan-Meier survival plot showed that
gastric cancer patients with higher levels of HMGCS1 mRNA had a poorer overall survival rate
(Figure 1B).

Figure 1. 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) expression is upregulated in stomach
adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. (A) Levels of HMGCS1
mRNA in tumors, the adjacent nontumor tissues, and lymph node tumor sample pairs from gastric
cancer patients (HMGCS1 in tumors and the adjacent nontumor tissues, n = 261; HMGCS1 in lymph
node tumor samples, n = 26) were examined using quantitative real-time PCR analysis. HMGCS1
mRNA levels in the gastric cancer tissues or lymph node tumor samples were compared with those of
the corresponding adjacent normal tissues. Mean ± SD. *** p < 0.001. (B) The Kaplan-Meier survival
plot of gastric cancer patients with higher (HMGCS1-H, n = 249) or lower (HMGCS1-L, n = 627) levels
of HMGCS1 mRNA. p = 0.011. (C) Whole-cell extracts of gastric cancer cells including AGS, NUGC-3,
KATO III, SNU-16, and NCI-N87 cells were prepared for Western blot analysis using anti-HMGCS1
and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibodies. (D, E) KATO III and
NCI-N87 cells were seeded onto ultra-low attachment plates under stem cell-selective conditions for
the subsequent formation assay of tumorspheres. The transcript levels of HMGCS1 in parental cells
and tumorspheres of KATO III and NCI-N87 cells were measured by quantitative real-time PCR and
then normalized to GAPDH (D). Mean ± SD (n = 3). * p < 0.05; *** p < 0.001. Whole-cell extracts of
parental cells and tumorspheres of KATO III and NCI-N87 cells were prepared for Western blot analysis
using anti-HMGCS1 and anti-GAPDH antibodies (E).

Because more than 95% of tumors of stomach are adenocarcinomas, cell lines of human stomach
adenocarcinoma were also examined. The results of Western blot analysis showed that HMGCS1
protein was differentially expressed in gastric cancer cells, including AGS, NUGC-3, KATO III, SNU-16,
and NCI-N87 cells (Figure 1C). To check whether HMGCS1 is involved in regulating the stem cell-like
phenotype, HMGCS1 expression in tumorspheres of gastric cancer cells was examined. Levels of
mRNA (Figure 1D) and protein (Figure 1E) of HMGCS1 were enhanced in tumorspheres of KATO III
and NCI-N87 gastric cancer cells compared with those in their parental cells according to quantitative
real-time PCR and Western blot analysis, respectively.

2.2. HMGCS1 Elevates Levels of Pluripotency Genes Oct4 and SRY (Sex Determining Region Y)-Box 2
(SOX-2) and Contributes to Progression in Gastric Cancer Cells

To further investigate the roles of HMGCS1 in the progression of gastric cancer cells, overexpression
of exogenous HMGCS1 and knockdown of endogenous HMGCS1 were induced in the present study.
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Therefore, we performed experiments using AGS, KATO III, and NCI-N87 cells moderately expressing
the HMGCS1 protein level. The results showed that mRNA levels of pluripotency genes Oct4 and
SOX-2 in AGS and NCI-N87 cells were promoted after transfecting HMGCS1-expressing plasmid
construct (Figure 2A). The exogenous HMGCS1 also elevated protein levels of Oct4 and SOX-2 in AGS
and KATO III cells, as shown by Western blot analysis (Figure 2B). Tumorsphere formation in KATO III
and NCI-N87 cells also increased after transfecting the HMGCS1-expressing construct (Figure 2C).

Figure 2. HMGCS1 elevates the levels of pluripotency genes Oct4 and SOX-2 and contributes to
progression in gastric cancer cells. (A,B) AGS, NCI-N87, and KATO III cells were transfected with
the HMGCS1-expressing plasmid construct (HMGCS1) or empty vector (EV) for 48 h. The transcript
levels of Oct4 and SOX-2 in the transfected AGS and NCI-N87 cells were determined by quantitative
real-time PCR (A). Mean ± SD (n = 3). Whole-cell extracts of the transfected AGS and KATO III cells
were prepared for Western blot analysis using anti-HMGCS1, anti-Oct4, anti-SOX-2, and anti-GAPDH
antibodies (B). (C) KATO III and NCI-N87 cells transfected with the HMGCS1-expressing construct
or empty vector for 48 h were seeded for formation assay of tumorspheres. Mean ± SD (n = 3).
(D) KATO III cells transfected with the HMGCS1-expressing construct or empty vector were
seeded for cell counting by trypan blue exclusion. Mean ± SD (n = 3). (E) AGS, KATO III,
and NCI-N87 cells transfected with the HMGCS1-expressing construct or empty vector were seeded
for 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Mean ± SD (n = 3).
(F) The transfected KATO III and NCI-N87 cells from (E) were seeded for colony formation assay. Mean
± SD (n = 3). (G) The transfected cells from (E) were also used for migration (upper) and invasion
(lower) assays. Mean ± SD (n = 3). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Consistently, the data showed that mRNA levels of Oct4 and SOX-2 in NCI-N87 cells were
suppressed after infection with lentiviruses expressing small interfering RNAs (siRNAs) against
HMGCS1 (Figure S2A). HMGCS1 knockdown decreased the protein levels of Oct4 and SOX-2 in AGS
and NCI-N87 cells (Figure S2B). Tumorsphere formation in NCI-N87 cells was reduced after infecting
lentiviruses expressing siRNAs against HMGCS1 (Figure S2C).

Next, the effect of HMGCS1 on the growth and progression of gastric cancer cells was
analyzed. The cumulative cell numbers of KATO III cells transfected with the HMGCS1-expressing
construct were elevated compared with those of control cells by the trypan blue exclusion method
(Figure 2D). On the contrary, the cumulative cell numbers of NCI-N87 cells were diminished
after infecting lentiviruses expressing siRNAs against HMGCS1 (Figure S2D). The results of
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that the growth of
AGS, KATO III, and NCI-N87 cells was enhanced by transfecting the HMGCS1-expressing construct
for 48 h (Figure 2E); in contrast, the growth of AGS and NCI-N87 cells was inhibited by infecting
lentiviruses expressing siRNAs against HMGCS1 (Figure S2E). Overexpression of HMGCS1 increased
colony formation in KATO III and NCI-N87 cells in a colony formation assay (Figure 2F), but knockdown
of HMGCS1 decreased this ability in NCI-N87 cells (Figure S2F). Both the cell migration and invasion
of AGS, KATO III, and NCI-N87 cells were promoted by HMGCS1 overexpression (Figure 2G).
As expected, both abilities were suppressed by HMGCS1 knockdown in AGS and NCI-N87 cells
(Figure S2G).

2.3. HMGCS1 Enhances Tumor Growth and Lung Metastasis of Gastric Cancer Cells

Mouse models were employed to further evaluate the effect of HMGCS1 on tumor growth and
the metastatic colonization of gastric cancer cells. After subcutaneously injecting NCI-N87 cells into
nude mice, the xenografted tumor sizes of NCI-N87 cells transfected with the HMGCS1-expressing
construct were larger than those of control cells (Figure 3A, left). On day 29 postinjection, mRNA
levels of HMGCS1, Oct4, and SOX-2 in the subcutaneous tumors excised from the sacrificed mice were
detected by quantitative real-time PCR. The results showed that mRNA levels of Oct4 and SOX-2 in the
xenografted tumors of mice injected with NCI-N87 cells were augmented by HMGCS1 overexpression
(Figure 3A, right). Reciprocally, the xenografted tumor sizes of NCI-N87 cells infected with lentiviruses
expressing the siRNA against HMGCS1 were reduced compared with those of control cells after
subcutaneous injection into nude mice (Figure 3B, left). The mRNA levels of Oct4 and SOX-2 in the
excised tumors were decreased by HMGCS1 knockdown (Figure 3B, right).

Moreover, the AGS cells transfected with the HMGCS1-expressing construct were also
intravenously injected into lateral tail vein of nonobese diabetic severe-combined immunodeficiency
(NOD-SCID) mice. After 13 weeks, the mice were sacrificed for evaluation of metastatic nodules
in lungs (Figure 3C, left). The results showed that the number of metastatic nodules in lungs was
significantly increased in mice injected with AGS cells transfected with the HMGCS1-expressing
construct compared with those injected with control cells (Figure 3C, right).
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Figure 3. HMGCS1 enhances the tumor growth and lung metastasis of gastric cancer cells.
(A,B) NCI-N87 cells were either transfected with the HMGCS1-expressing construct (HMGCS1)
or empty vector (EV) (A) or infected with lentiviruses expressing siRNAs against HMGCS1 (#729) or
luciferase (B). After treatment for 48 h, the treated cells were subcutaneously injected into nude mice
(n = 4 per group) for measurement of tumor sizes at the time indicated (left). Bar, 0.5 cm. The mice
were sacrificed on day 29 and subcutaneous tumors were excised for the detection of HMGCS1, Oct4,
and SOX-2 transcripts using quantitative real-time PCR (right). Mean ± SD. (C) AGS cells were
transfected with the HMGCS1-expressing construct or empty vector for 48 h and then injected into
nonobese diabetic severe-combined immunodeficiency (NOD-SCID) mice (n = 4 per group) by tail vein
injection for measurement of metastatic nodules in lungs. After 13 weeks, the mice were sacrificed
and the metastatic nodules in lungs of the treated mice were also counted by gross and microscopic
examination. Mean ± SD. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

2.4. HMGCS1 Knockout Suppresses Growth and Progression of Gastric Cancer Cells

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9
nuclease (CRISPR-Cas9) system, a key technology for genome editing in cellular and animal models [21],
was also employed to assess the effect of HMGCS1 knockout on growth and progression of gastric
cancer cells in the present study. A short guide RNA (sgRNA) targeting the human HMGCS1 gene had
been designed and used to establish two single cell-derived AGS cell clones with HMGCS1 knockout.
The knockout of HMGCS1 in these clones had been confirmed by Western blot analysis (Figure 4A)
and sequencing of the PCR fragments of their genomic DNAs (Figure S3).
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Figure 4. The Clustered Regularly Interspaced Short Palindromic Repeats-associated protein-9 nuclease
(CRISPR-Cas9)-mediated HMGCS1 knockout suppresses growth and progression of gastric cancer cells.
(A) Whole-cell extracts of HMGCS1 knockout (KO) #BF4 and #FE4 cells and negative control (NC) cells
were prepared for Western blot analysis using anti-HMGCS1, anti-Oct4, anti-SOX-2, and anti-GAPDH
antibodies. (B,C) HMGCS1 KO #BF4 and #FE4 cells and negative control cells were seeded for cell
counting by trypan blue exclusion method (B), migration, and invasion (C). Mean ± SD (n = 3).
(D) HMGCS1 KO #FE4 cells and negative control cells were subcutaneously injected into nude mice
(n = 5 per group) for measurement of tumor sizes at the time indicated (upper). Bar, 0.5 cm. The mice
were sacrificed on day 29 and then subcutaneous tumors were excised for the detection of HMGCS1,
Oct4, and SOX-2 transcripts using quantitative real-time PCR (lower). Mean ± SD. (E) HMGCS1 KO
#FE4 cells and negative control cells were injected into NOD-SCID mice (n = 4 per group) by tail vein
injection for measurement of metastatic nodules in lungs. After 11 weeks, the mice were sacrificed
and the metastatic nodules in lungs of the treated mice were also counted by gross and microscopic
examination. Mean ± SD. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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The CRISPR-Cas9-mediated HMGCS1 knockout of AGS cells resulted in reducing protein levels
of Oct4 and SOX-2 by Western blot analysis compared with control cells (Figure 4A). Cell numbers,
determined by trypan blue assay (Figure 4B), and migration and invasion (Figure 4C) in AGS cells,
were suppressed after HMGCS1 knockout. Accordingly, the xenografted tumor sizes of AGS cells with
CRISPR-Cas9-mediated HMGCS1 knockout (Figure 4D, upper) were reduced compared with those of
control cells after subcutaneous injection into nude mice. The mRNA levels of Oct4 and SOX-2 in their
excised tumors were decreased by HMGCS1 knockout (Figure 4D, lower). The data also showed that
the number of metastatic nodules in lungs was significantly decreased in NOD-SCID mice injected
with AGS cells with HMGCS1 knockout by intravenous injection into the lateral tail vein compared
with those injected with control cells (Figure 4E).

2.5. HMGCS1 Exerts Nonmetabolic Functions in Regulation of Gastric Cancer Progression

Next, we questioned whether HMGCS1 contributes to gastric cancer progression in a nonmetabolic
manner besides the mevalonate pathway. Based on the results of the MTT assay (Figure S4),
mevalonolactone treatment promoted cell growth in AGS cells, but this increment was attenuated by
HMGCS1 knockout. These results suggested that HMGCS1 might also have a nonmetabolic function
in gastric tumorigenesis.

It has been corroborated that statins inhibit the activity of the rate-limiting enzyme HMGCR in the
mevalonate pathway and are associated with reduced cancer-related mortality [8,9]. When co-treated
with statin, dipyridamole enhances the statin-induced inhibition of the mevalonate pathway [13].
Therefore, the combination treatment of statin and dipyridamole was used to block mevalonate
pathway in this study. Western blot analysis was employed to evaluate the HMGCS1 expression
levels in AGS, KATO III, and NCI-N87 cells after drug treatment. Combination treatment with
lovastatin and dipyridamole induced a greater downregulation of HMGCS1 protein expression than
the individual drugs (Figure 5A). To further check the efficiency of blocking the mevalonate pathway
by the combination treatment, we detected mRNA levels of HMGCS1, HMGCR, and Ras homolog
family member B (RhoB) by quantitative real-time PCR. The results showed that the mRNA expression
of HMGCS1 and HMGCR in AGS and KATO III cells was reduced by combination treatment, whereas
mRNA expression of HMGCS1 and HMGCR of RhoB was increased (Figure S5A). Additionally, RhoA
expression in nonmembrane fractions of AGS cells was upregulated by combination treatment, going
along with the downregulation of those in membrane fractions (Figure S5B). The suppression of
tumorsphere formation in KATO III and NCI-N87 cells by this combination treatment was partially
reversed after mevalonolactone treatment (Figure S6).

To check for the possibility of HMGCS1-mediated nonmetabolic functions in gastric carcinogenesis,
exogenous HMGCS1 was expressed in AGS, KATO III, and NCI-N87 cells after the blockade of
the mevalonate pathway by combination treatment with lovastatin and dipyridamole. An MTT
assay showed that the cell growth reduction of AGS, KATO III, and NCI-N87 cells caused by this
combination treatment was restored, at least partially, after transfection with the HMGCS1-expressing
construct (Figure 5B). Using tumorsphere formation (Figure 5C), migration, invasion, and colony
formation (Figure 5D) assays, the progression inhibition of KATO III and NCI-N87 cells caused by this
combination treatment was also partially reversed after transfection with the HMGCS1-expressing
construct. In contrast, the MTT assay showed that the cell growth reduction caused by combination
treatment with lovastatin and dipyridamole was exacerbated by infection with lentiviruses expressing
siRNAs against HMGCS1 in NCI-N87 cells (Figure S7, upper) or knockout of HMGCS1 in AGS cells
(Figure S7, middle). The decrease in tumorsphere formation in NCI-N87 cells after this combination
treatment further deteriorated after infection with lentiviruses expressing siRNAs against HMGCS1
(Figure S7, lower).
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Figure 5. Suppression of growth and progression in gastric cancer cells by the blockade of the
mevalonate pathway is partially reversed by HMGCS1 overexpression. (A) For the blockade of the
mevalonate pathway, AGS, KATO III, and NCI-N87 cells were treated with 2.5 or 5 µM lovastatin
(statin) and/or dipyridamole (DP) for 24 h. Then, whole-cell extracts of the treated cells were prepared
for Western blot analyses using anti-HMGCS1 and anti-GAPDH antibodies. (B–D) AGS, KATO III,
and NCI-N87 cells were transfected with the HMGCS1-expressing construct (HMGCS1) or empty
vector (EV) for 48 h. Then, the transfected cells were treated with lovastatin and/or dipyridamole for
24 h for the subsequent MTT assay (B). The transfected KATO III and NCI-N87 cells were also seeded
for assays of tumorsphere formation (C), migration, invasion, and colony formation (D) in the presence
or absence of 2.5 µM of lovastatin and/or dipyridamole. Mean ± SD (n = 3). *, p < 0.05; **, p < 0.01;
***, p < 0.001. #, p < 0.05; ##, p < 0.01; ###, p < 0.001.

2.6. Nuclear HMGCS1 Translocation of Gastric Cancer Cells is Induced by Serum Deprivation

It has been reported that the nuclear translocation of glycolytic enzyme pyruvate kinase M2 (PKM2)
can be induced under various conditions and then exert its nonmetabolic functions to contribute
to tumorigenesis [22,23]. Under various cellular stresses, cholesterogenic enzymes HMGCR [24]
and NAD(P)H steroid dehydrogenase-like (NSDHL) [25] can translocate to other cell organelles.
Additionally, Figure 2A shows that HMGCS1 induced transcriptional upregulation of Oct4 and
SOX-2 in gastric cancer cells. Therefore, under stress conditions, whether the translocation of cytosolic
HMGCS1 into nuclei regulates gastric cancer progression through a nonmetabolic manner was analyzed.

To assess this possibility, we first checked for HMGCS1 in the nuclei of gastric cancer cells. Western
blot analyses showed that HMGCS1 was detected in both cytosolic and nuclear extracts of AGS and
KATO III cells cultured in complete media containing 10% fetal bovine serum (FBS) (Figure 6A).
To further confirm the existence of nuclear HMGCS1 in gastric cancer cells, immunoprecipitation was
also applied to the nuclear and cytosolic fractions of AGS cell lysates. Endogenous HMGCS1 was
immunoprecipitated from both cytosolic and nuclear extracts by anti-HMGCS1 antibody (Figure 6B).
HMGCS1 expression in tumors and adjacent normal tissues from gastric cancer patients was examined
using immunohistochemical analysis. The results showed that HMGCS1 levels in tumors were higher
than those in the adjacent nontumor tissues (Figure S8). Additionally, HMGCS1 was detected in both
the nuclei and cytoplasm of gastric cancer tissues (Figure S8).
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Figure 6. Nuclear HMGCS1 translocation of gastric cancer cells is induced by serum deprivation.
(A) AGS (left) and KATO III (right) cells were cultured in complete media containing 10% fetal
bovine serum (FBS) or under serum deprivation (0.5% FBS) for 24 h. Then cytosolic and nuclear
extracts of the treated cells were prepared for Western blot analysis using the anti-HMGCS1,
anti-GAPDH, and anti-B23 (a nuclear marker) antibodies. (B) Both cytosolic and nuclear extracts of
AGS cells were immunoprecipitated with anti-HMGCS1 antibody. The precipitated proteins were
then analyzed by Western blot analysis using anti-HMGCS1 antibody. (C) After co-transfection with
the HMGCS1-expressing construct (HMGCS1) or empty vector (EV) and luciferase reporter plasmids
containing promoters of pluripotency genes Oct4 or SOX-2 for 48 h, the transfected AGS and NCI-N87
cells were harvested for reporter gene assay (upper). After co-transfection with siRNA vectors against
HMGCS1 (#555 and #729) or luciferase and reporter plasmids containing promoters of pluripotency
genes Oct4 or SOX-2 for 48 h, the transfected AGS cells were harvested for reporter gene assay (lower).
Mean ± SD (n = 3). (D) AGS cells were harvested for chromatin immunoprecipitation (ChIP) assay
using IgG or anti-HMGCS1 antibody. Then, the immunoprecipitated DNAs were used to amplify the
PCR products using the primer pairs specific for the promoters and coding sequences (CDS) of Oct4
and SOX-2 (left). The positions (in relation to the transcription starting site) and lengths of PCR
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products were also shown. Percentages of the immunoprecipitated DNA fragments of Oct4 and
SOX-2 promoters were further quantified by real-time PCR and subsequently normalized to total
input DNA (right). Mean ± SD (n = 3). (E–G) After transfecting the enhanced green fluorescent
protein (EGFP)-tagged HMGCS1-expressing plasmid (pEGFP-HMGCS1) or EGFP-expressing control
vector (pEGFP-C1) into KATO III cells for 48 h, whole-cell extracts of the transfected cells were
prepared for Western blot analysis using anti-HMGCS1, anti-GFP, and anti-GAPDH antibodies (E).
The arrows indicate the EGFP-HMGCS1 fusion proteins. The transfected cells were also cultured
in media containing 10% or 0.5% FBS for further examination of the fluorescent signals of EGFP
and EGFP-HMGCS1 fusion protein at the indicated times by fluorescent microscopy (F). Blue lines
indicate cell nuclei. The fluorescent signals were quantified from three randomly selected areas
in nuclei and cytoplasm of the transfected cells and then analyzed by ImageJ software. The chart
shows ratios of nuclear to cytosolic fluorescent signals in the transfected cells (G). Green circles
represent cells transfected with EGFP-expressing control vector and cultured in media containing 0.5%
FBS, blue triangles represent cells transfected with EGFP-tagged HMGCS1-expressing plasmid and
cultured in media containing 10% FBS, and red circles represent cells transfected with EGFP-tagged
HMGCS1-expressing plasmid and cultured in media containing 0.5% FBS. Mean ± SD. *, p < 0.05;
**, p < 0.01; ***, p < 0.001.

Additionally, reporter gene assays were performed to check whether HMGCS1 activates Oct4
and SOX-2 expression, as demonstrated (Figure 2A,B) through the enhancing activities of their
promoters. After co-transfection with the HMGCS1-expressing construct and reporter plasmids
containing promoters of either Oct4 or SOX-2 into AGS and NCI-N87 cells, reporter gene activities
were enhanced by HMGCS1 (Figure 6C, upper). In contrast, activities of reporter genes were inhibited
by HMGCS1 knockdown after co-transfection with siRNA vectors against HMGCS1 and reporter
plasmids containing promoters of either Oct4 or SOX-2 into AGS cells (Figure 6C, lower). These results
imply that nuclear HMGCS1 in the context of living cells could bind to the chromosomal DNAs of Oct4
and SOX-2 promoters to induce promoter activities. The chromatin immunoprecipitation (ChIP) assay
was performed to examine the DNA-binding ability of HMGCS1 on Oct4 and SOX-2 promoters in
AGS cells using anti-HMGCS1 antibody. The ChIP assays clearly showed that HMGCS1 bound to Oct4
and SOX-2 promoters in the chromosomal DNAs of AGS cells (Figure 6D). The binding of HMGCS1 to
Oct4 and SOX-2 promoters was specific, as no chromosomal DNA fragment in the coding sequences of
Oct4 and SOX-2 was immunoprecipitated with anti-HMGCS1 antibody in AGS cells.

Interestingly, the contents of cytosolic and nuclear HMGCS1s of gastric cancer cells cultured in
stress media containing 0.5% FBS were significantly elevated compared with those of cells cultured
in complete media containing 10% FBS (Figure 6A). To further explore the dynamics of nuclear
translocation of HMGCS1 under serum deprivation, subcellular localization of HMGCS1 was visualized
by time-lapsed epi-fluorescence and differential interference contrast (DIC) microscopy after transfection
with a plasmid expressing enhanced green fluorescent protein (EGFP)-tagged HMGCS1 into KATO
III cells. EGFP-HMGCS1 fusion protein was detected in the transfected KATO III cells by Western
blot analysis (Figure 6E). The fluorescence signals of EGFP presented primarily in cytosolic areas in
EGFP-HMGCS1 fusion protein-expressing KATO III cells cultivated in 10% FBS conditions (Figure 6F,
middle), resulting in a ratio of nuclear to cytosolic EGFP intensity of below 1 (Figure 6G, blue triangle).
In contrast, the EGFP signals translocated into the nuclei when the culture was changed to 0.5% FBS
in EGFP-HMGCS1 fusion protein-expressing KATO III cells (Figure 6F, lower). Quantitation results
revealed that the ratio of nuclear to cytosolic EGFP intensity rose gradually in a time-dependent
manner (Figure 6G, red circle). After transfecting KATO III cells with EGFP-expressing plasmid as a
control group, the transfected KATO III cells displayed an equal distribution of EGFP in both nuclear
and cytosolic areas in 0.5% of FBS (Figure 6F, upper and Figure 6G, green circle).
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2.7. HMGCS1 Enhances the Integrated Stress Response (ISR) Pathway and Interacts with Protein Kinase
RNA-Like Endoplasmic Reticulum (ER) Kinase (PERK), One of the Major ER Stress Transducers

The integrated stress response (ISR) pathway is activated in response to diverse stress stimuli in
eukaryotic cells and includes the phosphorylation of eukaryotic translation initiation factor 2 alpha
(eIF2α), the core event of ISR, and the upregulation of activating transcription factor 4 (ATF4), a key
effector of ISR [26,27]. The increase in nuclear HMGCS1 in gastric cancer cells caused by serum
deprivation (Figure 6) prompted us to investigate whether HMGCS1 is involved in modulating the
ISR pathway. Immunoblots showed that serum deprivation in KATO III and NCI-N87 cells induced
higher levels of HMGCS1, phosphorylated eIF2α (p-eIF2α), and ATF4 (Figure 7A). Levels of p-eIF2α
were also elevated in AGS, KATO III, and NCI-N87 cells either treated with 2.5 µg/mL tunicamycin,
an inducer of ER stress, for 6 h or transfected with the HMGCS1-expressing construct (Figure 7B).

Figure 7. HMGCS1 enhances the integrated stress response (ISR) pathway and interacts with protein
kinase RNA-like endoplasmic reticulum kinase (PERK). (A–C) KATO III and NCI-N87 cells were
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cultured in complete media containing 10% FBS or under serum deprivation (0.5% FBS) for 24 h (A).
AGS, KATO III, and NCI-N87 cells were treated with 2.5 µg/mL tunicamycin (Tuni.) or an equal volume
of DMSO for 6 h (B). Additionally, AGS, KATO III, and NCI-N87 cells were also transfected with
HMGCS1-expressing construct (HMGCS1) or empty vector (EV) for 48 h (B,C). Whole-cell extracts of the
treated cells were prepared for Western blot analysis using anti-HMGCS1, anti-p- eukaryotic translation
initiation factor 2 alpha (eIF2α), anti-eIF2α, anti-activating transcription factor 4 (ATF4), anti-general
control nonderepressible 2 (GCN2), anti-p-PERK, anti-PERK, and anti-GAPDH antibodies. The asterisk
indicates a nonspecific band. (D) For indirect immunofluorescence staining, AGS cells seeded on
coverslips were fixed and then stained with mouse anti-HMGCS1 and rabbit anti-PERK antibodies.
HMGCS1 was detected by DyLight™ 488-conjugated goat anti-mouse IgG (green), and PERK was
detected by DyLight™ 594-conjugated goat anti-rabbit IgG (red) under confocal microscopy. Cell
nuclei were also visualized by staining with 4,6-diamidino-2-phenylindole dihydrochloride (DAPI)
(blue). Bar, 5 µm. (E) Whole-cell extracts of AGS cells were immunoprecipitated with anti-HMGCS1
antibody. Then, the precipitated proteins were analyzed by Western blot analysis using anti-HMGCS1
(upper) or anti-PERK (lower) antibodies. (F) HMGCS1 knockout (KO) #BF4 and #FE4 cells and
negative control (NC) cells were seeded for the assays of cell growth (MTT, upper), migration (middle),
and invasion (lower). Cells were treated with 2.5 µg/mL tunicamycin or an equal volume of DMSO
for 6 h before assessment. Mean ± SD (n = 3). *, p < 0.05; **, p < 0.01; ***, p < 0.001. ##, p < 0.01;
###, p < 0.001. (G) Molecular model for the nonmetabolic functions of HMGCS1 in gastric cancer
progression. To enhance progression of gastric cancer cells, HMGCS1 translocates into nuclei to induce
Oct4 and SOX-2 expression under stress conditions. Additionally, HMGCS1 can activate the ISR
pathway to promote prosurvival signaling.

Moreover, expression levels of eIF2α kinases such as general control nonderepressible 2 (GCN2)
and PERK in AGS, KATO III, and NCI-N87 cells were not affected after transfection with the
HMGCS1-expressing construct (Figure 7C). However, levels of the phosphorylated PERK (p-PERK)
and ATF4 in these cells were enhanced after transfecting the HMGCS1-expressing construct (Figure 7C).
The mRNA expression of ER stress markers such as unspliced (X-box binding protein (XBP) 1u) and
spliced (XBP1s) forms of XBP1, total XBP1, ATF4, and C/EBP homologous protein (CHOP) in NCI-N87
cells was also enhanced after transfecting the HMGCS1-expressing construct (Figure S9).

PERK is an ER-resident protein [28] and its activation is modulated by protein-protein interaction
between PERK and 78-kDa glucose-regulated protein (GRP78) [26,27]. Because almost all enzymes
involved in the synthesis of cholesterol localize in the ER [6], whether HMGCS1 co-localizes and
interacts with PERK was analyzed by immunofluorescence staining as well as subsequent analyses
of confocal microscopy and co-immunoprecipitation. Immunofluorescence staining showed that
HMGCS1 mainly localized in the cytoplasm of AGS cells and co-localized with PERK (Figure 7D).
Notably, there were faint but obvious staining specks of HMGCS1 in the nuclei of AGS cells (Figure 7D).
Co-immunoprecipitation assay of cell lysates of AGS cells showed that PERK and HMGCS1 were
co-immunoprecipitated with anti-HMGCS1 antibody (Figure 7E), which coincides with the observation
of their colocalization in immunofluorescence staining (Figure 7D).

It has been found that an increase in ATF4 and CHOP levels precedes cell death under mild
ER stress, indicating that mild ER stress can be activated without necessitating cell death [29,30].
To understand the effect of HMGCS1 on the growth and progression of gastric cancer cells under mild
ER stress, AGS cells with HMGCS1 knockout and AGS cells infected with lentiviruses expressing
siRNAs against HMGCS1 were seeded for cell growth (MTT), migration, and invasion assays. Cells
were treated with 2.5 µg/mL tunicamycin for 6 h to elicit mild ER stress before assessment. The mild ER
stress led to a modest, but statistically significant, improvement in the growth, migration, and invasion
of AGS (Figure 7F), and an increase in NCI-N87 cells (Figure S10). Under mild ER stress, knockout and
knockdown of HMGCS1 reversed the tunicamycin-mediated increase in the growth and progression of
AGS (Figure 7F) and NCI-N87 (Figure S10) cells, respectively. However, a longer tunicamycin-treatment
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period added at the beginning of the experiments suppressed the growth and progression of AGS cells
with and without HMGCS1 knockdown (Figure S11).

3. Discussion

The role and regulatory mechanism of HMGCS1 in cancer development and progression are
complicated and not yet fully understood. HMGCS1 is a potential regulatory node of the mevalonate
pathway involved in tumorigenesis [2–4]. This study indicated that HMGCS1 had both metabolic and
nonmetabolic functions in potentiating gastric cancer progression. Furthermore, levels of HMGCS1 in
gastric cancer cells could be induced by serum deprivation, and the increase in HMGCS1 expression
induced the ISR pathway. To our knowledge, this is the first report regarding the nonmetabolic function
of HMGCS1 and the link between HMGCS1 and the ISR pathway in controlling cancer progression
(Figure 7G).

Herein, we also showed for the first time that the nuclear translocation of HMGCS1 in gastric
cancer cells was induced after serum deprivation. An intriguingly similar situation is that expression of
glycolytic enzyme PKM2 is upregulated in certain tumors and associated with poor prognosis [22,23].
Under various conditions, PKM2 is induced for nuclear translocation and then exerts its nonglycolytic
functions. Nuclear PKM2 can act as a kinase for STAT3 phosphorylation and as a transcriptional
co-activator by interacting with Oct4 as well as phosphorylated β-catenin, which in turn activates
the transcription of target genes to promote tumorigenesis [22,23]. Thus, both the metabolic and
nonmetabolic functions of PKM2 promote tumorigenesis [23].

Our study suggested that HMGCS1 could contribute to gastric cancer progression in a nonmetabolic
manner (Figure 5, Figure S4, and Figures S6 and S7). However, the regulatory mechanism of
HMGCS1-mediated nonmetabolic function on enhancing gastric tumorigenesis is still unclear. The data
showed that HMGCS1 could localize into nuclei (Figure 6A,B), upregulate Oct4 and SOX-2 levels
(Figure 2A,B), and bind to Oct4 and SOX-2 promoters (Figure 6D) in gastric cancer cells. Thus,
we believe nuclear HMGCS1 could promote gastric cancer progression by directly or indirectly binding
to pluripotency genes and inducing their expression. Furthermore, ER stress inducer tunicamycin
augmented HMGCS1 expression in gastric cancer cells, and HMGCS1 overexpression raised levels of
p-eIF2α (Figure 7B), p-PERK, ATF4 (Figure 7C), and ER stress markers (Figure S9). Therefore, HMGCS1
can activate the ISR pathway in gastric cancer cells.

This study also demonstrated that the slight enhancement of the growth and progression of
gastric cancer cells after tunicamycin-induced mild ER stress was HMGCS1-dependent (Figure 7F and
Figure S10). This is correlated with the report that cells continuously proliferate under mild ER stress
following treatment with a low concentration of tunicamycin in mouse embryonic fibroblasts [29].
The p-eIF2α level is induced after tunicamycin treatment for 1 to 2 h, followed by an increase in ATF4
and CHOP expression [30]. However, cleavage of caspase 3 and PARP, involved in the pro-apoptotic
pathway, is detected after tunicamycin treatment for 24 h [30].

Our data also proved that HMGCS1 interacted with PERK (Figure 7E) and induced phosphorylation
of PERK (Figure 7C) in gastric cancer cells. HMGCS1 may activate the ISR pathway by associating with
PERK, which, in turn, augments gastric cancer progression in a nonmetabolic manner. In addition,
the ISR pathway can be triggered by oncogene activation in cancer cells [31,32]. For example,
the activation of c-Myc had been demonstrated to activate the PERK/eIF2α/ATF4 signaling axis of
the ISR pathway, which is indispensable for c-Myc-induced transformation and tumorigenesis [31].
c-Myc-induced ATF4 inhibits apoptosis and promotes the survival of mouse embryonic fibroblasts [33].
Using a similar mechanism, HMGCS1 could potentiate the ISR pathway and promote gastric cancer
progression via a nonmetabolic pathway.

HMGCS1 expression is regulated by SREBP2 [6], ACBP [11], mutant p53 [12], and ferrous as
well as ferric irons [16]. Our data showed that HMGCS1 levels were also upregulated by serum
deprivation (Figure 7A) and ER stress inducer tunicamycin (Figure 7B). In a mouse model, treatment
with tunicamycin activates SREBP isoforms SREBP1a and SREBP1c in liver tissues [34]. However, there
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is little effect on the tunicamycin-induced activation of SREBP2, which promotes HMGCS1 expression
and plays a major role in cholesterol biosynthesis [34]. Furthermore, there are several post-translational
modifications on HMGCS1, including phosphorylation [35], acetylation [36], ubiquitination [37–39],
and sumoylation [7]. The biological significance of these modifications on HMGCS1 is still largely
elusive at present. HMGCS1 is deacetylated in the cytoplasm by Sirtuin 1 (SIRT1), located in both
the cytoplasm and nuclei [40]. Data from this study also raise the possibility that HMGCS1 could be
deacetylated by nuclear SIRT1. We will further dissect the biological functions of modifications on
HMGCS1, especially nuclear HMGCS1.

Owing to the feedback response triggered by the inhibition of the mevalonate pathway after statin
treatment, HMGCR and HMGCS1 genes are upregulated and suppress the anticancer potential of
statins [11]. Impeding this feedback response by dipyridamole, the combination of FDA-approved
drugs statins and dipyridamole may potentiate the anticancer efficacy of statins for treatment of
patients with acute myelogenous leukemia and multiple myeloma [13]. Furthermore, the ISR pathway
plays a dual role, both enhancing survival and promoting the death of cancer cells, so pharmacological
modulation of the ISR pathway is a potential therapeutic strategy [26,27]. Our results showed that
HMGCS1 augmented levels of components of the ISR pathway including p-eIF2α, ATF4, and p-PERK
(Figure 7B,C). Therefore, targeting components of the ISR pathway in combination with statin and
dipyridamole treatment may be a novel therapeutic strategy for the treatment of gastric cancer patients
with higher levels of HMGCS1 and these components in the future.

4. Materials and Methods

4.1. Plasmids and Plasmid Construction

Constructs pHMGCS1-Flag [40] and pEGFP-HMGCS1 contain the cDNAs encoding HMGCS1 with
C-terminal Flag and N-terminal EGFP tags, respectively. Luciferase reporter plasmids Oct4-Luc and
SOX-2-Luc contain Oct4 and SOX-2 promoters, respectively [41]. For knockdown of the endogenous
HMGCS1, the target sequences listed in Table S1 were constructed in the siRNA vector pLKO.1 as
described [42]. The constructs used in the present study were verified by sequencing.

4.2. Cell Culture and Transfection

Human stomach adenocarcinoma AGS (adherent cells with wild-type TP53), NUGC-3 (adherent
cells with mutant TP53), KATO III (adherent and suspension cells with deleted TP53), SNU-16
(suspension cells with mutant TP53), and NCI-N87 (adherent cells with mutant TP53) cells were obtained
from the Bioresource Collection and Research Center (Food Industry Research and Development
Institute, Hsinchu, Taiwan). Cells were cultured in RPMI 1640 medium containing 10% FBS.
Transfection of plasmids was performed using either electroporation or transfection reagents such as
LipofectamineTM 2000 (Invitrogen, Carlsbad, CA, USA) and PolyJetTM (SignaGen, Frederick, MD,
USA). Cells were seeded onto six-well plates and then transfected for subsequent luciferase reporter
gene assay. After transfection for two days, luciferase activity was measured and then normalized [43].
Lovastatin, dipyridamole, and tunicamycin (Sigma-Aldrich, St. Louis, MO, USA) in dimethyl sulfoxide
(DMSO), and mevalonolactone (Sigma-Aldrich) in phosphate-buffered saline (PBS) or an equal volume
of vehicles, were added to the media for drug treatment.

For the production of lentiviruses expressing siRNAs, HEK 293T cells (3× 106/10-cm-diameter dish)
were seeded for 24 h and then transfected with vectors including pLKO.1shRNA, pCMVdeltaR8.91,
and pMD.G using LipofectamineTM 2000 (Invitrogen). After 24 and 48 h post-transfection, the collected
culture medium was clarified by centrifugation and the supernatant was subsequently filtered using a
0.45-µm pore-size filter at 4 ◦C.
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4.3. The CRISPR-Cas9-Mediated HMGCS1 Knockout of AGS Gastric Cancer Cells

For the establishment of stable AGS cells with CRISPR-Cas9-mediated HMGCS1 knockout,
oligonucleotides with the sgRNA sequence targeting HMGCS1 were synthesized according to CRISPR
design (http://crispr.mit.edu/). Their sequences are listed in Table S1. Primer pairs were annealed
and then cloned into the lentivirus transfer vector lentiCRISPRv2, digested by restriction enzyme
BsmBI to produce the recombinant lentiviral plasmid. The recombinant lentiviral plasmid expressing a
sgRNA was then sequenced to validate the insertion of the sgRNA sequence. The validated plasmid
was co-transfected with packaging plasmids pCMVdeltaR8.91 and pMD.G into HEK 293T cells to
produce lentiviruses expressing the sgRNA for subsequent transduction. To obtain single-cell clones of
HMGCS1-knockout cells, the infected AGS cells were cultured under puromycin selection (1 µg/mL)
through serial dilutions and then screened by Western blot analysis with anti-HMGCS1 antibody.
For the detection of insertion and deletions (indels), genomic DNAs of AGS cells with HMGCS1
knockout (HMGCS1 KO #BF4 and #FE4 cells) were extracted for PCR amplification of the modified
region. PCR products of the modified region were then cloned into a T&A vector for sequencing.
The lentiCRISPR v2 empty vector was also used to generate recombinant lentiviruses for transduction
into AGS cells as negative control cells.

4.4. Quantitative Real-Time PCR Analysis

After extraction of total RNAs by Trizol reagent (Invitrogen), cDNAs were synthesized using
Moloney murine leukemia virus reverse transcriptase (New England BioLabs, Beverly, MA, USA) with
an oligo (dT)18 primer. Then, cDNAs were amplified with primers by an ABI StepOne Plus system
with SYBR Green Master Mix for mRNA detection according to the manufacturer’s protocol (Applied
Biosystems, Thermo Fisher Scientific, Warrington, UK) as described previously [43,44]. All primers
used for PCR are listed in Table S1. The relative quantification of mRNA levels was calculated by use
of the 2−∆∆CT values and then normalized with those of GAPDH. The data are representative of the
mean values and standard deviations of at least three independent experiments.

4.5. Western Blot Analysis

For the preparation of whole-cell extracts, cells were washed with PBS and then lysed in NETN
buffer (50 mM Tris-HCl (pH 7.9), 150 mM NaCl, 0.5 mM EDTA, and 0.5% NP40) containing protease
and phosphatase inhibitors as described above. Proteins of cell extracts were denatured in sample
buffer and further analyzed by SDS-PAGE as described before [45]. Subsequently, Western blot
analysis was performed using anti-HMGCS1 (GeneTex, Irvine, CA, USA and Santa Cruz, CA, USA),
anti-Oct4 (GeneTex), anti-SOX-2 (GeneTex), anti-EGFP (GeneTex), anti-eIF2α (GeneTex), anti-p-eIF2α
(Cell Signaling), anti-PERK (GeneTex), anti-p-PERK (GeneTex), anti-ATF4 (GeneTex), anti-GCN2
(GeneTex), anti-B23 (Santa Cruz), and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH,
GeneTex) antibodies.

4.6. Subcellular Fractionation

To prepare the nuclear and cytosolic extracts, cell pellets were lysed in a hypotonic buffer (1 mM
MgCl2, 10 mM KCl, 20 mM HEPES (pH 7.4), 0.5% Nonidet P-40, 0.5 mM dithiothreitol, 1 mM
phenylmethylsulfonyl fluoride, 10 µg/mL leupeptin, 10 µg/mL aprotinin, and 100 mM sodium fluoride)
on ice for 30 min. After centrifugation at 4000× g at 4 ◦C for 10 min, the supernatants removed from
the pellets were treated as cytosolic extracts. Pellets of nuclei were further resuspended and lysed in a
high-salt buffer (0.4 M NaCl, 1 mM MgCl2, 10 mM KCl, 20 mM HEPES (pH 7.4), 0.5 mM dithiothreitol,
and protease and phosphatase inhibitors, as described above) at 4 ◦C for 30 min. After centrifugation,
the recovered supernatants were treated as nuclear extracts.

http://crispr.mit.edu/
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4.7. Co-immunoprecipitation

Whole-cell extracts of cells (1 × 105) were prepared as described above. To prepare the slurry of
antibody-conjugated protein A-Sepharose, 1 µg of anti-HMGCS1 antibody (sc-166763, Santa Cruz) or
rabbit IgG (I5006, Sigma-Aldrich), 50 µL of a 50% (vol/vol) slurry of protein A-Sepharose, and 450 µL
of NETN buffer were incubated overnight at 4 ◦C under gentle rotation. Then whole-cell extracts
(250 µg) and antibody-conjugated protein A-Sepharose were mixed overnight at 4 ◦C under rotary
agitation. The immunoprecipitated proteins were eluted from the beads by boiling samples in sample
buffer for Western blot analysis using anti-HMGCS1 (GTX112346, GeneTex) and anti-PERK (GTX81222,
GeneTex) antibodies.

4.8. Cell Growth and Viability Assays

To evaluate cell growth and viability, the treated cells were seeded onto six-well plates and
then counted by trypan blue exclusion method. Additionally, MTT assay was carried out and then
determined using a microplate ELISA reader (TECAN Infinite 200, Männedorf, Switzerland) after
incubation for 24 or 48 h [46].

4.9. Colony Formation, Migration, Invasion, and Tumorsphere Formation Assays

To assay the ability of anchorage-independent growth, the treated cells were seeded in soft agar for
subsequent colony formation assay [43]. Fourteen days later, numbers of colonies larger than 0.1 mm in
diameter were counted from 10 random fields under the microscope. As described [43], the migration
and invasion of the treated cells were examined in 24-well plates for 12 and 20 h, respectively.
The migrated or invaded cell numbers were counted from 10 random fields under the microscope.
To survey tumorsphere formation, the treated cells seeded onto 96-well ultra-low-attachment plates
(Corning) were cultured in a stem cell-selective medium [47]. A count of spheres larger than 50 µm
was made under the microscope seven days later.

4.10. ChIP Assay

To cross-link DNA and protein, cells were incubated with formaldehyde to a final concentration
of 1% at room temperature for 15 min. The reaction was stopped by adding glycine (0.125 M
final concentration) at room temperature for 5 min. Then, cells were lysed in 500 µL of NETN
buffer (50 mM Tris-HCl (pH 7.9), 150 mM NaCl, 0.5 mM EDTA, and 0.5% NP40) with inhibitors
of proteases (1 mM phenylmethylsulfonyl fluoride, 10 µg/mL aprotinin, and 10 µg/mL leupeptin)
and phosphatases (100 mM sodium fluoride). After sonication with a microtip and subsequent
centrifugation, the supernatant was immunoprecipitated with a 50% (vol/vol) slurry of anti-HMGCS1
antibody (sc-166763, Santa Cruz) or rabbit IgG (I5006, Sigma-Aldrich)-conjugated protein A-Sepharose
overnight at 4 ◦C. The immunoprecipitated DNA–protein complexes were eluted with 150 µL of elution
buffer (50 mM NaHCO3, 1% SDS) twice by vortexing. After adding 30 µg of RNase A, 36 µL of 5 M
NaCl, and elution buffer to a final volume of 600 µL, the immunoprecipitates were heated at 67 ◦C for
5 h to reverse the cross-linking of DNA and protein. Then, DNAs were extracted with phenol and then
precipitated by ethanol. In total, 10% of the precipitated DNA was used as a template for real-time
PCR using the specific primers as listed in Table S1 to amplify the DNA fragments of Oct4 and SOX-2
promoters. The percentages of immunoprecipitated fragments of promoters in chromosomal DNA
were quantified and then normalized to total input DNA.

4.11. Time-Lapsed Epi-Fluorescence and DIC Microscopy Imaging

To record time-lapsed images of transportation of EGFP-tagged HMGCS1 in live cells, KATO III
cells were inoculated on a 3.5-cm glass-bottom plate (Mettek, Ashland, MA, USA) and then transfected
with either EGFP-tagged HMGCS1-expressing plasmid (pEGFP-HMGCS1) or EGFP-only expressing
vector (pEGFP-C1). Both phase-contrast and fluorescence images of cells were acquired by using
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an inverted microscope (IX 71, Olympus, Tokyo, Japan) equipped with an Olympus DP70 digital
camera system. EGFP was excited by 460–490 nm wavelength, filtered from a mercury light source.
The fluorescent emission of EGFP was collected by a 100× oil immersion objective with a numerical
aperture (N.A.) value of 1.40 (Olympus, Japan), and filtered by a WIBA filter cube (515–550 nm).
The phase-contrast images were acquired prior to fluorescence imaging for displaying the shapes of
cells during the recording period. All images were recorded with DP-BSW software (Olympus, Tokyo,
Japan). Images of 10 individual cells were acquired at the indicated time points. To elucidate the
alteration of the fluorescence in both the cytoplasm and nuclei, the ratio of the fluorescence intensity
in nuclear and cytoplasmic areas was determined using ImageJ software (version 1.49, University of
Wisconsin, Madison, WI, USA).

4.12. Immunofluorescence Staining and Confocal Microscopy

Cells (1 × 105) seeded on coverslips were fixed with 4% paraformaldehyde at room temperature
for 8 min. After blocking with 2% bovine serum albumin and subsequent washing with PBS, the cells
were incubated with primary mouse anti-HMGCS1 (sc-166763, Santa Cruz) or rabbit anti-PERK
(GTX81222, GeneTex) antibodies, followed by secondary DyLight™ 488-conjugated goat anti-mouse
IgG (GTX213111-04, GeneTex) or DyLight™ 594-conjugated goat anti-rabbit IgG (GTX213110-05,
GeneTex). The cells were also stained with 4,6-diamidino-2-phenylindole dihydrochloride (DAPI)
(Sigma-Aldrich) for nuclear staining. The subcellular localizations of HMGCS1 and PERK were further
examined by confocal microscopy (Zeiss LSM880 with Airyscan, Jena, Germany).

4.13. In vivo Xenografted Tumorigenicity and Tail Vein Metastasis Assays

Animal experiments in this study were performed in accordance with protocols approved by the
institutional ethical committee (Institutional Animal Care and Use Committee of National Yang-Ming
University). The animal ethics approval codes are 1060113, 1070501, and 1090107. In brief, five-week-old
BALB/c nu/nu mice (National Laboratory Animal Center, Taipei, Taiwan) were subcutaneously injected
with the treated cells for xenografted tumorigenicity assay as described [39]. Both the length (L) and
width (W) of the xenografts were measured with calipers every two days. The tumor volume (V) was
estimated using the formula V = (L ×W2)/2. Five-week-old male nonobese diabetic severe-combined
immunodeficiency (NOD-SCID) mice (National Laboratory Animal Center, Taipei, Taiwan) were
injected with the treated cells by tail vein injection for metastasis assay [43]. After sacrificing, lung
samples were collected and rinsed by PBS. The metastatic burden was assessed by counting the
numbers of white nodules on the surface of lungs under a dissecting microscope.

4.14. Surgical Samples

Gastric adenocarcinoma tissues from gastric cancer patients were collected at the Department of
Surgery, Taipei Veterans General Hospital. Before surgery, none of these patients were undergoing
chemotherapy or radiotherapy. Informed consent was obtained from each patient before collection.
An analysis of tissue specimens was performed according to a protocol approved by the Institutional
Review Board of Taipei Veterans General Hospital. The ethics codes are TPEVGH No. 2017-04-004AC,
2017-12-018BC, and 2020-01-011AC.

4.15. Statistical Analyses

Statistical analysis was performed using an independent Student’s t-test for the simple comparison
of two groups. A difference in the results was considered to be statistically significant when the p value
was less than 0.05.
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5. Conclusions

In summary, our results reveal that HMGCS1 exerts both metabolic and nonmetabolic functions
in gastric cancer progression. HMGCS1 translocates into the nuclei of gastric cancer cells under stress
conditions and binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also interacts with PERK
and induces the ISR pathway, suggesting that HMGCS1 and the ISR pathway may be promising targets
for therapy in gastric cancer.
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