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a b s t r a c t 

This present method describes a versatile approach for the electrochemical synthesis of a composite material of 

Poly (3,4-ethylenedioxythiophene) (PEDOT) and Carbon Nanofibers (CNFs) for neural interfaces and biosensing 

applications. Oxidized CNFs were utilized as dopants of PEDOT to prepare the composite coating through 

electrochemical deposition on microelectrodes arrays (MEA). The experimental results of this study showed 

that PEDOT:CNF microelectrodes exhibit remarkable electrochemical properties, combining low impedance, high 

surface area, high charge injection capability and reliable neurotransmitters monitoring using amperometric 

techniques. Taken together, these results suggest the great potential of PEDOT:CNF composite for developing next- 

generation multifunctional microelectrodes for applications in neural therapies. 

• A simple approach for the electrochemical synthesis of PEDOT:CNF composite material on microelectrodes for 

neural interfaces and neurochemical sensing. 
• PEDOT:CNF microelectrodes exhibit remarkable electrochemical properties, combining low impedance and high 

charge injection capabilities. 
• PEDOT:CNF microelectrodes allowed the reliable detection of neurotransmitters with improved sensitivity. 
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Specifications Table 

Subject Area: Materials Science 

More specific subject area: Nanostructured materials 

Neural interfaces 

Electrochemical sensors 

Method name: Electrochemical synthesis of PEDOT:CNF composite on microelectrodes arrays 

Name and reference of 

original method: 

Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and 

biosensingBiosensors and Bioelectronics, Volume 165, 2020, Pages 112413 

Resource availability: Not applicable 

Method details 

Background 

Recent progress in the field of neural interfaces raises the need for novel multifunctional

microelectrodes that are capable to meet the performance criteria of a number of neuronal

interactions including neural recording, stimulation and sensing of bioactive molecules at the 

electrode-tissue interface. For neural recording, the microelectrode should have a low impedance 

across frequencies of interest for electrophysiological recordings (10 Hz–10 kHz) [1–4] , while keeping

a spatial footprint as small as possible to record the activity of small neuron population, down to the

single cell [20] . This is beneficial to increasing the signal-to noise ratio (SNR) during in vivo neural

recording. For electrical stimulation purpose, the electrode must display a high storage capability to 

safely inject millisecond current pulse with current range in the μA thus decreasing both electrode

polarization and heat generation during neural stimulation [5] . 

In principle, the specific capacitance of an electrode may be greatly enhanced by introducing

porous and high surface area organic materials into the electrode, thus compensating for a reduction

of electrode size. Among the various organic materials reported in literature available to meet 

such requirements, conductive polymers such as Poly (3,4-ethylenedioxythiophene) (PEDOT) has a 

been popular choice that allow direct delivery of electrical, electrochemical and electromechanical 

signals at the electrode-tissue interface [1 , 6 , 17] . PEDOT-coated electrodes have been considered for

biomedical [18] and bioelectronic applications [2 , 10 , 11 , 13] as well as in the fabrication of devices for

neuronal interfaces [1 , 7] and electrochemical sensing and actuating devices [8 , 12 , 16] . On the other

hand, carbon nanomaterials have displayed a wide array of key properties and are also promising

candidate for such applications. Charged carbonaceous nanomaterials such as carbon nanotubes CNTs 

or graphene oxide (GO) have been used (as dopant) in conjunction with PEDOT for the purpose

of improving the electrochemical stability [9] , charge storage delivery [6] and sensitivity of PEDOT

electrodes for neurochemicals sensing [23] . These improvements come from both bulk and surface 

properties of these nanomaterials and their corresponding nanomaterials, including large surface- 

to-volume ratio and specific surface area, better electrocatalytic activity, and fast electron transfer 

kinetics compared to traditional PEDOT electrodes. 

Carbon nanofibers (CNFs) are increasingly getting in the spotlight in bioanalytical area as 

through their properties of high surface area, non-toxicity and electrochemical stability. CNFs exhibit 

extraordinary strength and provide an extremely large surface area for electron charge transfer 

(compared to that of GO or PEDOT), making them a very promising candidate nanomaterial

for recording and stimulation microelectrode sites [14] . We have recently combined PEDOT with

CNFs as a single composite material on neural microelectrodes arrays (MEA). The PEDOT:CNF 

modified microelectrodes exhibit a low specific impedance of 1.28 M Ω .μm 

2 at 1 kHz resulting in

unrivaled charge injection limit of 10.03 mC/cm 

2 when compared to other reported organic electrode

nanomaterials. These results suggest the great potential of PEDOT:CNF composites for developing 

next-generation multifunctional bidirectional microelectrodes. 

The focus of the present method is to provide a step-by-step protocol for the electrochemical

synthesis of the composite material of PEDOT:CNF on neural MEA. The synthesis process is based

on the use of oxidized CNFs as dopants of PEDOT through electrochemical deposition route, 

creating a nanocomposite in one step, localized on a 20 μm dimeter microelectrode without 
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Fig. 1. MEA microfabrication. A) MEA microfabrication steps from the starting 4-in. glass wafer to the final SU8-coated wafer. 

B) Picture of a final functional MEA after glass well gluing. C) Optical picture of the microelectrode matrix. 
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he need of time-consuming grafting process. The combination of CNFs and PEDOT as a single

omposite material results in as strong synergetic effect between the two components leading to a

uperior microelectrode coating with remarkable electrochemical properties, combining as expected

ow impedance, high charge injection capability and reliable neurotransmitters monitoring using

mperometric techniques. 

aterials 

NLoF 2035 and AZ-4562 photoresists were purchased from Microchemicals GmbH. SU8 2005,

U8 developer and MF CD26 developer were purchased from MicroChem. EDOT, dopamine, H 2 SO 4 ,

thanol, Acetone, Tris buffer (15 mM Tris, 140 mM NaCl, 3.25 mM KCl, 1.2 mM CaCI 2 , 1.25 mM

aH 2 P0 4 , 1.2 mM MgCI 2 , and 2.0 mM Na 2 S0 4 , with the pH adjusted to 7.4), DA.2HCl were

urchased from Sigma-Aldrich. CNFs were purchased from Sigma-Aldrich (Pyrograf R ©-III, PR-19-XT-PS,

yrolytically stripped, platelets conical, > 98% carbon basis, 20–200 μm). In all experiments, deionized

ater (18 M �) was used. Platinum and silver wires were purchased from WPI, Saturated Calomel

lectrode (SCE) reference electrodes were purchased from Hach. Electrochemical characterizations

ere conducted with a 3-electrode electrochemical cell with a Pt wire as counter electrode and SCE

s reference electrode. Electrochemical depositions were carried out with a 2-electrode cell using an

g/AgCl wire as quasi-reference electrode, obtained by chlorination of a silver wire in 1 M HCl at

 V vs Pt for 5 s. Stock solutions of dopamine were prepared in 0.001 M HCl and stored at 4 °C in

he dark. This stock solution was used to prepare fresh dopamine solutions in Tris buffer before any

xperiment. 

icrofabrication of microelectrodes array (MEA) 

The MEAs chips were fabricated using a series of standard photolithographic steps ( Fig. 1 ): 1) Glass

afer (4 inch) was cleaned in a Diener machine by MW-oxygen plasma (800 W, 5 min, 10 0 0 sccm

 2 ) prior processing. 2) Spin-coating and photopatterning of a negative photoresist layer (NLoF, 5 μm)

ere performed onto the glass substrate. 3) PVD metallization of the wafer (Ti/Au, 50 nm/200 nm)

nd lift-off at room temperature in acetone overnight. 4) Wafer cleaning by piranha solution followed

y MW-oxygen plasma (200 W, 400 sccm O 2 , 2 min). 5) Spin-coating and 6) photopatterning of a

.5 μm-thick SU8 layer for passivation of the MEA, which is subsequently hard-baked to enhance its

echanical and barrier properties, while making it chemically more stable. 

Once the lift-off process is done, the rugosity of both the metal tracks and the wafer are measured

ith a profilometer to detect irregular profiles that could be due to an incomplete lift-off and would

revent a uniform spin-coating of SU8 and its adhesion to the glass surface. 

A combination of piranha and plasma cleaning after lift-off is used to ensure a complete cleaning

f the wafer by removing organic residues and possible dust, while not damaging metal tracks with
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Fig. 2. CNF chemical oxidation. A) CNF Solution after cool-down and decantation steps. B) Filtration of the CNF solution on 

hydrophilic PTFE membrane. C) Picture of the final filtration cake of the PTFE membrane. D) CNFs dispersion at 2 mg/mL 

concentration in DIW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

high power MW-plasma treatment (which can overheat metals and induce crack/delamination) and 

still dehydrating and oxidizing the wafer surface before SU8 coating to promote its adhesion. 

Hard-baking of the SU8 is realized by slowly ramping the wafer for room temperature to 125 °C
and back at room temperature, in order to eliminate solvent traces from the polymer film and

to obtain a complete cross-linking of the coating. Ramping temperatures is necessary to prevent

mechanical stress inside the polymer film and at its interface with the glass. 

Final packaging steps to obtain functional MEAs ( Fig. 1 B) were as followed: i) AZ-4562 10 μm

spin-coating and baking on the entire wafer as a protective layer for dicing. ii) Diamond saw dicing of

the wafer to release the MEAs. iii) Stripping of the protective photoresist layer in acetone (20 min). iv)

glass well gluing with PDMS. v) PDMS curing at 60 °C for 3 h. vi) MEA conditioning in DIW overnight.

Preparation of carbon nanofibers 

Raw CNFs could not be dispersed in water in an adequate manner for electrodeposition, even after

extensive sonication on low CNF concentration ( < 0.5 mg/mL), as the solution showed decantation

signs within 5 min after the sonication step. To circumvent this issue, chemical oxidation of the CNFs

was performed, to make them hydrophilic and negatively charged. The experimental steps for this 

oxidation were as followed: 1) glassware cleaning by sonication in DIW/isopropanol (1:1 v/v) and 

dried overnight at 80 °C. 2) in a 150 mL-round bottom flask, 1 mg/mL of raw CNFs was dispersed in

freshly mixed HNO 3 (68%)/H 2 SO 4 (96%) (3:1 v/v) by sonication (15 min, 90 s alternating pulsed and

continuous sonication). 3) the solution is brought to reflux by heating at 70 °C under magnetic stirring

(500 rpm) for 5 h. 4) the solution is let to cool down at room temperature overnight, for decantation

( Fig. 2 A). 

Once the flask is cooled down, the solution is diluted in 1 L DIW and let sit overnight for

decantation. The solution is filtered on hydrophilic PTFE membranes. The filtrated volume contains 

black particles and is dark-brown colored ( Fig. 2 B). The filtration cake ( Fig. 2 C) is rewetted and broken

by slow addition of DIW and manual trituration with a metallic spatula. 250 mL of DIW are added

and mixed with the wetted cake by agitation. This process is repeated until the filtrated volume

remains clear after passing through the filtration membrane. Final filtration cake is removed from 

the PTFE membrane and kept in wet state to ease its redispersion. To estimate the water and CNF

content in the final product, a small part of it is weighted and placed in a vacuum oven to dry at low

temperature/low vacuum (45 °C, 300 mbar) until its weight reach a stable value. Oxidized CNFs are

then dispersed in DIW at 2 mg/mL concentration and kept in the dark at 4 °C for storage ( Fig. 2 D). 
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Fig. 3. Microelectrode activation. A) CV in H 2 SO 4 0.5 M at 200 mV/s between −0.4 and 1.5 V, of a gold microelectrode (20 μm 

diameter) before and after activation (10 cycles of CA at 2 V for 250 ms and 0 V for 1 s). B) Voltammetric response of the 

microelectrode during deposition under constant current deposition. 
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lectrochemical deposition of PEDOT:CNF composite on microelectrodes and MEAs 

To ensure good deposition conditions, microelectrodes must be cleaned. This is realized by

lectrochemical cleaning by a series of 10 potential pulse (2 V vs Ag/AgCl for 250 ms, 0 V vs Ag/AgCl

or 1 s) in 0.5 M H 2 SO 4 . Cyclic voltammetry is used to probe the microelectrode (20 μm diameter)

tate before and after the cleaning process ( Fig. 3 A). 

As can be seen in Fig. 3 A, the cleaning of the electrode can be observed through multiple changes

n the CV: i ) A shift toward the right of the reduction peak (which is also more resolved), meaning

hat less energy is necessary to gold oxide reduction, and by the higher reduction current observed, ii )

he apparition of multiple oxidation peaks on the forward scan, more resolved than the starting one,

nd their shift toward the left, meaning less energy is necessary for gold oxidization, iii ) the increase

f current at 1.5 V, due to an increase of hydrolysis, meaning that the exposed surface has increased,

v ) the apparition of the hydrogen sorption current at higher potentials, with a quicker increase,

eaning the electrode state is compatible with hydrogen sorption on the electrode, phenomenon

nown to be inhibited by organic pollution. 

For deposition, a solution of EDOT (10 mM) and CNF (1 mg/mL) is prepared. To ensure proper

ixing, the solution is vortexed for 1 h after preparation and kept overnight at 4 °C in the dark.

efore use, the solution is revortexed for 30 min, sonicated for 10 min (pulsed, room temperature),

nd vortexed again for 5 min. The deposition solution is poured in the MEA right after activation of

he microelectrodes. Electrode targeted for deposition is then submitted to a 3.14 nA current which

s stopped when the deposition charge reaches 1200 nC ( Fig. 3 B). The deposition can be confirmed

y both the presence of a quick ( < 3 s) nucleation peak and the following decrease of the potential.

t is worth mentioning that the potential reached during the electrochemical deposition ( Fig. 3 B) is

ar below the potential limit in water media, which may indicate that the electrodeposition method

oes not lead to an overoxidized PEDOT:CNF film. The deposition solution is gently re-homogenized

n between multiple depositions by pipetting to redistribute in solution CNFs that could have been

dsorbed of the MEA surface and improve deposition reproducibility. 

ethod validation 

canning electron microscopy (SEM) and optical microscopy 

The morphology of the PEDOT:CNF coating was confirmed by SEM using a HITACHI S-4800 cold

EG high resolution SEM with a voltage of 800 Vs and HIROX Numerical microscope. SEM images
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Fig. 4. PEDO T: CNF-modified microelectrode. A) Optimal picture and B) SEM image of a PEDOT:CNF-modified microelectrode. 

Table 1 

Comparison of the electrochemical performance of PEDOT:CNF microelectrode with some of the best nanostructured organic 

materials used to fabricate neural interfacing electrodes. 

Electrode material Geometric 

area (μm 

2 ) 

Specific impedance at 

1 kHz (M �. μm 

2 ) 

Charge injection capacity 

(mC.cm 

−2 ) 

Ref 

PEDOT:PSS 4500 1.35 2.92 [19] 

PEDOT:CNT 2830 42.45 1.25 [6] 

PPy:PSS 12,467 24 5 [22] 

PPy:CNT 12,434 25 7.5 [22] 

PPy:Cl 12,240 34.5 3.2 [24] 

CNT array 1962 5.9 1.6 [21] 

CNT fiber 1450 20.44 6.52 [20] 

Neat graphene fiber 1169 8.7 8.9 [22] 

PEDOT:CNF 314 6.9 10.03 This work 

 

 

 

 

 

 

 

 

 

 

 

 

 

confirmed that the PEDOT:CNF composite was uniformly distributed on the gold microelectrode with 

CNFs randomly distributed in the deposit ( Fig. 4 A and B). Oxidized CNFs act as dopant thanks

to the negative charges on the fibers surface conferred by the chemical oxidation, behaving like

counter anion to the conductive polymer PEDOT and the intermediary cation-radical during EDOT 

polymerization. 

Electrochemical impedance spectroscopy (EIS) 

EIS measurements ( N = 3) were made through a Bio-Logic VMP3 potentiostat, by applying a

10 mV RMS sine wave with frequencies varied from 10 Hz to 7 MHz. The electrode active sites were

immersed in artificial cerebrospinal fluid (aCSF). The mean impedance at 1 kHz for the unmodified

gold microelectrode was around 2.8 M Ω , while after PEDOT:CNF electrochemical deposition, the mean

impedance fell to 20.1 k Ω ( Fig. 5 A). This confirms the ability of the modified microelectrode to be

used as a recording electrode, with potential high SNR recordings due to its low impedance. The

specific impedance of the PEDOT:CNF modified microelectrodes (6.9 M Ω .μm 

2 at 1 kHz) was ca. 130

times lower than gold microelectrodes (898 M Ω .μm 

2 ) and lower than the other reported organic

electrode materials presented in Table 1 . The Nyquist plot recorded in aCSF media is presented in

Fig. 5 B. In the higher frequency region, a semi-circle is observed which is related to the charge

resistance between the electrode material and the surrounding electrolyte while at low frequencies 

the capacitive behavior becomes dominant. The incorporation of CNF in the PEDOT produced very 

small radius of the semi-circle on the Nyquist plot with a charge transfer resistance of about 14.2 k Ω .
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Fig. 5. Electrochemical characterization of PEDOT:CNF modified microelectrodes. A) EIS measurements on modified PEDOT:CNF 

and unmodified gold microelectrodes over a frequency range of 10 Hz to 7 MHz in aCSF vs Ag/AgCl at 10 mV ( N = 3). B) 

Nyquist plots of modified PEDOT:CNF and unmodified gold microelectrodes over a frequency range of 10 Hz to 7 MHz in aCSF 

vs Ag/AgCl at 10 mV ( N = 3). C) Cyclic voltammetry of modified PEDOT:CNF and unmodified gold microelectrodes in aCSF 

between −0.8 and 0.4 V vs Ag/AgCl. D) Cyclic voltammetry of modified PEDOT:CNF microelectrodes in 5.0 mM [Fe(CN) 6 ] 
3-/4 −

containing 0.1 M KCl at a scan rate of 200 mV s − 1 . E) Cyclic voltammetry of PEDOT:CNF modified microelectrodes in a 

physiological media-mimicking buffer, Tris buffer 1X at pH = 7.4, at 200 mV/s between −1.5 and 0.6 V vs Ag/AgCl. F) Typical 

stimulation current waveform (green trace) and total voltage excursion (purple trace) under the biphasic stimulation protocol 

(current pulse I = 31.5 μA). 
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Cyclic voltammetry (CV) 

Cyclic voltammetry (CV) was carried out using a Bio-Logic VMP3 potentiostat, between −0.8 and

0.4 V vs SCE in aCSF at 200 mV/s. Deposits ( N = 3) were cycled until a stable voltammogram was

obtained, usually at the 4th cycle. The charge transfer capacity increased using PEDOT:CNF, as can

be seen in Fig. 5 C. The cathodal charge storage capacity (CSCc) of the composite film was calculated

by the time integral of the cathodal currents within the cycled region. the CSCc of the bare gold

microelectrode increased from 0.1 mC/cm 

2 to 42.4 mC/cm 

2 for PEDOT:CNF. This improvement is due

to the higher surface area coating the PEDOT:CNF that allows effective diffusion of electrolyte ions at

the electrode-solution interface, leading to a higher charge storage capability. 

CV measurements were further performed in ferro-ferricyanide media. Ferri-ferrocyanide 

[Fe(CN) 6 ] 
3-/4 − is a standard inner-sphere redox couple used to evaluate the electrochemical 

properties of the electrode, particularly on carbon nanostructured surfaces. Fig. 5 D shows the cyclic

voltammogram of PEDOT:CNF microelectrodes in 5.0 mM [Fe(CN) 6 ] 
3-/4 − containing 0.1 M KCl at a

scan rate of 200 mV s −1 . A pair of quasi-reversible peaks is also observed, which can indicate that the

conducting material PEDOT:CNF could accelerate the electron transfer between the electrochemical 

probe [Fe(CN) 6 ] 
3-/4 − and the PEDOT:CNF electrode. This result confirms the good electro-catalytic 

activity of the PEDOT:CNF electrode in the presence of ferro-ferricyanide media. 

Voltage transient response 

To characterize the performance of PEDOT:CNF microelectrodes for neural stimulation purpose, 

their responses when submitted to biphasic 1-ms current pulses were recorded in-vitro using a 

Bio-Logic VSP3 Potentiostat in a physiological media-mimicking buffer, Tris buffer 1X at pH = 7.4.

The microelectrodes were allowed to sit in the buffer media for 10 min before stimulation and

the waveform was then applied. Voltage transients measurements were collected by the PEDOT:CNF 

microelectrodes using 1 ms-long biphasic current pulses with cathodic pulse first. Measuring the 

corresponding voltage excursion is employed to calculate the safe charge injection limits of the 

interface. These values correspond to V mc (maximum negative polarization voltage) across electrode- 

electrolyte interface for PEDOT:CNF ( Fig. 5 F). The negative potential excursion V mc was calculated

by subtracting the access voltage (V a ), associated with the ohmic resistance of the electrolyte from

the maximum negative voltage V max,neg . [3] To ensure a safe polarization, the water window of the

PEDOT:CNF microelectrodes in buffer solution was first determined using CV at 200 mV/s vs Ag/AgCl

reference electrode ( Fig. 5 E). The water reduction and oxidation voltages were found to be at −1.4

and 0.6 V respectively. The polarization voltage V mc was used to determine the CIL by increasing

the pulse currents before V mc is reaching the negative electrolysis frontier at −1.4 V. The measured

corresponding maximum current before the water reduction potential was 31.5 ± 3 μA ( Fig. 5 F). The

calculated charge injection was calculated at V mc = −1.3 V, before the water reduction potential to be

10.03 ± 1 mC/cm ² for the PEDOT:CNF microelectrodes. The calculated CIL of the composite material 

was compared to some other reported organic materials ( Table 1 ). 

Amperometric detection 

Electrochemical detection of dopamine (DA) was performed by chronoamperometry at 130 mV 

vs SCE after this potential was identified previously as the oxidation potential of DA on PEDOT:CNF

by CV [17] . The DA direct current responses ( N = 3) resulted in calibration plot i.e . amperometric

current response vs different concentration of DA with correlation coefficients > 0.999 ( Fig. 6 ).

The corresponding sensitivity were calculated as 13.4 pA/μM with the limit of detection (LOD) of

0.045 μM. In terms of concentration ranges, these LOD were well suited to the reported assay of

these analytes in the medical field [15] . 
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Fig. 6. Linear regression curve of PEDOT-CNF microelectrode current response at 130 mV vs SCE to dopamine injections. The 

currents steps in the figure correspond to stepped concentrations increase from 0 to 9 μM. 
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onclusions 

We have described a step-by-step protocol for the electrochemical synthesis of a novel composite

aterial of PEDOT-CNF on microelectrodes array by a simple and reproductible electrodeposition

ethod. The results from this study suggest the great potential of PEDOT:CNF composites for

eveloping next-generation microelectrodes for applications in neural therapies and biomedical

esearch by taking advantages of its multifunctionality. 

cknowledgments 

We thank Dr. Anne Marie Galibert and Dr. Brigitte Soula (CIRIMAT, Université de Toulouse, CNRS,

-31062, France) for help in the work on raw carbon nanofibers. The authors acknowledge fundings

rom the Agence Nationale de la Recherche ( ANR-15-CE19-0 0 06 and ANR-19-CE19-0 0 02-01 ). This work

as supported by French RENATECH network. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal

elationships that could have appeared to influence the work reported in this paper. 

eferences 

[1] M.R. Abidian , K.A. Ludwig , T.C. Marzullo , D.C. Martin , D.R. Kipke , Interfacing conducting polymer nanotubes with the

central nervous system: chronic neural recording using poly (3, 4-ethylenedioxythiophene) nanotubes, Adv. Mater. 21 (37)

(2009) 3764–3770 . 
[2] M. Berggren , A. Richter-Dahlfors , Organic bioelectronics, Adv. Mater. 19 (20) (2007) 3201–3213 . 

[3] S. Carli , L. Lambertini , E. Zucchini , F. Ciarpella , A. Scarpellini , M. Prato , E. Castagnola , L. Fadiga , D. Ricci , Single walled
carbon nanohorns composite for neural sensing and stimulation, Sens. Actuat. B 271 (2018) 280–288 . 

[4] V. Castagnola , E. Descamps , A. Lecestre , L. Dahan , J. Remaud , L.G. Nowak , C. Bergaud , Parylene-based flexible neural probes
with PEDOT coated surface for brain stimulation and recording, Biosens. Bioelectron. 67 (2015) 450–457 . 

[5] S.F. Cogan , Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng. 10 (2008) 275–309 . 

[6] R. Gerwig , K. Fuchsberger , B. Schroeppel , G.S. Link , G. Heusel , U. Kraushaar , W. Schuhmann , A. Stett , M. Stelzle , PEDOT–CNT
composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical

properties, Front. Neuroeng. 5 (2012) 8 . 
[7] R. Green , M.R. Abidian , Conducting polymers for neural prosthetic and neural interface applications, Adv. Mater. 27 (46)

(2015) 7620–7637 . 
[8] A . Khaldi , A . Maziz , G. Alici , G.M. Spinks , E.W. Jager , Soft, flexible micromanipulators comprising polypyrrole trilayer

microactuators, in: Electroactive Polymer Actuators and Devices (EAPAD), International Society for Optics and Photonics,

2015, p. 94301R . 
[9] X. Luo , C.L. Weaver , D.D. Zhou , R. Greenberg , X.T. Cui , Highly stable carbon nanotube doped poly (3,

4-ethylenedioxythiophene) for chronic neural stimulation, Biomaterials 32 (24) (2011) 5551–5557 . 

http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0005
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0005
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0007
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0007
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0007
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0009
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0009
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0009
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0009
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0009
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0009


10 V. Saunier, E. Flahaut and M.-C. Blatché et al. / MethodsX 7 (2020) 101106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10] A . Maziz , A . Khaldi , N.-.K. Persson , E.W. Jager , Soft linear electroactive polymer actuators based on polypyrrole, SPIE

Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Society for Optics and
Photonics, 2015 . 

[11] A. Maziz , C.d. Plesse , C. Soyer , E. Cattan , F.d.r. Vidal , Top-down approach for the direct synthesis, patterning, and operation
of artificial micromuscles on flexible substrates, ACS Appl. Mater. Interfaces 8 (3) (2016) 1559–1564 . 

[12] A . Maziz , A . Concas , A . Khaldi , J. Stålhand , N.-.K. Persson , E.W. Jager , Knitting and weaving artificial muscles, Sci. Adv. 3 (1)
(2017) e1600327 . 

[13] A. Maziz , C. Plesse , C. Soyer , C. Chevrot , D. Teyssié, E. Cattan , F. Vidal , Demonstrating kHz frequency actuation for

conducting polymer microactuators, Adv. Funct. Mater. 24 (30) (2014) 4 851–4 859 . 
[14] T.B. Nguyen-Vu , H. Chen , A.M. Cassell , R. Andrews , M. Meyyappan , J. Li , Vertically aligned carbon nanofiber arrays: an

advance toward electrical–neural interfaces, Small 2 (1) (2006) 89–94 . 
[15] M.C. Polidori , W. Stahl , O. Eichler , I. Niestroj , H. Sies , Profiles of antioxidants in human plasma, Free Radic. Biol. Med. 30

(5) (2001) 456–462 . 
[16] S. Reddy , Q. Xiao , H. Liu , C. Li , S. Chen , C. Wang , K. Chiu , N. Chen , Y. Tu , S. Ramakrishna , Bionanotube/poly (3,

4-ethylenedioxythiophene) nanohybrid as an electrode for neural interface and dopamine sensor, ACS Appl. Mater. 

Interfaces 11 (20) (2019) 18254–18267 . 
[17] V. Saunier , E. Flahaut , C. Blatché, C. Bergaud , A. Maziz , Carbon nanofiber-PEDOT composite films as novel microelectrode

for neural interfaces and biosensing, Biosens. Bioelectron. 165 (2020) 112413 . 
[18] E. Smela , Conjugated polymer actuators for biomedical applications, Adv. Mater. 15 (6) (2003) 4 81–4 94 . 

[19] S. Venkatraman , J. Hendricks , Z. King , A. Sereno , S. Richardson-Burns , D. Martin , J. Carmena , In vitro and in vivo evaluation
of PEDOT microelectrodes for neural stimulation and recording, IEEE Trans. Neural Syst. Rehabil. Eng. 19 (2011) 307–316 . 

[20] F. Vitale , S.R. Summerson , B. Aazhang , C. Kemere , M. Pasquali , Neural stimulation and recording with bidirectional, soft

carbon nanotube fiber microelectrodes, ACS Nano 9 (4) (2015) 4 465–4 474 . 
[21] K. Wang , H.A. Fishman , H. Dai , J.S. Harris , Neural stimulation with a carbon nanotube microelectrode array, Nano Lett. 6

(9) (2006) 2043–2048 . 
[22] K. Wang , C.L. Frewin , D. Esrafilzadeh , C. Yu , C. Wang , J.J. Pancrazio , M. Romero-Ortega , R. Jalili , G. Wallace ,

High-performance graphene-fiber-based neural recording microelectrodes, Adv. Mater. 31 (15) (2019) 1805867 . 
[23] C. Weaver , H. Li , X. Luo , X. Cui , A graphene oxide/conducting polymer nanocomposite for electrochemical dopamine

detection: origin of improved sensitivity and specificity, J. Mater. Chem. B 2 (32) (2014) 5209–5219 . 
[24] S.J. Wilks , S.M. Richardson-Burn , J.L. Hendricks , D. Martin , K.J. Otto , Poly (3, 4-ethylene dioxythiophene)(PEDOT) as a

micro-neural interface material for electrostimulation, Front. Neuroeng. 2 (2009) 7 . 

http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0010
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0010
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0010
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0010
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0010
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0011
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0011
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0011
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0011
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0011
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0011
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0012
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0012
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0012
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0012
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0012
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0012
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0012
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0014
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0014
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0014
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0014
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0014
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0014
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0014
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0015
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0015
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0015
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0015
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0015
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0015
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0016
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0018
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0018
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0020
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0020
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0020
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0020
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0020
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0020
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0021
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0021
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0021
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0021
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0021
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0023
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0023
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0023
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0023
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0023
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0024
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0024
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0024
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0024
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0024
http://refhub.elsevier.com/S2215-0161(20)30326-5/sbref0024

	Microelectrodes from PEDOT-carbon nanofiber composite for high performance neural recording, stimulation and neurochemical sensing
	Method details
	Background

	Materials
	Microfabrication of microelectrodes array (MEA)
	Preparation of carbon nanofibers
	Electrochemical deposition of PEDOT:CNF composite on microelectrodes and MEAs

	Method validation
	Scanning electron microscopy (SEM) and optical microscopy
	Electrochemical impedance spectroscopy (EIS)
	Cyclic voltammetry (CV)
	Voltage transient response
	Amperometric detection

	Conclusions
	Acknowledgments
	Declaration of Competing Interest
	References


