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ABSTRACT
Background. Pancreatic cancer is one of the most common malignant cancers
worldwide. Currently, the pathogenesis of pancreatic cancer remains unclear; thus,
it is necessary to explore its precise molecular mechanisms.
Methods. To identify candidate genes involved in the tumorigenesis and proliferation
of pancreatic cancer, the microarray datasets GSE32676, GSE15471 and GSE71989
were downloaded from the Gene Expression Omnibus (GEO) database. Differentially
expressed genes (DEGs) between Pancreatic ductal adenocarcinoma (PDAC) and
nonmalignant samples were screened by GEO2R. The Database for Annotation
Visualization and Integrated Discovery (DAVID) online tool was used to obtain a
synthetic set of functional annotation information for the DEGs. A PPI network of
the DEGs was established using the Search Tool for the Retrieval of Interacting Genes
(STRING) database, and a combination of more than 0.4 was considered statistically
significant for the PPI. Subsequently, we visualized the PPI network using Cytoscape.
Functional module analysis was then performed using Molecular Complex Detection
(MCODE). Genes with a degree≥10were chosen as hub genes, and pathways of the hub
geneswere visualized usingClueGOandCluePedia. Additionally, GenCLiP 2.0was used
to explore interactions of hub genes. The Literature Mining Gene Networks module
was applied to explore the cocitation of hub genes. The Cytoscape plugin iRegulon was
employed to analyze transcription factors regulating the hub genes. Furthermore, the
expression levels of the 13 hub genes in pancreatic cancer tissues and normal samples
were validated using the Gene Expression Profiling Interactive Analysis (GEPIA)
platform. Moreover, overall survival and disease-free survival analyses according to
the expression of hub genes were performed using Kaplan-Meier curve analysis in
the cBioPortal online platform. The relationship between expression level and tumor
grade was analyzed using the online database Oncomine. Lastly, the eight snap-frozen
tumorous and adjacent noncancerous adjacent tissues of pancreatic cancer patients
used to detect the CDK1 and CEP55 protein levels by western blot.
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Conclusions. Altogether, the DEGs and hub genes identified in this work can help
uncover the molecular mechanisms underlying the tumorigenesis of pancreatic cancer
and provide potential targets for the diagnosis and treatment of this disease.

Subjects Bioinformatics, Oncology, Statistics
Keywords Microarray analysis, Bioinformatics, Microarray analysis, Hub genes

INTRODUCTION
Pancreatic cancer is one of the most common lethal tumors worldwide, and its overall
5-year survival rate is less than 5% in the United States. PDAC accounts for 95% of all
pancreatic cancers (Siegel, Miller & Jemal, 2018). Moreover, it has been reported that only
10–15% of pancreatic cancer patients are eligible for tumor resection, a trend that is
attributed to the lack of early diagnostic markers and advanced metastasis (Becker et al.,
2016; Caruso Bavisotto et al., 2017). Mounting evidence indicates that abnormal expression
and gene variants are related to the tumorigenesis and progression of pancreatic cancer. A
study by Caldas C showed that K-ras activationwas involved in early events inN-nitroso-bis
(2-oxopropyl) amine-induced pancreatic carcinogenesis in hamsters (Caldas et al., 1994).
In addition, it has been reported that inactivation of SMAD family member 4 (SMAD4)
and cyclin dependent kinase inhibitor 2A (CDKN2A) is related to the development of
pancreatic cancer (Pihlak et al., 2018). Obviously, mutations in tumor suppressor genes are
linked to the progression of pancreatic cancer. Undoubtedly, an early diagnosis is beneficial
for patients. Therefore, accurate knowledge of the molecular mechanisms involved in the
tumorigenesis and proliferation of pancreatic cancer is vital.

Microarray technology and bioinformatic analysis have been extensively applied for
screening the expression of genes, miRNAs, lncRNAs, and DNA methylation, helping to
identify DEGs and functional pathways relevant to the tumorigenesis and progression
of pancreatic cancer. In this work, we aimed to explore the pathogenesis of pancreatic
cancer by a computational bioinformatics analysis of gene expression. Three mRNA
microarray datasets from the GEO were extracted and analyzed to identify DEGs between
PDAC tissues and noncancerous tissues. Subsequently, the functions of these DEGs were
evaluated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses. A protein-protein interaction (PPI) network
was visualized using Cytoscape, and the Literature Mining Gene Networks module in
GenCLiP 2.0 showed that cyclin-dependent kinase 1 (CDK1) has strong interactions with
other hub genes. Enrichment analysis of GenCLiP 2.0 suggested that cell division may
be involved in the pathogenesis of pancreatic cancer. In the GEPIA database, the mRNA
levels of all hub genes were higher in PAAD (pancreatic adenocarcinoma) tumor tissues
than in normal tissues. Additionally, survival analysis indicated that abnormal spindle
microtubule assembly (ASPM), CDK1, centromere protein F (CENPF), centrosomal
protein 55 (CEP55), denticleless E3 ubiquitin protein ligase homolog (DTL), epithelial cell
transforming 2 (ECT2), NIMA related kinase 2 (NEK2) and protein regulator of cytokinesis
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1 (PRC1) may be associated with the tumorigenesis and development of pancreatic cancer.
Overall, 210 DEGs and 13 hub genes that may be candidate biomarkers for pancreatic
cancer were identified.

MATERIAL AND METHODS
Microarray datasets and data processing
Three human pancreatic cancer mRNA expression datasets (GSE32676 (Li et al., 2018a),
GSE15471 (Lu & Li, 2018) and GSE71989 (Li et al., 2018a)) were downloaded from GEO
(http://www.ncbi.nlm.nih.gov/geo) (Edgar, Domrachev & Lash, 2002), a public functional
genomic database containing high-throughput gene expression data, chips andmicroarrays.
They all used the GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array; human PDAC tumors and nonmalignant pancreas samples snap-frozen at the time
of surgery were chosen. The GSE32676 dataset contains 25 PDAC tissue samples and
seven nonmalignant pancreas samples, GSE15471 contains 39 PDAC tissue samples and
39 nonmalignant pancreas samples, and GSE71989 contains 13 PDAC samples and eight
noncancerous samples.

Identification of DEGs
DEGs between PDAC and nonmalignant samples were screened by GEO2R (http:
//www.ncbi.nlm.nih.gov/geo/geo2r) (Shao et al., 2018), which is an online tool that
can be used to compare two or more datasets in a GEO series to identify DEGs
according to experimental conditions. Adjusted P-values (adj. P) and Benjamini and
Hochberg false discovery rates were employed as criteria for statistically significant
genes and to limit false positives. Probe sets with no corresponding gene symbols or
genes with multiple gene probe sets were removed or averaged. Log FC (fold change)
>1 or <−1 and adj. P < 0.01 was considered statistically significant. An online tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was applied to draw Venn diagrams
of the DEGs.

KEGG and GO enrichment analyses of DEGs
The Database for DAVID; (david.ncifcrf.gov/) online tool was used to obtain a synthetic set
of functional annotation information for the DEGs (Huang et al., 2007; Le, Ho & Ou, 2018;
Le, Nguyen & Ou, 2017; Meel et al., 2019). P < 0.01 was considered statistically significant.

PPI network construction and module analysis
A PPI network of the DEGs was established using the STRING (http://string-db.org,
version 10.0) database (Szklarczyk et al., 2015), and a combination of more than 0.4 was
considered statistically significant for the PPI. Subsequently, we visualized the PPI network
using Cytoscape, which is an open-source bioinformatics software platform (Shannon et
al., 2003). Functional module analysis was then performed using MCODE, which is an app
for Cytoscape that is used to cluster a given network to a densely connected area based on
topology. The standard for selection was set as follows: MCODE scores >5, degree cut-off
= 2, node score cut-off = 0.2, max depth = 100 and k-score = 2 (Li et al., 2017a).
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Hub gene selection and analysis
Genes with a degree ≥10 were chosen as hub genes, and pathways of the hub genes were
visualized using ClueGO and CluePedia, which are two plugins of Cytoscape (Bindea,
Galon & Mlecnik, 2013). Additionally, GenCLiP 2.0 (http://ci.smu.edu.cn) (Wang et al.,
2014), which facilitates functional annotation and molecular network construction of
genes depending on the literature, was used to explore interactions of hub genes. The Gene
Cluster with Literature Profiles modules were used to generate statistically overrepresented
keywords to annotate genes based on the occurrence of free terms in the literature for
a given gene. P ≤ 1×106 and hits ≥6 were considered statistically significant (Li et al.,
2017b). We selected keyword annotation to obtain a cluster analysis heatmap of 13 hub
genes. The Literature Mining Gene Networks module was applied to explore the cocitation
of hub genes. Furthermore, the expression levels of the 13 hub genes in pancreatic cancer
tissues and normal samples were validated using the GEPIA platform, which is a free online
database (http://gepia.cancer-pku.cn/) (Hauptman et al., 2019). Moreover, overall survival
and disease-free survival analyses according to the expression of hub genes were conducted
using Kaplan–Meier curve analysis in the cBioPortal (http://www.cbioportal.org) online
platform (Gao et al., 2013). The relationship between expression level and tumor grade was
analyzed using the online database Oncomine (http://www.oncomine.com) (Rhodes et al.,
2004).

Transcription factor analysis
The Cytoscape plugin iRegulon (Janky et al., 2014) was employed to analyze transcription
factors regulating the hub genes. The iRegulon plugin can identify regulons usingmotifs and
track discovery in an existing network or in a set of coregulated genes. Transcription factor
information is obtained from databases such as Transfac, Jaspar, Encode, Swissregulon
and Homer, which use genome-wide ranking and recovery to detect enriched transcription
factor motifs and optimal sets of their direct targets. The cutoff criteria were as follows:
enrichment score threshold = 5.0, ROC threshold for AUC calculation = 0.03, rank
threshold = 5,000, minimum identity between orthologous genes = 0.05, FDR = 0.001
and the normalized enrichment score (NES) > 10 (Li et al., 2017b).

Patients and tissue specimens
The eight snap-frozen tumorous and adjacent noncancerous adjacent tissues of pancreatic
cancer patients used to detect the CDK1 and CEP55 protein levels in this study were
provided by the Affiliated Hospital of Nantong University. Our experimental protocols
have been subjected to approval by the Institutional Review Board of Affiliated Hospital of
NantongUniversity; all participating patients fully understood the protocols and subscribed
informed consent. The cohort of patients included 6 female patients and 2 male patients
who underwent surgical resection without chemotherapy or radiotherapy.

Western blotting
Western blotting was performed as previously described (Jiao et al., 2019). After blotting,
the membranes were incubated at 4 ◦C overnight with anti-CDK1 (ab18, diluted 1:1,000,
Abcam, MA, USA), anti-CEP55 (ab170414, diluted 1:1000, Abcam, MA), anti-PCNA
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(ab29, diluted 1:1,000, Abcam, MA) and anti-GAPDH (#5174; 1:5,000; Cell Signaling
Technology, MA, USA) antibodies. This was followed by incubation with anti-mouse IgG
(#D110087; 1:2,500; Sangon Biotech, Shanghai, China) or anti-rabbit IgG (#D110058;
1:2,500; Sangon Biotech, Shanghai, China) secondary antibodies. Finally, an enhanced
chemiluminescence (ECL) kit was used to visualize the bands, and the Molecular Imager
ChemiDoc XRS System (Bio-Rad Laboratories, CA, USA) was used to analyze and quantify
the bands.

Statistical analysis
All data were analyzed using the GraphPad Prism 5.0 software. The results were presented
as the mean ± standard error of mean of at least three independent experiments. The
comparison between multiple groups used single-factor analysis of variance, and the
comparison of data between separate groups was performed using t test. P < 0.05 indicates
statistical significance.

RESULTS
Identification of DEGs in PDAC
In total, 775, 1793 and 3952 DEGs were identified when comparing PDAC tissue samples
andnormal tissue samples in theGSE32676,GSE15471 andGSE71989 datasets, respectively.
Additionally, 210 (186 upregulated and 24 downregulated) genes were common to all three
datasets (Fig. 1A).

PPI network construction
The PPI network of DEGs was constructed using the STRING database and included 133
genes (125 upregulated and 8 downregulated) with combined scores>0.4 (Fig. 1B). As the
number of downregulated genes was too small for GO and KEGG enrichment analyses, we
only performed this analysis for the upregulated genes.

GO and KEGG pathway analyses of the PPI network
GO and KEGG pathway analyses were conducted to explore the potential functions
and pathways of the upregulated DEGs using DAVID. According to GO analysis, the
upregulated DEGs were enriched in cell migration, cell–cell adhesion and cell adhesion
biological process (BP) categories (Table 1). The upregulatedDEGswere primarily enriched
in the extracellular exosome and cytoplasm cell component (CC) categories (Table 1); DEGs
were mainly enriched in the cadherin binding involved in cell–cell adhesion and protein
homodimerization activity molecular function (MF) categories (Table 1). Additionally,
KEGG pathway analysis indicated that the upregulated DEGs were primarily enriched in
the ECM-receptor interaction and pathways in cancer (Table 2).

Hub gene selection and analysis
Thirteen genes were considered to be hub genes with a degree ≥10 (Fig. 1C). Detailed
information about these hub genes is presented in Table 3. The pathways of the hub
genes were visualized using ClueGO and CluePedia, which are two plugins of Cytoscape
(Fig. 2). Subsequently, literature mining was performed in GenCLiP 2.0 to explore hub
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Figure 1 Venn diagram, PPI network and the most significant modules of DEG. (A) Venn diagram an-
alyzing the DEGs of GSE32676, GSE15471 and GSE71989 datasets, and an overlap of 210 genes was iden-
tified. (B) The PPI network of DEGs was constructed by Cytoscape. Upregulated genes are marked in red,
and the depth of color represents the gene interaction degree with other genes; downregulated genes are
marked in green. (C) Interaction network of 13 hub genes.

Full-size DOI: 10.7717/peerj.9301/fig-1

gene interactions. The cocitation network of these 13 hub genes in the published literature
is displayed in Fig. 3A. The results showed that 5 genes, DNA topoisomerase II alpha
(TOP2A), PRC1, ECT2, RRM2 and CEP55 interact with CDK1. TOP2A was the top gene
because it has been mentioned in 23 published literature sources as interacting with CDK1.
The detailed results of previous studies on these genes are shown in Table 4. Figure 3B
illustrates the significant results from the enrichment analysis of the 13 hub genes, with cell
division being the most related biological function at 76.9% enrichment.

Transcription factor analysis of hub genes
Transcription factor analysis of the 13 hub geneswas conducted using iRegulon, aCytoscape
plugin, and a normalized enrichment score (NES)>10was considered to be significant. The
transcriptional regulation network of these hub genes is shown in Fig. 3C. The transcription
factors with NES > 10 were NFYC (NES = 15.131, targets = 11), TFDP3 (NES = 11.922,
targets= 11), NFYA (NES= 11.193, targets= 9), and E2F4 (NES= 10.426, targets= 13).

mRNA expression levels of the 13 hub genes in PAAD
To confirm the expression levels of the 13 identified hub genes, related published data
were obtained from TCGA datasets and analyzed using the GEPIA platform. As expected,
the results showed that all hub genes were more highly expressed in tumor tissues than in
normal tissue samples (Fig. 4).

Survival analyses of hub genes
Kaplan–Meier curve analysis was used to analyze correlations between overall survival and
the hub genes. PDAC patients with alterations in anillin actin-binding protein (ANLN),
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Table 1 GO analysis of upregulated DEGs in pancreatic ductal adenocarcinoma.

GO ID Description Gene
count

P-value

GO-BP Terms
GO:0016477 Cell migration 13 1.83E−07
GO:0098609 Cell–cell adhesion 13 2.08E−05
GO:0007160 Cell–matrix adhesion 8 3.55E−05
GO:0022617 Extracellular matrix disassembly 7 1.20E−04
GO:0048333 Mesodermal cell differentiation 4 1.58E−04
GO:0031581 Hemidesmosome assembly 4 2.10E−04
GO:0090004 Positive regulation of establishment of

protein localization to plasma membrane
5 2.26E−04

GO:0007155 Cell adhesion 15 2.45E−04
GO:0007229 Integrin-mediated signaling pathway 7 5.08E−04
GO-CC Terms
GO:0070062 Extracellular exosome 63 1.50E−10
GO:0005925 Focal adhesion 16 7.65E−06
GO:0005913 Cell–cell adherens junction 14 1.91E−05
GO:0005615 Extracellular space 28 3.05E−04
GO:0005886 Plasma membrane 61 5.23E−04
GO:0005737 Cytoplasm 72 9.52E−04
GO:0009986 Cell surface 15 9.53E−04
GO-MF Terms
GO:0098641 Cadherin binding involved in cell–cell adhesion 13 3.05E−05
GO:0042803 Protein homodimerization activity 18 8.70E−04
GO:0005509 Calcium ion binding 16 0.004808
GO:0005515 Protein binding 102 0.013495

Notes.
GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function.

Table 2 KEGG pathway enrichment analysis of upregulated DEGs in pancreatic ductal adenocarci-
noma.

ID Description Gene
count

P-value

hsa04512 ECM-receptor interaction 9 1.82E−06
hsa05200 Pathways in cancer 12 0.001424
hsa05205 Proteoglycans in cancer 8 0.003332
hsa04510 Focal adhesion 8 0.003924
hsa04115 p53 signaling pathway 5 0.004128
hsa04151 PI3K-Akt signaling pathway 9 0.019238

Notes.
KEGG, Kyoto Encyclopedia of Genes and Genomes.

ASPM, CDK1, CENPF, CEP55, DTL, ETC2, NEK2, TOP2A and PRC1 exhibited poor
overall survival (Fig. 5). PDAC patients with ASPM, CDK1, CENPF, CEP55, DTL, ETC2,
NEK2, PRC1, ribonucleotide reductase regulatory subunit M2 (RRM2), TOP2A, ZW10
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Table 3 Description of 13 hub genes of pancreatic ductal adenocarcinoma.

No. Gene symbol Full name Function

1 TOP2A DNA topoisomerase II alpha Controlling and altering the topologic states of DNA during
transcription. Involving in chromosome condensation,
chromatid separation, and the relief of torsional stress.

2 CDK1 Cyclin dependent kinase 1 Essential for G1/S and G2/M phase transitions of eukaryotic
cell cycle and mitotic cyclins.

3 RRM2 Ribonucleotide reductase regulatory subunit M2 Catalyzing the formation of deoxyribonucleotides from
ribonucleotides.

4 PRC1 Protein regulator of cytokinesis 1 A substrate of several CDKs and necessary for polarizing
parallel microtubules and concentrating the factors
responsible for contractile ring assembly.

5 NEK2 NIMA related kinase 2 A serine/threonine-protein kinase that is involved in mitotic
regulation.

6 ZWINT ZW10 interacting kinetochore protein Clearly involved in kinetochore function.
7 DTL Denticleless E3 ubiquitin protein ligase homolog Cellular response to DNA damage stimulus.
8 MELK Maternal embryonic leucine zipper kinase G2/M transition of mitotic cell cycle apoptotic process.
9 CENPF Centromere protein F Associating with the centromere-kinetochore complex and

playing a role in chromosome segregation during mitotis.
10 CEP55 Centrosomal protein 55 Cranial skeletal system development and establishment of

protein localization.
11 ANLN Anillin actin binding protein An actin-binding protein that plays a role in cell growth and

migration, and in cytokinesis.
12 ASPM Abnormal spindle microtubule assembly Essential for normal mitotic spindle function in embryonic

neuroblasts and regulating neurogenesis.
13 ECT2 Epithelial cell transforming 2 A guanine nucleotide exchange factor and transforming

protein that is related to Rho-specific exchange factors and
yeast cell cycle regulators.

Notes.
CDKs, cyclin-dependent kinases.

interacting kinetochore protein (ZWINT), and ANLN alterations exhibited poor disease-
free survival (Fig. 6). Among these genes, we selected CDK1 and CEP55 for further study
with regard to overall survival and disease-free survival times.

Oncomine analysis of CDK1 and CEP55 in cancer vs. normal tissue
Oncomine analysis of cancer vs. normal tissue indicated that CDK1 and CEP55 were
significantly overexpressed in pancreatic cancer in different datasets (Figs. 7A and 7B).
In the Grutzmann Pancreas dataset, CDK1 and CEP55 mRNA expression was higher in
pancreatic cancer tissues than in normal pancreatic tissues (Figs. 7C and 7D). Additionally,
higher mRNA levels of CDK1 and CEP55 were associated with tumor grade (Figs. 7E and
7F).

The expression of CDK1 and CEP55 in clinical specimens
To validate the above results, we detected CDK1 and CEP55 protein levels in clinical
specimens. In the clinical specimens, CDK1 (Figs. 8A and 8C) and CEP55 (Figs. 8B and
8D) protein levels were significantly elevated in pancreatic cancer tissue samples compared
with adjacent nontumor tissues.
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Figure 2 GO and KEGG pathway analysis of hub genes using ClueGO and CluePedia.
Full-size DOI: 10.7717/peerj.9301/fig-2

DISCUSSION
In recent years, microarray technology has been extensively applied to reveal genetic
alterations in tumors. Therefore, microarray analysis is a tool for revealing biomarkers
for the diagnosis, treatment, and prognosis of pancreatic cancer. In this study, our results
demonstrated that the upregulated DEGs were obviously enriched in the BP categories cell
migration and cell–cell adhesion. Many studies have shown that migration and invasion are
basic characteristics of pancreatic cancer (Zhuo et al., 2018). Moreover, cell–cell adhesion
might be involved in cell stretching and movement, which are the molecular bases of
the important physiological and pathological processes of tumor invasion and metastasis
(Nobes & Hall, 1999; Serrill, Sander & Shih, 2018). For the CC category, the upregulated
DEGs were primarily enriched in extracellular exosomes, which are nanoscale membrane
vesicles with diameters ranging from 40 to 100 nm. A growing number of studies have
shown that tumor-derived exosomes are associated with tumor development, metastasis,
and drug resistance mechanisms (Jiao et al., 2018). Furthermore, in the MF category,
upregulated DEGs were mainly enriched in cadherin binding involved in cell–cell adhesion
and protein homodimerization activity, which are associated with invasion and metastasis.
According to our KEGG pathway enrichment results, the upregulated DEGs were primarily

Jin et al. (2020), PeerJ, DOI 10.7717/peerj.9301 9/22

https://peerj.com
https://doi.org/10.7717/peerj.9301/fig-2
http://dx.doi.org/10.7717/peerj.9301


Figure 3 Interactions, enrichment and transcription factor analysis of 13 hubgenes. (A) The cocitation
network of 13 hub genes; the number on the line shows the number of studies cocited. (B) Heatmap of en-
richment analysis of 13 hub genes; the depth of green color represents the degree of enrichment. (C) Tran-
scription factor analysis of hub genes; the red nodes represent hub genes, and the purple nodes represent
transcription factors.

Full-size DOI: 10.7717/peerj.9301/fig-3

Table 4 Hub genes identified by the present study using Genclip 2.0.

Gene Co-genes Co-cite Total

CDK1 5 53 6,822
TOP2A 1 23 6,370
RRM2 1 7 395
CEP55 1 1 58
PRC1 1 15 334
ECT2 1 11 171

enriched in the ECM-receptor interaction. During the development of tumors, the ECM
experiences a remodeling process that is similar to the process of embryonic development.
The most important feature of this remodeling is the change in the molecular composition
of the ECM, whereby the reconstituted ECM creates a loose microenvironment for the
proliferation and differentiation of tumor cells, leading to high rates of proliferation, poor
differentiation, invasion and metastasis (Jin & Liu, 2018).

In our study, we showed that TOP2A, PRC1, ECT2, RRM2 and CEP55 can interact
with CDK1 and TOP2A is the gene most closely related to CDK1. Previous studies have
provided evidence about the expression of CDK1 and TOP2A in pancreatic cancer, but the
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Figure 4 The mRNA expression levels of 13 hubgenes in PAAD. The published online data of gene
mRNA expression level were analyzed by GEPIA platform. These 13 hubgenes were all higher than in
PAAD tissues, compared with those in normal tissues, including TOP2A, CDK1, RRM2, PRC1, NEK2,
ZWINT, DTL, MELK, CENPF, CEP55, ANLN, ASPM, ECT2. *P < 0.05.

Full-size DOI: 10.7717/peerj.9301/fig-4

correlation between them in pancreatic cancer has not been fully elucidated (Kalimutho et
al., 2018; Li et al., 2017a; Shi et al., 2015; Xu et al., 2016). Cyclin-dependent kinases (CDKs)
are important driving factors of the human cell cycle (Zhao et al., 2013). Topoisomerases,
including topoisomerase 1 (TOP1) and topoisomerase 2 (TOP2), are key ribozymes that
mainly participate in cell growth by breaking and reconnecting DNA strands to change
DNA topology (Liu et al., 2018). We predict that the cyclin A2-CDK1-TOP2A axis plays an
important role in tumor development. Furthermore, CDK1 might phosphorylate TOP2A
to promote S phase transition and influence the progression of pancreatic cancer, but
follow-up research is needed to determine the specific mechanism of the interaction
(Kalimutho et al., 2018). Our enrichment analysis of 13 hub genes further verified the
relationship between metastasis and the malignant progression of pancreatic cancer.

The transcription factors NFYC, TFDP3, POLE3 and E2F4 are closely linked to hub
genes in pancreatic cancer. NFYC is a histone-fold domain-containing transcription factor
engaged in chromatin remodeling, establishing permissive chromatin modifications at
CCAAT motifs in promoters (Bieniossek et al., 2013). Deletion of NFYC halts cell cycle
progression, predominantly by causing G2/M arrest, and concurrent gain of NFYC
may serve to model an aberrant epigenome that promotes a proliferative and relatively
undifferentiated state (Benatti et al., 2011). Most E2Fs are localized in the nucleus, but
E2F4 shows cell cycle-specific localization and can be found in the nucleus of cycling cells
in G0, early G1 and G2 phases (Lindeman et al., 1997). When present in the nucleus, E2F4
has functions necessary for the induction of mitosis; interestingly, E2F4 also appears to
have a role in the cytoplasm during multiciliogenesis (Van Amerongen et al., 2010). TFDP3
is expressed in most cancer tissues and potentially plays a role in cell differentiation and
proliferation. TFDP3 is a novel negative regulator of E2F that can enhance both the DNA
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Figure 5 Overall survival analyses of hub genes performed using the cBioPortal online platform. A log
rank test P < 0.05 was considered statistically significant.

Full-size DOI: 10.7717/peerj.9301/fig-5

binding and transcriptional activity of E2F through the formation of heterodimers; it also
potentially plays an important role in the process of tumor development independent of
pRb (Ma et al., 2014). POLE3 is similar to the first subclass of core histones with respect
to regulation, and POLE3 expression is upregulated at the onset of S phase. E2F4 is often
associated with promoters in G0, is minimally bound to the POLE3 gene in starved cells
and maximally in cells expressing POLE3 at high levels. These findings indicate that these
transcription factors may regulate the progression of pancreatic cancer, which provides
direction for our future research (Bolognese et al., 2006).

Expression analysis of PAAD tissues and normal tissues based on the TCGA database also
indicated higher levels of TOP2A (Jiao et al., 2019), CDK1 (Jing et al., 2019), RRM2 (Zhao
et al., 2019), PRC1 (Mao et al., 2019), NEK2 (Deng et al., 2019), ZWINT (Obuse et al.,
2004), DTL(Cui et al., 2019), MELK (Meel et al., 2019), CENPF (Chen et al., 2019), CEP55
(Hauptman et al., 2019), ANLN (Wang et al., 2019), ASPM (Hsu et al., 2019), and ECT2
(Daulat et al., 2019) in tumor tissues. Previous studies have provided abundant evidence
about the function of the thirteen identified hub genes in cancer development.Mutations in
ANLN, ASPM, CDK1, CENPF, CEP55, DTL, ETC2, NEK2, TOP2A and PRC1 affect overall
survival and disease-free survival in pancreatic cancer, whereas mutations in RRM2 and
ZWINT affect disease-free survival. Hence, we reasoned that ANLN, ASPM,CDK1, CENPF,
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Figure 6 Disease-free survival analyses of hubgenes (A–L) were performed using the cBioPortal online
platform. A log rank test P < 0.05 was considered statistically significant.

Full-size DOI: 10.7717/peerj.9301/fig-6

CEP55, DTL, ETC2, NEK2, TOP2A and PRC1 might be preferable prognostic factors that
are positively related to pancreatic cancer. Additionally, Lu, Li & Liao (2019) analyzed
the microarray datasets GSE32676, GSE15471, GSE71989 and GSE19650 to identify five
upregulated hub genes, including MELK, MET, THBS1, TOP2A and SDC1; Li et al.
(2018a) analyzed the microarray datasets GSE71989, GSE15471, GSE16515, GSE32676,
GSE41368 and GSE28735 and found that five genes (BIRC5, CKS2, ITGA3, ITGA6 and
RALA) were significantly associated with survival time in patients with pancreatic duct
adenocarcinoma; Zhu et al. (2017) studied the five GEO datasets (GSE15471, GSE16515,
GSE18670, GSE32676, GSE71989) and reported that GJB2 and ERO1LB dysregulation was
associated with tumorigenesis in pancreatic adenocarcinoma. Within addition to these hub
genes, we supplied some new hub genes that may be associated with the tumorigenesis and
development of pancreatic cancer.

Our results showed that among these hub genes, TOP2A is the most closely related
gene to CDK1, TOP2A and CDK1, and it has been previously reported as a biomarker
for pancreatic cancer (Kokkinakis, Liu & Neuner, 2005); however, to date, little attention
has been paid to CEP55 and its possible relationship with CDK1. Indeed, only one study
reported that CEP55 can inhibit CDK1 phosphorylation and proteolysis mediated by
the anaphase-promoting complex to induce anaphase I in oocytes (Zhou et al., 2019).
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Figure 7 Oncomine analysis of CDK1 and CEP55 in cancer vs. normal tissue.Heat maps of CDK1 and
CEP55 gene expression in clinical pancreatic cancer samples vs. normal tissues. 1. Pancreatic Ductal Ade-
nocarcinoma Epithelia vs. Normal Grutzmann Pancreas, Neoplasia, 2004. 2. Pancreatic Carcinoma vs.
Normal Pei Pancreas, Cancer Cell, 2009. 3. Pancreatic Carcinoma vs. Normal Segara Pancreas, Clin Can-
cer Res, 2005. (C) CDK1 mRNA expression and (D) CEP55 mRNA expression in pancreatic cancer com-
pared with normal pancreatic tissues in the Grutzmann Pancreas dataset. Association between the expres-
sion of (E) CDK1 and (F) CEP55 and tumor grade in the Grutzmann Pancreas dataset. P < 0.05 was con-
sidered statistically significant.

Full-size DOI: 10.7717/peerj.9301/fig-7

Nonetheless, the relationship between CEP55 and CDK1 and the mechanism involved
have not been studied in pancreatic cancer cells. It is well known that pancreatic cancer
has a high degree of malignancy and a short disease course, which is largely attributed to
the fact that it readily metastasizes to and invades adjacent organs. CEP55 belongs to the

Jin et al. (2020), PeerJ, DOI 10.7717/peerj.9301 14/22

https://peerj.com
https://doi.org/10.7717/peerj.9301/fig-7
http://dx.doi.org/10.7717/peerj.9301


Figure 8 The expression of CDK1 and CEP55 in clinical specimens. (A, B) Western blotting detec-
tion of CDK1 and CEP55 protein in eight snap-frozen tumorous and non-cancerous adjacent tissues of
pancreatic cancer patients. (C, D) The bar chart reveled that the expression ratio of CDK1 and CEP55 to
GAPDH by densitometry. Data are represented as the mean± SEM (*P < 0.05, tumor tissues compared
with the non-cancerous adjacent tissues).

Full-size DOI: 10.7717/peerj.9301/fig-8

centrosomal family of proteins, which plays an important role in critical cell functions.
Mounting evidence shows that CEP55 is highly expressed in multiple cancers, such as colon
cancer, hepatocellular carcinoma and bladder cancer (Gao &Wang, 2015; Li et al., 2018b;
Singh et al., 2015). Moreover, overexpression of CEP55 accelerates the cell cycle transition
in gastric cancer, and low expression of CEP55 inhibits cell growth in breast cancer and
gastric cancer (Kalimutho et al., 2018; Tao et al., 2014). These results demonstrate that
CEP55 may serve an oncogenic role and a potential target for tumor treatment. CEP55
can also promote aggressive behavior in pancreatic cancer cells by activating the NF-κB
pathway (Peng et al., 2017). Hence, the underlying mechanism of the proinvasive and
prometastatic effects of CEP55 in pancreatic cancer needs to be further studied. Last, we
preliminarily validated the ChIP analyses by detecting CDK1 and CEP55 protein levels
in eight snap-frozen tumorous and adjacent noncancerous adjacent tissues of pancreatic
cancer patients. The results showed that CDK1 and CEP55 were significantly overexpressed
in pancreatic tumorous tissues compared to normal tissues, which is consistent with the
results in different datasets. However, our sample size was relatively small, so we could
not verify the link between clinical samples and prognosis. Fortunately, Piao et al., (2019)
validated that high expression of CDK1 was correlated with the short survival of pancreatic
cancer patients by analyzing 99 cases of surgically resected pancreatic cancer samples and
71 cases of normal pancreases. Peng et al. (2017) reported that CEP55 expression was an
independent prognostic factor of patient outcome and that CEP55 protein expression levels
in pancreatic cancer specimens were inversely correlated with survival time by analyzing
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126 archived paraffin-embedded pancreatic cancer specimens with immunohistochemical
staining using an antibody against human CEP55. The results were in accordance with the
Kaplan–Meier curve analysis online.

CONCLUSION
In summary, by analyzing multiple datasets from the GEO database and validating the
results with the TCGA and Oncomine databases, our present work identifies dominant
genes, their interaction network and possible transcription factors involved during the
progression andmetastasis of pancreatic cancer. Some relationships between hub genes and
transcription factors have never been reported to influence the progression of pancreatic
cancer and may serve as potential targets for pancreatic cancer therapy. However, due to
the low quantity of gene probes in our selected datasets, the number of discovered DEGs
was strikingly limited. More genes and noncoding RNAs should be detected to enrich the
network for a more comprehensive and integrated understanding of pancreatic cancer
development. In addition, we did not analyze the expression of hub genes, such as CDK1,
in pancreatic patients with or without lymphatic metastasis or use ROC analysis to explain
the prognosis and diagnostic value of the genes. We will collect these data in our future
research to complete our analysis of the prognosis and diagnostic value of these genes.
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