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Abstract: Upper limb impairment following stroke is often characterized by limited voluntary control
in the affected arm. In addition, significant motor coordination problems occur on the unaffected
arm due to avoidance of performing bilateral symmetrical activities. Rehabilitation strategies should,
therefore, not only aim at improving voluntary control on the affected arm, but also contribute to
synchronizing activity from both upper limbs. The encoder-controlled functional electrical stimulator,
described in this paper, implements precise contralateral control of wrist flexion and extension with
electrical stimulation. The stimulator is calibrated for each individual to obtain a table of stimulation
parameters versus wrist angle. This table is used to set stimulation parameters dynamically, based on
the difference in wrist angle between the set and stimulated side, which is continuously monitored.
This allows the wrist on the stimulated side to follow flexion and extension patterns on the set side,
thereby mirroring wrist movements of the normal side. This device also gives real-time graphical
feedback on how the stimulated wrist is performing in comparison to the normal side. A study
was performed on 25 normal volunteers to determine how closely wrist movements on the set
side were being followed on the stimulated side. Graphical results show that there were minor
differences, which were quantified by considering the peak angles of flexion and extension on the set
and stimulated side for each participant. The mean difference in peak flexion and extension range of
movement was 2.3 degrees and 1.9 degrees, respectively, with a mean time lag of 1 s between the set
and the stimulated angle graphs.

Keywords: bilateral wrist training; functional electrical stimulation; angle controlled stimulation;
stroke rehabilitation; brain plasticity (Min.5-Max.8)

1. Introduction

Stroke is a major cause of impairment and disability in the world. A large share of
the global disease burden stems from the disability caused by non-communicable diseases
as compared to death. This has only progressed, from 21% of the burden in the 1990s
to 34% by 2019. In adults, between 1990 and 2019, stroke was the third contributor after
ischemic heart diseases and diabetes mellitus to increasing health loss measured as increase
in disability-adjusted life years (DALYs) by 32% [1].

Rehabilitation of the upper extremity primarily focuses on functional recovery of the
paretic arm. Common methods used for the rehabilitation of the paralyzed arm and hand
are passive exercises to normalize tone and prevent contractures and, thereafter, active
exercises once partial or full voluntary control is achieved. However, research shows that
bilateral training should be added to the normal therapy regime since it offers significant
benefits [2–5] Improved results are seen when both limbs are involved in the exercise,
rather than exercising the impaired limb alone [6–8]. Kelso et al. studied the movement
time, velocity and acceleration patterns generated when performing bilateral synchronous
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movements with a mix of easy and difficult targets. They showed that though reaction time
between the two upper limbs might vary based on the complexity of the target, the velocity
and acceleration patterns were synchronous, suggesting that there is central coordination
of muscle activity rather than independent limb control [9].

Bilateral training devices are of many types, ranging from very simple pulleys or
mirrors to large mechanical devices. Stoykov et al. describe a few simple bilateral training
devices [10], and Delden et al. have reviewed mechanical and robotic devices that have
been used in recent years for bilateral arm training [11]. Brackenridge et al. reviewed
141 mechanical and robotic devices for stroke and concluded that an effective device is
any simple device that can promote neuroplasticity and does not have to be unnecessarily
complex and expensive [12].

A stroke is a neurological event that compromises the supply of blood in the brain,
which causes damage to the neural tracts in the affected area. Therefore, when stroke
impacts the regions of the brain that control arm movement, it can cause weakness or
paralysis in the contralateral arm. The primary pathology is in the brain, when usually
there is nothing wrong with the arm itself. Some disuse muscle atrophy may occur with an
element of increased tone in the affected arm. Thus, recovering arm movement after stroke
revolves around healing the brain and rebuilding neural pathways [13]. This is possible
through neuroplasticity, which is the brain’s natural ability to rewire itself and learn new
skills or re-learn old skills. Although severely damaged brain cells may not recover, the
brain is surprisingly adaptive. It can recruit the physiologically intact surrounding neural
cells to take on lost functions through neuroplasticity. The brain can be encouraged to
adapt through repetitive practice of a skill or movement [14]. This reinforces these neural
pathways to become stronger.

Evidence suggests that the stroke-affected brain is highly adaptable and, if given the
correct motor strategies, can be reshaped in a constructive way [13]. Electrical stimulation is
one of the modalities that encourages this type of plasticity in neurons of the stroke-affected
brain [15–18]. Electrical stimulation in arm rehabilitation has been used widely to retrain
functional properties of the musculoskeletal units and replace function. When electrical
stimulation is applied through the electrodes, the current causes the muscles to contract,
resulting in movement. Electrical stimulation that uses the correct stimulation parameters
on appropriate muscle synergy during the optimal therapeutic window has proven to
impart positive re-learning benefits [15]. The superiority of functional electrical stimulation
(FES) over conventional therapy is yet to be proved, but pairing electrical stimulation with
conventional therapies is ongoing and has a promising future [19].

Electrical stimulation combined with bilateral arm training has been shown to improve
voluntary control in stroke patients, besides reducing neurological deficits [20–23]. When
contralateral control was included with bilateral hand activities, there was a significant
improvement in joint range of motion (ROM) [22] and shortening of treatment time in acute
stroke patients [24].

Some devices have been designed for bilateral control of stimulation to the stroke-
affected arm. The command glove, designed for finger extension with the help of EMG
feedback from the contralateral hand, is an example of such a device [22]. It uses an
instrumented glove and feedback from sensors to set stimulation parameters. Ka-leung
Chan et al. used FES with bilateral training tasks; FES was triggered by the movement of a
finger [25]. Similar trials were performed with FES on normal subjects, for bilateral control
of the elbow joint [26]. The authors reported that the trial was unsuccessful due to larger
loop current interference in signals between the muscles.

Mirror therapy is being used successfully in stroke rehabilitation for recovery of lost
function. It is applied by placing the stroke-affected limb within a mirror box so as to
completely hide the limb from vision. The reflection of the normal side appears to be the
stroke affected limb to the user and any activity performed by the normal side appears to
the user as being performed by the stroke-affected side. Studies have shown that mirror
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therapy has influenced re-learning of activity in the brain [27–29], and mirror therapy
combined with electrical stimulation is even more beneficial [30–32].

This paper describes the design of an encoder-controlled FES that uses electrical
stimulation to allow precise control of wrist flexion and extension and coordinate bilateral
wrist activity with the help of feedback from encoders. This low-cost device continuously
monitors the difference in angle between both wrists and determines the stimulation
parameters to be fed into two channels of the stimulator, so as to stimulate the wrist on one
side to match the angle of the other. In real-time, it follows the wrist movements of the
normal side, so as to act as a mirror refection of it. Here, the mirror is replaced by actual
mirroring movement activity with the help of functional electrical stimulation. The device
is intended to mimic mirror therapy without a mirror, since the user can actually visualize
the stroke-affected wrist moving synchronously with the normal wrist. As a first step to
introduce this device into therapeutic rehabilitation, it was decided to test it for efficiency
on healthy volunteers.

2. Materials

The experimental set-up consisted of an eight-channel functional electrical stimulator,
of which two channels were used—one for wrist flexion and the other for extension. Two
adjustable and moveable pedestals were used to carry the encoders and related circuitry
that were housed in two 3D-printed boxes. The pedestals also served to hold the armrest
and the encoder handles. A detailed description of the hardware involved follows.

2.1. Electrical Stimulator

The muscle stimulator used in the study is an 8-channel electrical stimulator designed
in the Bioengineering Department of Christian Medical College and Hospital, Vellore,
India [33]. This is a portable device that has been used for functional electrical stimulation
in various departments of the hospital. It could be used standalone, by pre-programming
the stimulation parameters for each of the channels, or connected to a computer and
instantly setting the parameters via the serial port. Each of the channels is programmed to
deliver pulses of the desired frequency, amplitude and pulse width by sending 1 byte of
data that carries this information. Of this 1 byte, 2 bits are used for setting frequency (5 Hz,
10 Hz, 20 Hz and 40 Hz four frequencies in all), and 3 bits each for amplitude (15 mA to
40 mA, eight in all) and pulse-width (80 µs to 240 µs, eight in all) of the stimulation pulses.
In addition, 1 byte of data is used for turning the stimulator on and 1 byte for turning
the stimulator off. For this study, the first two channels, namely channel 1 and channel
2, were used. The frequency of stimulation pulses was fixed at 40 Hz, since good tetanic
contraction was observed at this frequency, and the other parameters were instantly set
based on feedback.

2.2. Encoder Circuit

Two orange three-phase incremental optical rotary encoders, whose output was com-
patible with Arduino using pull-up resistors, were used to detect the change in wrist angle
on both sides. One of the encoders recorded wrist angles on the set side and the other on
the stimulated side. The Arduino Due was chosen since it has four serial ports, two of
which were used—one to write to the serial port of the computer for further processing
in Matlab, and the other to write to the Rx pin of the stimulator for changing stimulation
parameters. The stimulator was optically isolated from the rest of the circuitry, which
included the Due board, encoders and the computer. A PCB, carrying the isolation circuit
and the encoder with pull up resistors and other related circuitry, was made to fit over the
Duo board like a shield.

2.3. Pedestal-Mounted Encoder Circuit

Two custom-made pedestals, adapted from the PLUTO height-adjustable trolley used
in [34], were used to hold the encoders and their related circuitry and served as armrests
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for the user. Encoder boxes, designed in Solidworks 2020 and 3D-printed, housed the two
encoders, related circuitry and stimulator, as shown in Figure 1. The output shafts of the
encoders needed to be lengthened, and this was done by screwing the shafts onto a longer
cylindrical hollow tube, such that the movement of the shaft was transferred to this tube.
The tube was then brought out from the underside of the top laser-cut plate with the help
of a bearing, thereby representing the shaft of the encoders. Linear guides were screwed
onto universal mounts, which were in turn connected to the encoder shafts. The 3D-printed
encoder handles, adapted from [34], could be slipped into the linear guides. The encoder
housing assembly was suspended within the circuitry housing box, with a metal plate and
screws. Connections to the computer and stimulator were made via connectors provided
on the box. The whole experimental set-up is shown in Figure 2.

Figure 1. Pedestal-mounted encoder set-up. The figure shows the arm rest and encoder handle,
below which is a box holding the base of the encoder, related circuitry and stimulator enclosure.

2.4. Device Firmware

The Arduino Due, a microcontroller based on the Atmel SAM3 × 8E ARM Cortex-M3
CPU, was used to acquire data from the two encoders, transfer the modified stimulation
parameters to the stimulator, and enable serial communication with the stimulation soft-
ware and bidirectional data communication with the custom-made Encoder/Stimulator
software via the USB serial port. The encoders gave 4096 transitions per rotation between
their outputs. Hence, the firmware calculated the angular position of the shaft using the
following formula:

θEn = EnV * (360/4096)

θEn = EnV * 0.087

where
θEn = Angular position of the encoder

EnV = Value read from the Encoder

In the calibration mode, the firmware sends data to alternately change stimulation
parameters and stop stimulation at a fixed interval of time (every 6 s). Simultaneously, the
angle recorded on the calibration encoder is sent to the device software.
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Figure 2. The three apps, namely. (A): Position Selection—used to determine the correct position
of flexion/extension electrodes. (B): FES-Encoder Calibration—for obtaining the flexion/extension
calibration tables, and (C): Set-stimulate Record angles app—for final recording of wrist set and
stimulate angles with real-time feedback.

When both the encoders are in use in the set-stimulate mode, the firmware calcu-
lates the difference between the encoder readings and converts it to an angle using the
following formula:

θEn − θEnSTIM = (EnV − EnVSTIM) * 0.087

where

θEn = Angular position of the encoder that sets the angle on the normal side

EnV = Value read from the encoder on the normal side
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θEnSTIM = Angular position of the encoder on the stimulation side

EnVSTIM = Value read from the encoder on the stimulation side

This difference in angle is sent to the device software, based on which it returns a byte
of data for stimulation parameter change to the stimulator via the firmware.

2.5. FES-Encoder Software

MATLAB App Designer (Mathworks Inc. Version R2021b) was used to create the
apps for user interaction. The apps present a graphical user interface (GUI) for the user
and, via the firmware, receive information on the difference in angle of the encoders and
simultaneously send stimulation parameter change information to the stimulator. The
angles recorded and the change in stimulation parameters are stored and presented as a
graph for further analysis. The main FES-Encoder app provides the interface to choose
from three sub-apps, namely.

2.6. Placement Selection App

FES-Encoder Calibration app and Stimulate and Record Angles app. Placement
selection app:

Finding the appropriate position of the electrodes is achieved by using the placement
selection app. This app gives five combinations of stimulation amplitudes and pulse width,
namely very mild stimulation (15 mA and 80 µs), mild stimulation (15 mA and 120 ms),
normal stimulation (15 mA and 170 ms), strong stimulation (18 mA and 120 ms) and very
strong stimulation (18 mA and 200 ms). On selection of any of these modes, stimulation
pulses are delivered for 8 s. Figure 2A shows the placement selection app.

2.7. FES-Encoder Calibration App

The FES-Encoder calibration app requires the user to enter whether the left or right
hand is being calibrated and whether the flexors or extensors are being stimulated. Pressing
the “Record” button on non-selection of these details generates an alert signal asking for the
details to be entered. The angle values recorded in the table accordingly are either positive
or negative, depending on the position of the encoder handle with respect to the baseline.
On pressing the record button, stimulation starts with the lowest amplitude and pulse
width and lasts for 4 s, after which there is a 4 s break before the next burst of stimulation
with increased pulse width. The app provides a real-time graphical display of the encoder
angle when stimulation starts.

On recording an angle of over 40◦ on the encoder, the stimulator is programmed
to skip the remaining pulse widths for that amplitude, go to the next highest amplitude
and start over from the first pulse width. This is done to obtain the maximum number of
angles with all possible permutations and combinations of stimulation amplitudes and
pulse widths. Stimulation is stopped automatically when the lowest pulse width at a
given amplitude records an angle over 40◦. During the calibration cycle, if painful, the
participant can manually stop stimulation with the help of the push button provided. When
stimulation is stopped, either manually or by the app, a consolidated graph showing the
encoder angles, amplitude and pulse width of stimulation pulses is displayed. Calibration
stores the recorded angles in ascending order with the corresponding amplitude and pulse
width in the form of a look-up table in two separate files—one for flexion and the other
for extension. These angles are used in the set/stimulate and record angles app. Figure 2B
shows the FES-encoder calibration app soon after calibration. The calibration cycle is
further explained in Figure 3.
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Figure 3. Algorithm followed by the calibration app. Calibration is performed to create the table for
use during stimulation mirroring.

2.8. Set/Stimulate and Record Angles App

The set/stimulate and record angles app uses the calibration tables that have been
saved in a file during stimulation calibration. All angles below the baseline and above
60◦ are eliminated so as to maintain comfort of stimulation. If there are any two consecutive
angles that are within 3◦ difference of each other, the one with the higher pulse width is
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removed from the table. Therefore, the look-up table is edited to remove repetitions and
avoid confusion when consecutive angles are too close to each other.

On pressing the record button, the current angles on both the encoders are set to 0◦.
When the handle of the set side encoder is moved, the flexion/extension immediately starts.
If the angle of the encoder on the set side is ESET and on the stimulate side is ESTIM:

ESET = ESTIM

The magnitude of ESET determines at what angle the stimulated wrist is to be stimu-
lated, and the sign determines the direction of stimulation i.e., whether flexion or extension.
The look-up table, obtained during calibration, is used to check the stimulation parameters
required to obtain an angle of ESTIM. These parameters are written to the serial port and,
via the firmware, reach the stimulator, where the parameters are changed accordingly.
Continuous monitoring of the set angles, stimulation angles and changing of stimulation
parameters occur for the number of samples specified, after which the stimulator is turned
off. A real-time graph on the app page shows the angles of both of the encoders in real time.
A consolidated graph of the angles of both encoders along with the change in stimulation
parameters is displayed soon after. Figure 4 below shows the operation of the set/stimulate
record app.

Figure 4. Algorithm followed by the set/stimulate record app. The Flowchart describes how
mirroring is performed with the help of the flexion and extension calibration table values.
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3. Method
3.1. Participants

The study included 25 (12 female and 13 male) normal volunteers, aged between
18 and 50 years, from among the staff and students of Christian Medical College (CMC),
Vellore and Vellore Institute of Technology (VIT), Vellore. The institutional review board of
CMC Vellore (IRB Min. No. 14211 [INTERVEN] dated 25 August 2021) and VIT Vellore
(Ref. No. VIT/IECH/007(a)/3 March 2020 dated 5 March 2020) approved this study.
Informed consent was obtained from all 25 participants. In all participants, the left wrist
was stimulated and calibrated. The participants were advised to keep their left arms relaxed
throughout stimulation. The whole trial on each subject lasted for about 30–45 min. The
subject was asked to sit comfortably on the chair provided and was given a run-through
of the three apps. Electrodes were placed on the left extensors—cathode near the motor
point and the anode distal to the motor point. The whole experimental setup is shown in
Figure 5. The Flowchart showing the algorithm followed throughout the experiment is
shown in Figure 6.

Figure 5. Experimental setup. The figure shows a volunteer using the encoder-controlled FES.
The angles are set on the righthand side and the left wrist is stimulated to the same degree of
flexion/extension as the set side.

3.2. Placement Selection

The placement selection app was used to check whether the electrodes were placed
correctly. Positioning of the stimulating electrode close to the motor point of the muscle is
essential to ensure efficient contraction of the targeted muscle while maximizing comfort
during stimulation [35–38]. Due to variations in the size and shape of the forearm, it was
challenging to find the accurate placement of electrodes on the motor point; this involved
some time for multiple trials to obtain the best position. The electrodes were placed on the
wrist flexors/extensors of the subject’s left arm (in the case of stroke patients, this should be
the paralyzed arm) and each of the modes, starting from the very mild stimulation mode,
were tried. The mode that produced visible movement of the wrist was used for checking
placement of electrodes. Electrodes are moved around till isolated flexion/extension of the
wrist is achieved.
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Figure 6. Algorithm to be followed for using the three apps. The Flowchart gives the details on how
data were collected from each participant.

3.3. FES-Encoder Calibration

The stimulation characteristics of individuals varied based on thickness of the skin,
amount of adipose tissue, muscle, placement of electrodes and many other factors [39–41].
Once the participant is comfortably seated, the arm is comfortably placed within the
armrest of the encoder pedestal, in the neutral position, after finding the correct placement
of electrodes. The participant is asked to either grasp the encoder handle or place the palm
of the hand on one side of the handle, and it is strapped into position.

On starting the app, the immediate position on the encoder is reset to 0◦, and stimula-
tion starts at the smallest amplitude and pulse width. The maximum angle on the encoder
for each change in amplitude and/or pulse width is recorded. These angles are stored in a
file in the form of a look-up table along with the corresponding amplitude and pulse width
in ascending order for future use. An example of the look-up table is shown in Table 1.
The software sets the maximum angle of flexion/extension as 40◦; however, angles beyond
60◦ are also seen in the table since a small change in either amplitude or pulse width can
sometimes result in a large change in movement.



Bioengineering 2022, 9, 501 11 of 18

Table 1. Example of an extension table. The maximum encoder angle obtained for every increase in
amplitude and/or pulse width of stimulation are recorded along with amplitude and pulse width
values in a table called the calibration table.

S. No. Angle Amplitude Pulse Width

1. −0.7000 18 80

2. −0.4300 18 100

3. 1.9540 15 120

4. 2.8925 20 80

5. 3.0520 18 120

6. 3.4545 15 80

7. 4.3500 15 140

8. 4.5335 24 80

9. 4.9555 20 100

10. 10.6625 15 170

11. 11.7900 15 100

12. 30.0085 18 140

13. 30.0725 15 200

14. 32.7865 24 100

15. 35.9210 28 80

16. 41.6605 20 120

3.4. Set/Stimulate and Record Angles

When the flexion and extension calibration tables are ready, the setup is ready for
mirroring the movements of the right wrist onto the left wrist. The normal side encoder
pedestal is rolled onto the right side, and the right arm is placed on its armrest. The
participant is asked to grasp the encoder handle on the right side with his/her right hand,
and it is strapped into position. The normal side encoder is plugged into the place provided
on the placement/calibration encoder box on the left side, as shown in Figure 5. Both the
encoder pedestals are adjusted according to the comfort of the participant.

The participant is asked to keep the left arm relaxed while moving the handle of the
normal side encoder. As the participant moves the wrist on the right side, the stimulation
starts on the left side, with the hand moving at the wrist joint thereby mirroring the activity
on the right side.

4. Results
4.1. Placement Selection

Out of the five modes on the placement selection app, the mild stimulation mode
was the most commonly used. In very few subjects with less obvious movements, the
other modes, normal and strong stimulation, were used. It was easy to find placement
of flexion/extension electrodes in 15 participants, but in 3 participants (Nos. 3, 17 and
20), it took about 15 min to decide on the placement of electrodes. In the remaining seven
participants (Nos. 1, 4, 12, 13, 14, 21 and 23), finding the correct placement took about 5 to
10 min.

4.2. FES-Encoder Calibration

Most of the participants received a wide range of angles within the first three ampli-
tudes (15 mA, 18 mA and 20 mA); an example consolidated graph is shown in Figure 7. It
can be seen from Table 1 that the first two encoder angle values were very small negative
values instead of 0. This being a left extension required that the angle values be positive and,
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therefore, these values on the extension table were undesirable. The first two parameters of
stimulation did not cause any visible movement, as well. Therefore, they were eliminated
from the table. The angle values were rounded off to the nearest 0 so that the first value
would be angle 2 with the stimulation parameters of 15 mA and 120 µs. The second, third
and fourth values were rounded to 3, but all of them will be eliminated since there is
less than a 2 degree difference between the first and these values. In the table, the eighth
and ninth value result in an angle of 5 degrees, so the one with the lower pulse width is
chosen (i.e., 5, 24 mA, 80 µs), and so on. Therefore, the table is now reduced to one with
eight values.
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4.3. Set/Stimulate and Record

Participants underwent at least two trials of the 50 s stimulate and record procedure.
The angle recordings on the left and right encoders showed that the stimulated angle on
the left side was following the set angle on the right side. Figure 8 shows two examples of
set and stimulated angles in participants.
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Figure 8. Encoder set and stimulated angle graphs on two participants. Each of the graphs above
shows the stimulated angle overlapping the set angle, giving an idea as to how closely they followed
each other.

To check the difference between the set and stimulated angle graphs, the peak exten-
sion and peak flexion angles on the set and stimulated sides were compared for the data
obtained from all participants. There was a time lag between the set and stimulated angles.
The mean time lag was calculated to be 1.02 s.

The graphs above show the difference in peak angles for set and stimulated flexion and
extension for each of the participants, and Table 2 gives the mean and standard deviation
of the peak angles of flexion and extension for the set and stimulated wrists. The mean
differences between the set and stimulated wrists were 2.4 and 1.9 for flexion and extension,
respectively. The mean time lag between the set and stimulated angles was 1.02 s. The
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actual values for peak flexion/extension set and stimulated values are provided as a table
in supplementary data.

Table 2. Mean errors with time lag.

Flexion (Angle in Degrees) Extension (Angle in Degrees) Time (in MS)

Error Error Lag

Mean 2.3668 Mean 1.908 Mean 1016.4

Std. deviation 5.38 Std. deviation 3.95 Std. deviation 492.09

The graph in Figure 9 shows a plot of the peak wrist flexion values for the set and
stimulated values obtained for each participant. Similarly, Figure 10 shows a plot of the
peak extension set and stimulated values obtained for each participant.

Figure 9. Wrist Flexion—Graph showing differences between set and stimulated wrist flexion angle
peaks for all 25 participants.

Figure 10. Wrist Extension—Graph showing differences between set and stimulated wrist extension
angle peaks for all 25 participants.
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5. Discussion

The aim of this study was to enable bilateral symmetrical mirrored movement wrist
flexion and extension by providing visual, sensory feedback and control wrist movement
with functional electrical stimulation. It was observed that proper placement of electrodes
and stimulation–angle calibration are essential to achieving good, symmetrical and in-
phase movements.

In a few subjects, placement of the electrodes for symmetrical flexion and extension
was very difficult. It was also observed that in some subjects, flexion of the wrist occurred
while the electrodes were stimulating the extensors. This was probably due to the larger
loop current pathway that was stimulating the wrist flexors. Here, moving the electrodes
closer to each other for a more superficial stimulation current path rectified the problem.
In two subjects, the electrode placements caused thumb extension alone and no wrist or
finger extension. When the palm of the hand was used to grasp the handle of the encoder,
with the thumb in opposition to the rest of the fingers and stimulated, the thumb was
being extended, thereby pulling the other fingers into flexion and moving the encoder
handle in the opposite direction. The electrodes had to be moved around, and the palm
of the hand was placed on one side of the encoder handle and strapped into position. For
some participants, the forearm and wrist belt described in [42] proved useful to locate the
position of the electrodes a second time.

In a few participants, (three during flexion and four during extension), perfect angle
coordination was achieved, but in the majority, there were slight variations between the set
and stimulated angles.

In cases where the stimulated angle was lower than the set angle, it was seen that the
set angle was set to go beyond tabulated stimulation values and, therefore, remained at
the last stimulation point. In the cases where the stimulation peaks were higher than set
values, as can be seen in the colored rows in the table, it was assumed to be either due to
baseline errors during calibration or some other factors. During calibration, stimulation
pulses last for 6 s, after which there is a break of 6 s. At the end of the stimulation time,
during the break, since the wrist is not being stimulated and muscles are relaxed, the
encoder swings back to the baseline and in some rare cases, below the baseline. When this
happens, the value of the next angle recorded will be slightly lower than the actual angle
value. Presumably, this could be the reason for the error. Two participants were nervous
and resisted movement during stimulation. This was another reason for errors during
set/stimulate and record.

In the Figure 11, an example of this error is shown. The baseline has been shifted
below 0 to a value −4.52. The peak angle is measured and saved as 12.35, whereas the
actual value is 12.35 + 4.52 = 16.87 degrees. In most cases, the shifted baseline is negligible
and barely causes any issues.

The stimulated angle curve lags behind the set angle curve by a mean time of 1.02 s,
which is negligible for therapeutic and clinical purposes. The cause of this lag is largely
due to controller gain and minimally due to the latent period between start of stimulation
and onset of muscle contraction.

A few participants found stimulation and record angles to be a little uncomfortable at
times. For these participants, a third recording was performed with a fixed amplitude and
changing pulse widths. The look-up table was checked and sorted based on the ascending
order of amplitude. For each amplitude, the range of angle values was checked and the
one that had the highest angle range and largest number of changing pulse widths was
chosen. The stimulate and record angles app was run with this angle table. Participants
on this recording found stimulation to be much more comfortable, and on examining the
curves of both encoders, the lag between the set and stimulated angles was negligible.

The graphs show that the stimulate angle follows the set angle very closely, with
negligible difference between the two sides and negligible time lag. In stroke, being able
to move the wrist flexors and extensors on the paralyzed side with electrical stimulation
controlled by the normal side has many advantages. Since the activity is bilateral, there
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is some amount of synchronization of motor intent with activation of the target muscle.
Visual feedback of the limb moving and sensory/motor feedback due to stimulation are
other factors that might have a huge influence on re-learning the activity by a different part
of the brain.

Figure 11. Example of error during calibration. The vertical line passing through the graph shows
that at 18 mA and 140 µs, the baseline value was −4.52 instead of 0, which is one possible source
of error.

This study was performed to evaluate the efficiency of the device and to determine
how closely wrist flexion/extension was being mirrored onto the other side. Since the
results of this study are quite promising, future studies will be performed on stroke patients
to evaluate the amount of re-learning taking place. In this study, only a single degree of
freedom (DOF), namely wrist flexion and extension, was considered. The addition of more
DOFs will increase the versatility of the device and improve results.

6. Conclusions

It has been demonstrated that wrist extension and flexion can be mirrored without
the use of a mirror by simply using angle-controlled delivery of electrical stimulation. The
results show that when there is a wide enough range of stimulation parameters for moving
the wrist between 60◦ extension and 60◦ flexion, the stimulated wrist can follow the set
side wrist. FES was used to stimulate the wrist muscles and mirror wrist flexion/extension.
To take this research further, trials will be conducted on stroke patients to evaluate the
usability and feasibility of this device in a clinical setting.
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