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Objective. To determine whether CD9 expression on human granulosa cells (GCs) and platelets could predict the success of
conventional fertilization of human oocytes during in vitro fertilization (IVF). Methods. Thirty women undergoing IVF for
nonmale factor infertility participated. Platelets from venous blood and GCs separated from retrieved oocytes were prepared
for immunofluorescence. Flow cytometry quantified the percent of GCs expressing CD9, and CD9 surface density on GCs and
platelets. Fertilization rate was determined for the total number of oocytes, and the number of mature oocytes per patient.
Correlations tested for significant relationships (P < .05) between fertilization rates and CD9 expression. Results. CD9 surface
density on human GCs is inversely correlated with fertilization rate of oocytes (P = .04), but the relationship was weak. Conclusion.
More studies are needed to determine if CD9 expression on GCs would be useful for predicting conventional fertilization success

during IVE.

1. Introduction

Infertility, defined as the inability to conceive for at least one
year, is an emotionally devastating problem that affects about
7.4% of reproductive-age married women in the United
States [1]. At least 85% of the time, hormonal therapies and
surgery can resolve the problems with conception [2], but
for some couples, Assisted Reproductive Technology (ART)
procedures, such as in vitro fertilization (IVF), are the best
chance for reproductive success. During conventional IVF,
fertilization involves the introduction of sperm into micro-
droplets containing secondary oocytes. Success depends on
the ability of the sperm to approach the oocyte, penetrate
though the outer cumulus and zona layers, and then bind
and fuse with the oocyte’s plasma membrane. In the early
1990s, however, intracytoplasmic sperm injection (ICSI) was

introduced as an alternative method of assisted fertilization
[3]. During ICSI, a selected sperm is inserted directly into
the oocyte’s cytoplasm, so this technique bypasses the usual
processes of sperm-oocyte penetration, binding, and fusion.

Since its introduction, ICSI has become increasingly
common, primarily because of its undisputed success for
couples with male-factor infertility [4]. More recently, some
practitioners have argued that ICSI should be used for
all TVF procedures [5, 6], and the use of ICSI in cases
unrelated to male-factor infertility has increased greatly
at ART facilities worldwide [7-9]. Such general use of
ICSI, however, raises concerns because of its greater costs,
not only the additional financial burden to the patient,
but also the lab time spent performing sperm microin-
jections on numerous retrieved oocytes. Additionally, ICSI
might increase the risk of transmitting chromosomal
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anomalies or imprinting disorders (see reviews [10-12]),
although it is not clear whether these risks are due to
the procedure or to the factors causing male infertility
[8].

At present, there are no morphological or physiological
features of oocytes that can predict whether conventional
fertilization will be successful, or whether there is a need
for ICSI. Given the risks and costs associated with ICSI, it
would be helpful to have an independent marker that could
predict, a priori, the likelihood of successful fertilization with
conventional IVF for couples with nonmale factor infertility.
The sperm and oocyte both express numerous cell surface
proteins involved in the fertilization process. In particular,
the fusion of the sperm and egg membranes is a crucial step
that has been well studied, but is not completely understood
[13]. On the oocyte, one protein necessary for gamete fusion
is the tetraspanin, CD9. Female mice lacking a functional
CD9 gene are healthy and grow normally, but are infertile
because their oocytes cannot fuse with sperm [14-16]. This
function can be restored if CD9 deficient oocytes are injected
with CD9 mRNA [17, 18].

Because oocyte CD9 is needed for gamete fusion, mea-
suring the expression of CD9 in women could provide a
useful marker for predicting conventional IVF fertilization
success in couples with normal sperm parameters, but non-
male factor infertility. Potentially, high expression of CD9
could indicate a high probability of oocyte fertilization using
conventional IVF whereas low expression might justify a
need for ICSI instead, although such a relationship has never
been measured. Ideally, oocytes from women undergoing
IVF for nonmale factor infertility could be tested for the
presence of CD9. Unfortunately, this procedure would use
oocytes needed for fertilization, which have been collected
after an expensive, time-consuming, and uncomfortable
procedure. CD9, however, is also expressed on the granulosa
cells surrounding the oocytes, and on circulating peripheral
blood platelets [19, 20]. These cells can easily be collected,
either before (platelets) or during oocyte retrieval, and their
expression of CD9 could be measured in time to make a
decision whether conventional fertilization would likely be
successful for that IVF cycle. CD9 expression on granulosa
cells and platelets has been linked with female reproductive
function [20-22], however, no study has tested whether
CD9 expression on granulosa cells and platelets correlates
with CD9 expression on oocytes. The specific goal of this
study, therefore, was to determine whether CD9 expression
by granulosa cells and platelets collected the day of oocyte
retrieval could predict the fertilization success for oocytes
obtained during a conventional IVF cycle.

2. Method

2.1. Participants. This study was approved by the Institu-
tional Review Board at the University of Tennessee Health
Sciences Center and at Rhodes College, and all participants
gave informed consent. The subjects were 30 women who
were undergoing IVF for nonmale factor infertility; that
is, their partners had normal sperm parameters. The mean
age of the patients (+1 SE) was 32.5 years (+0.77), and a
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preliminary analysis showed no correlations (P > .05)
between patient age and oocyte fertilization rate or CD9
expression. Patient ethnicity was 90% Caucasian, 5% Asian,
and 5% African-American. Controlled ovarian stimulation
was accomplished using pituitary suppression in the luteal
phase with GnRH agonist (Luprolide acetate, Tap Phar-
maceuticals, Lake Forest, IL). Recombinant FSH (Gonal F,
EMD-Serono, Rockland, MD) or Follistim AQ (Schering-
Plough, Roseland, NJ) was used to induce multiple follicle
development. When at least three follicles with a mean
diameter >18 mm were observed on ultrasound, 10,000 mIU
hCG (Profasi or Ovidrel, EMD-Serono) was administered
followed by oocyte retrieval 35 hours later.

2.2. Granulosa Cell and Platelet Collection and Prepa-
ration. Oocytes with surrounding granulosa cells (GCs)
were retrieved from patients using an ultrasound-guided
transvaginal puncture. Only follicles that were greater than
14 mm in diameter were aspirated so that the cohort of
oocytes and GC from all patients would be comparable
in maturation. Subsequently, the GCs were separated from
the retrieved oocytes, and GCs from all follicles per patient
were pooled together in modified human tubal fluid. After
mechanical dispersion using a pipette, the GC solution was
layered over Histopaque 1077 (Sigma) and centrifuged at
600 g for 20 minutes at room temperature. GCs from the
interface were washed in Dulbecco’s Modified Eagle Medium:
Nutrient Mixture F-12 (DMEM) with 1% newborn calf
serum (NCS) (Invitrogen) and centrifuged (600g, 5min)
twice. The supernatant was discarded and the GCs were
resuspended in DMEM +1% NCS to produce a cell con-
centration of 1 X 10° viable cells/mL, based on trypan blue
staining for viability. To obtain platelets from patients on the
day of oocyte retrieval, a venous blood sample was collected
in a 4.5 mL glass tube with 3.2% buffered sodium citrate (BD
Diagnostics). From this whole blood sample, platelet-rich
plasma (PRP) was isolated by differential centrifugation, and
platelets were counted using a Coulter Counter. Platelet-poor
plasma (PPP) was used to dilute the PRP to a concentration
of 2.5 x 108cells/mL.

2.3. Monoclonal Antibodies for Flow Cytometry. Mouse anti-
human CD9 mAb7 [23], provided by Dr. Lisa K. Jen-
nings, was conjugated with B-phycoerythrin (Invitrogen)
to provide anti-CD9-PE antibodies. Mouse anti-human
CD45, conjugated with fluorescein isothiocyanate (anti-
CD45-FITC) (Santa Cruz), was used to mark leukocytes to
distinguish them from the granulosa cells [24], and normal
mouse IgG;-PE and IgG;-FITC (Santa Cruz) were used as
negative isotype controls.

2.4. Staining Procedure. Eppendorf tubes containing 100 yL
aliquots of the GC solution for each patient (10° viable
cells/100 uL) were incubated with the following combina-
tions of conjugated antibodies: 5L anti-CD9-PE and 5 uL
anti-CD45-FITC, or 5uL mouse IgG;-PE and 5uL mouse
IgG,-FITC (isotype controls). Tubes containing 100 uL
aliquots of each platelet solution (2.5 x 107 cells/100 uL)
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were incubated with 8 yL anti-CD9-PE and 2.5 uL sequesol,
or 8 uL mouse IgG, -PE (isotype control). Additional aliquots
of GCs and of platelets were left unstained as controls.
All tubes were incubated in the dark at room tempera-
ture for 30 minutes. Subsequently, the GCs and platelets
were centrifuged (800g for 5 minutes) and washed three
times with cold PBS before they were resuspended in
500 uL of cold PBS for flow cytometry. For positive con-
trols, Raji cells were stained and processed as described
above.

2.5. Flow Cytometric Analysis. A FACSCalibur (Becton Dick-
inson) was used for flow cytometric analysis of GCs and
platelets. Size gating of the GC sample was used to eliminate
any debris and the few contaminating blood cells that were
not the size of GCs (e.g., erythrocytes). During analysis of
each sample, the cursor was placed so that <2% of the
cells incubated with the isotype control antibodies (IgG;-
PE and IgG,-FITC) appeared as positive staining events.
Staining with anti-CD45-FITC allowed separation of the
CD45* leukocytes from the CD45~ GCs [24] (Figure 1). CD9
expression by GCs was quantified two ways: the percent of
GCs expressing CD9-PE and the surface density of CD9.
CD9 surface density was measured as the mean relative
fluorescence intensity for all GCs (CD45™ cells) that stained
positively for CD9-PE in each sample. For platelets, only
surface density of CD9 was measured.

2.6. Oocyte Fertilization Rate. Fertilization rate was cal-
culated as the percent of oocytes that progressed to the
two pronuclei/two polar body stage (2PN/2PB) 16 hours
after conventional fertilization, and again at 24 hours after
fertilization. Fertilization rate was determined for both the
total number of oocytes retrieved per patient, as well as for
the number of mature oocytes. Oocyte maturity was assessed
at the time of insemination based on cumulus expansion,
and it was estimated that 85%—-95% of the oocytes appeared
mature. This was confirmed at 16 hours and 24 hours
by microscopic examination, which identified 90% of the
oocytes to be either fertilized, or at least in the metaphase II
stage (had produced one polar body). Although all sampled
follicles were at least 14 mm in diameter to help ensure
similar oocyte maturity, the calculation of fertilization rate
was done for mature oocytes, in addition to the rate for
all oocytes, to eliminate oocytes that were obviously too
immature for fertilization.

2.7. Statistical Analysis. Pearson correlation coefficients and
Model 1II regression [25] were used to test for significant
relationships (P < .05) between fertilization rates and CD9
expression. Fertilization and GC percentages were arcsine
transformed to normalize the data prior to data analysis
and graphing [25]. Figures show transformed data, but
percentage values and means + standard errors of the means
(SEM) in the text represent untransformed data. This study
was powered to detect a 15% difference in fertilization rate
with @ = 0.05and § = 0.80 with 29 subjects.

3. Results

The frequency of GCs that expressed CD9 varied from 25%
to 92% of the GCs retrieved from each of the 30 patients,
with a mean frequency of 64% =+ 8.8 CD9* GCs/all GCs. The
mean intensity of CD9-PE fluorescence on the GCs was 345+
7.6. For platelets, the mean CD9-PE fluorescence intensity
was 117 + 6.6.

The number of oocytes retrieved per patient ranged from
4 to 35, with a mean of 16.0 + 1.4 oocytes per patient.
Of these retrieved oocytes, the mean frequency of mature
oocytes per patient was 90% (14.4 + 1.3 oocytes). The mean
number of fertilized oocytes was 10.0 + 1.0 oocytes per
patient. This yielded mean fertilization rates of 62% for all
oocytes retrieved (range = 20%-80%), and 72% (range =
27%-100%) for all mature oocytes.

The rate of fertilization among mature oocytes showed
a slight inverse correlation with greater CD9 surface density
(i.e., CD9-PE fluorescence intensity) (r = —0.372, P =
.04) (Figure 2). This relationship was relatively weak. The
coefficient of determination, R?, is only 0.14, indicating
that the intensity of CD9 expression on the surface of the
GCs only explained 14% of the variation in fertilization
rate among the mature oocytes. No correlations were found
between fertilization rate and the percent of GCs expressing
CD9, or between fertilization rate and CD9 surface density
on platelets (Table 1).

4. Discussion

Surface density of CD9 on pooled GCs was inversely cor-
related with fertilization frequency among mature oocytes.
However, because it explained so little of the variance in
oocyte fertilization rate, our data suggest it would not be a
useful marker to predict whether conventional fertilization
would be successful during IVE. Most likely, pooling of
GCs from all >14mm follicles in each patient reduced
the sensitivity of the analysis compared to testing GCs
from each follicle. In addition, pooling of GCs from all
follicles did not allow analysis of GCs from only the follicles
containing mature oocytes. We anticipated that this was a
minor reduction in sensitivity because 90% of the follicles
contained mature oocytes. Pooling was needed, however, to
provide a sufficient supply of cells for flow cytometry, and
it ensured that the analysis could be efficiently completed
within the brief window of time between oocyte retrieval and
fertilization.

The use of ICSI during IVF is clearly indicated for cases
of oligoasthenoteratozoospermia (low sperm count with
numerous slow-moving and abnormal sperm) as well as for
those with either obstructive or nonobstructive azoospermia
[10]. In addition, ICSI is indicated for couples undergoing
preimplantation genetic diagnosis (PGD) because it reduces
the risk that DNA extracted from the embryo would
be contaminated by residual DNA from any sperm still
surrounding the embryo following conventional fertilization
[7, 10]. Yet more and more practitioners worldwide are using
ICSI for patients without male-factory infertility or PGD
[5-9]. This may be attributed, in part, to findings that ICSI



generates higher fertilization rates compared to conventional
IVF [26]. Given the additional costs and potential risks of
the procedure [10-12], there remains a need for a marker
to predict whether conventional fertilization would likely be
successful in any given IVF cycle.

The results of this study indicate that CD9 expression
on human GCs and platelets may not be able to fulfill the
role of predicting conventional fertilization success during
IVE, but other cell surface proteins on GC’s could be
tested to determine if any may be able to perform that
function. Additionally, there are several genes expressed
within the GCs that could be evaluated for this purpose
because they have already been identified as markers for
oocyte competence (i.e., the ability of oocytes to yield a
successful pregnancy). These include genes induced during
cumulus cell expansion (e.g., HAS2, PTGS2, GREM1, PTX3),
genes involved in synthesis of progesterone (e.g., FDXI,
3BHDSI) or estrogen (CYPI9AI), and genes induced by
the LH surge (e.g., STAR, COX2) [27-31]. Expression of
most of these GC genes was correlated with developmental
success of oocytes following ICSI, consequently, these may
not be useful markers to predict success of conventional
fertilization. Of two studies that used oocytes that were
fertilized conventionally, one evaluated competence based on
whether the embryos reached the 8-cell stage and resulted in
a successful pregnancy following transfer [29]. The five GC
genes identified, including FDXI, 3fHDSI, and CYPI9AI,
may correlate with oocyte competence leading to fertiliza-
tion, but there is also the possibility that these genes associate
with successful early cleavage instead. The second study to
use oocytes that had been fertilized conventionally compared
GCs from follicles of oocytes that failed to fertilize with
GC’s associated with oocytes that reached the 8-cell stage
successfully. Furthermore, the cells used were cumulus cells,
the GCs immediately surrounding the oocytes. Their DNA
microarray identified numerous cumulus cell genes with
differential expression associated with oocyte fertilization
[31]. One of these genes was PTX3, which is involved in
proper structuring of the oocyte/cumulus complex and is
important for female fertility [32]. Female knockout mice
lacking the PTX3 gene not only ovulate fewer oocytes, but
their oocytes have lower fertilization rates [32]. Both PTX3
and other GC genes identified in these studies could be
further tested for their usefulness as markers for conventional
fertilization success during IVE

In contrast to oocyte CD9, which is necessary for
fertilization [14-16], it appears that CD9 on GCs serves
a different function that is more indirectly related to
fertilization success. On GCs, CD9 associates with aef3;, an
integrin heterodimer that binds laminin, a component of
the extracellular matrix surrounding the GCs [20]. Although
Fujiwara et al. [33] did not detect laminin in the matrix
between GCs of preovulatory follicles, they did find it
bound to GCs collected during oocyte retrieval for IVF (i.e.,
at the time of ovulation). In humans, the interaction of
laminin with agf; on GCs inhibits the cells’ maturation
into granulosa-lutein cells that secrete progesterone [33].
Expression of both CD9 and as increases on GCs leading up
to ovulation [20, 34-36], and the appearance of laminin in
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the matrix around the time of ovulation may be important
for preventing premature luteinization of the GCs. At
ovulation, however, laminin’s inhibition of GC maturation
must stop to permit formation of the corpus luteum and
secretion of progesterone. Because laminin remains present
in the GC matrix from ovulation up to four days afterwards
[33], the mechanism to reduce its impact most likely lies in
or on the GCs themselves.

To block the inhibitory effects of laminin at ovulation,
it is possible that the GCs decrease expression of the agf3;
integrin to which laminin binds. Although immunohisto-
chemistry has shown that ag expression increases on GCs
leading up to ovulation, and persists on GCs during corpus
luteum formation [20, 34-36], flow cytometry by Clavero et
al. [21] demonstrated that GCs from mature follicles with
metaphase II oocytes expressed significantly less a6 than
GCs from immature follicles with only metaphase I oocytes.
This downregulation of as at ovulation may be sufficient to
mitigate laminin’s suppression of GC maturation. It is also
likely that GCs mature because intracellular signals reduce
the affinity of a1 to the available laminin [37, 38]. This
loss of affinity by an integrin may occur through rapid
changes in its extracellular domains [38, 39], or by changes
in integrin position or clustering [40, 41]. CD9 promotes
the clustering of agf; [42]. Like @, CD9 expression on
GCs increases though ovulation [20], but at ovulation there
is less CD9 on GCs of mature follicles than immature
ones [21]. This reduction in CD9 expression by GCs at
ovulation should cause dispersal of the a¢f3; integrin from
its clustered arrangement, and a concomitant loss of agf3
affinity for laminin. The decrease of laminin signaling would
then permit the GCs” maturation into progesterone-secreting
granulosa-lutein cells. Microarray analysis has shown that
greater expression of GC genes promoting progesterone
synthesis is significantly correlated with production of
competent oocytes [29]. Perhaps the negative correlation we
observed between CD9 expression in GCs and fertilization
rate in metaphase I oocytes reflects some variation in the GC
maturation and competence of oocytes among the patients.
Our samples of GCs came from all of the follicles greater than
14 mm that produced oocytes during the retrieval process,
so a patient with a greater proportion of mature follicles
producing oocytes capable of conventional fertilization may
have had somewhat lower expression of GC CD9 that a
patient with fewer mature follicles.

Though CD9 on GCs is not directly involved in fertiliza-
tion of the oocyte, it may affect fertilization indirectly though
its role in follicle maturation. A mature follicle, usually
defined by its large size, generally has a greater probability of
containing an oocyte with a mature nucleus and cytoplasm.
There is considerable communication between the GCs and
an oocyte in a developing follicle, and gene expression in
maturing GCs is closely associated with the production of
competent oocytes [27, 29, 43, 44]. Platelets, however, are far
removed from oocyte maturation and fertilization, so it is
not surprising that platelet CD9 expression was completely
unrelated to fertilization rates among oocytes. Platelets were
included in this study because they express abundant CD9,
they are very simple to obtain without discomfort or injury
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TABLE 1: Correlations between CD9 expression on human granulosa cells (GCs) and platelets and fertilization rates in oocytes.

Correlation with fertilization rate in all oocytes

Correlation with fertilization rate in mature

oocytes?
Measure of CD9 expression Correlation coefficient P-Value Correlation coefficient P-Value
Percent of GCs expressing CD9 (n = 30) 0.151 43 0.135 48
Surface density of CD9® on GCs (n = 30) —0.316 .09 —0.372 .04
Surface density of CD9® on platelets (n = 26) —-0.141 .49 -0.029 .89

“See the text for the definition of mature oocytes.

bCDY surface density was measured as the mean intensity of CD9-PE fluorescence during flow cytometry.
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FIGURE 1: Flow cytometry separation of granulosa cells (GCs) from
leukocytes based on intensity of staining with anti-CD45-FITC.
Events showing CD45* leukocytes are located in the upper right
quadrant whereas those representing CD45~ GCs occur in the
upper left. The bottom two quadrants contain a few cells that did
not pick up the anti-CD9-PE antibody.

to a patient, and because data from a preliminary study
suggested that platelet CD9 might be linked with fertilization
rates [22]. In this prior investigation, platelets were sampled
from study subjects at different times during their menstrual
or IVF cycles. Because platelet function and platelet-derived
microparticle activity are affected by both endogenous and
exogenous reproductive steroid hormones [45-48], it is
possible that prior indication of a link between platelets and
fertilization may have been a byproduct of variation in the
time of sampling among patients.

5. Conclusion

Measurement of CD9 expression on human granulosa cells
and platelets may not be a useful indicator for predicting the
success of conventional fertilization in couples undergoing
IVE. A weak negative relationship between surface density
of CD9 on granulosa cells and fertilization rate of mature
oocytes may reflect a downregulation of CD9 that accom-
panies follicle maturation at ovulation. More studies are
necessary to determine the role of CD9 on granulosa cells
during follicle maturity, and to assess if CD9 expression on
human granulosa cells could be used as a factor to predict
the success of conventional fertilization during IVE.
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FIGURE 2: Greater surface density of CD9 on the GCs (measured
as mean intensity of CD9-PE fluorescence) correlated with lower
fertilization rates in mature oocytes (r = —0.372, P = .04).
See the text for the definition of mature oocytes. The Model IT
regressionis y = —0.27x + 152.8.
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