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Abstract

A new vaccination strategy is urgently needed for improved control of the global tuberculosis (TB) epidemic. Using a mouse
aerosol Mycobacterium tuberculosis challenge model, we investigated the protective efficacy of a mmaA4 gene deletion
mutant of Mycobacterium bovis BCG (DmmaA4BCG) formulated in dimethyl dioctadecyl ammonium bromide (DDA) – D(+)
trehalose 6,6 dibenenate (TDB) (DDA/TDB) adjuvant. In previous studies, deletion of the mmaA4 gene was shown to reduce
the suppression of IL-12 production often seen after mycobacterial infections. While the non-adjuvanted DmmaA4BCG
strain did not protect mice substantially better than conventional BCG against a tuberculous challenge in four protection
experiments, the protective responses induced by the DmmaA4BCG vaccine formulated in DDA/TDB adjuvant was
consistently increased relative to nonadjuvanted BCG controls. Furthermore, the DmmaA4BCG-DDA/TDB vaccine induced
significantly higher frequencies of multifunctional (MFT) CD4 T cells expressing both IFNc and TNFa (double positive) or
IFNc, TNFa and IL-2 (triple positive) than CD4 T cells derived from mice vaccinated with BCG. These MFT cells were
characterized by having higher IFNc and TNFa median fluorescence intensity (MFI) values than monofunctional CD4 T cells.
Interestingly, both BCG/adjuvant and DmmaA4BCG/adjuvant formulations induced significantly higher frequencies of CD4 T
cells expressing TNFa and IL-2 than nonadjuvanted BCG or DmmaA4BCG vaccines indicating that BCG/adjuvant mixtures
may be more effective at inducing central memory T cells. Importantly, when either conventional BCG or the mutant were
formulated in adjuvant and administered to SCID mice or immunocompromised mice depleted of IFNc, significantly lower
vaccine-derived mycobacterial CFU were detected relative to immunodeficient mice injected with non-adjuvanted BCG.
Overall, these data suggest that immunization with the DmmaA4BCG/adjuvant formulation may be an effective, safe, and
relatively inexpensive alternative to vaccination with conventional BCG.

Citation: Derrick SC, Dao D, Yang A, Kolibab K, Jacobs WR, et al. (2012) Formulation of a mmaA4 Gene Deletion Mutant of Mycobacterium bovis BCG in Cationic
Liposomes Significantly Enhances Protection against Tuberculosis. PLoS ONE 7(3): e32959. doi:10.1371/journal.pone.0032959

Editor: Homayoun Shams, University of Texas at Tyler, United States of America

Received June 3, 2011; Accepted February 8, 2012; Published March 19, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: steven.derrick@fda.hhs.gov

Introduction

Despite being an ancient disease, TB remains an enormous

public health concern in the 21st century. One-third of the world’s

population is thought to be infected with Mycobacterium tuberculosis

and new infections likely occur every second. In 2009, the World

Health Organization estimated that there were 14 million active

cases of TB, 9.4 million new cases, and 1.7 million deaths due to

this disease [1]. A driving force for the resurgent TB epidemic has

been the HIV/AIDS pandemic. It has been estimated that

approximately 1.5 million individuals are co-infected with TB and

HIV and more than 400,000 co-infected persons die each year [2].

Importantly, control of this epidemic has been further confounded

by the emergence of multiple drug resistant and extensively drug-

resistant M. tuberculosis strains which often limit treatment options

and make appropriate medical interventions challenging [3].

The only licensed vaccine against TB, M. bovis BCG, has been

given to over 3 billion persons during its eight decades of clinical

use. Randomized controlled trials and retrospective case control

studies have shown that BCG immunization is effective in

reducing cases of severe disseminated tuberculosis (TB meningitis

and miliary TB) in children [4,5]. Surprisingly, recent studies have

also suggested that BCG vaccination may also reduce the risk of

childhood infection by M. tuberculosis [6–8]. However, the

effectiveness of BCG vaccine in preventing the most contagious

and prevalent form of disease, pulmonary TB, is unclear. BCG-

induced protection against TB has been highly variable with

protective efficacies ranging from 0–80% in numerous clinical

trials [4,9]. Furthermore, the protection induced by BCG

vaccination is often not highly persistent and a substantial waning

of the protective responses is generally seen during the first decade

after immunization [10]. Given the devastation of the global TB

epidemic, the sub-optimal effectiveness of BCG immunization has

created a public health urgency to generate an improved TB

vaccination strategy.

Since BCG is widely used in areas where the TB burden is high

and BCG immunization does reduce the incidence of severe

extrapulmonary disease in children, the current focus of many TB

vaccinologists has been the development of an approach to amplify

BCG-induced immune responses by boosting with viral vectored

or subunit TB vaccines after the priming BCG immunization

[11,12]. Although the prime/boost strategy is clearly promising,
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the complexities of prime/boost immunization schedules and the

cost of subunit vaccines may limit its utility in developing

countries. Alternative simpler and less expensive approaches

may be required in the development of an improved TB

vaccination strategy for the developing world. At least two of

these TB vaccine improvement approaches have concentrated on

modifying conventional BCG vaccine formulations. For example,

encapsulation of BCG in lipid preparations has been shown in

mice, badgers, guinea pigs, and cattle to improve the immuno-

genicity and protective efficacy of BCG immunization [13–18].

Lipid encapsulation of BCG seems to increase the extent and

kinetics of BCG infection at specific immune sites including the

lymph nodes. Secondly, BCG strains are being modified to

enhance their immunogenicity [19–20]. Interestingly, more

immunogenic mycobacterial strains have been generated using

genetic approaches to remove mycobacterial genes known to

inhibit host pro-inflammatory responses. Recently, Dao and

colleagues have shown that a deletion in the mmaA4 gene (which

encodes a methyl transferase involved in mycolic acid synthesis) of

M. tuberculosis removed the selective repression of IL-12 synthesis

caused by mycobacterial infections. As a result, the DmmaA4

mutant strain induced significantly elevated levels of this critical

Th1-type cytokine in macrophage cultures [21].

Here we have combined two BCG modification approaches in

the evaluation of a novel immunization strategy against TB.

Specifically, we created a DmmaA4 mutant of BCG and formulated

it in the DDA/TDB cationic liposomal adjuvant. This adjuvant

has been shown to be safe and immune enhancing in human

clinical trials, [22]. We then evaluated the immunogenicity, safety,

and effectiveness of this preparation in a mouse model of

pulmonary TB. Our data suggests that this mutant BCG/adjuvant

formulation induces higher levels of mycobacterial-specific multi-

functional T cells, is more protective than BCG vaccine, and,

surprisingly, may be safer than BCG when used in immunocom-

promised animals.

Materials and Methods

Animals
C57BL/6 female mice and SCID mice (B6.CB17-

Prkdc,scid.SzJ; # 25938) that were 6–8 weeks of age were

obtained from the Jackson Laboratories (Bar Harbour, Maine). All

mice used in this study were maintained under appropriate

conditions at the Center for Biologics Evaluation and Research,

Bethesda, MD. This study was done in accordance with the

guidelines for the care and use of laboratory animals specified by

the National Institutes of Health. This protocol was approved by

the Institutional Animal Care and Use Committee of the Center

for Biologics Evaluation and Research under Animal Study

Protocol 1993-09.

Preparation of vaccines
The DmmaA4BCG mutant was derived from BCG Pasteur as

previously described [21]. Wild-type BCG Pasteur or the

DmmaA4BCG strain were administered subcutaneously (s.c.) in

PBS or adjuvant at 16106 CFU per immunization in 0.2 ml. The

adjuvant- containing vaccines were prepared by mixing the BCG

or the mutant BCG with dimethyl dioctadecyl-ammonium

bromide (DDA, Kodak, Rochester, NY) and D-(+)-Trehalose

6,69-Dibehenate (TDB, Avanti Polar Lipids, Alabster, AL). The

DDA solution was prepared by heating 25 mg in 10 ml water at

80uC for 20 min and vortexing every 5 minutes. The TDB

solution was prepared by adding 1.0 ml of water with 2 ml DMSO

(0.2% final) to a vial containing 5.0 mg TDB. The TDB

suspension was sonicated until it became homogenous. The

adjuvanted vaccines were prepared by mixing 56106 CFU of

BCG or the mutant BCG strain with 0.6 ml of DDA with

sufficient PBS to bring the volume to 0.9 ml. One-tenth ml of

TDB was added to the BCG-DDA mixture, vortexed three times

and then incubated at room temperature for 1 hour. Mice

received either one immunization or three immunizations 2 weeks

apart.

Evaluation of vaccine-induced protective immunity in a
murine model of pulmonary TB

At 2 months after the final immunization, five mice per group

were infected with M. tuberculosis Erdman by aerosol at a

concentration known to deliver about 200 CFU in the lungs over

a 30-minute exposure in a Middlebrook chamber (Glas Col, Terre

Haute, IN) [23]. At each time point, the lungs and spleens were

homogenized separately in PBS with 0.05% Tween 80 using a

Seward Stomacher 80 blender (Tekmar, Cincinnati, OH). The

homogenates were serially diluted in PBS +0.05% Tween 80 and

plated on Middlebrook 7H11 agar (Difco) plates containing 10%

OADC enrichment (Becton Dickinson, Sparks, MD) medium,

10 mg/ml ampicillin, 50 mg/ml cycloheximide, and 2 mg/ml 2-

thiophenecarboxylic acid hydride (TCH) (Sigma). The addition of

TCH to the agar plates inhibits BCG growth but has no effect on

M. tuberculosis growth. Plates were incubated at 37uC for 17 days

before counting to determine the number of mycobacterial colony

forming units (CFU) per organ.

Evaluation of the safety of BCG or DmmaA4BCG with or
without adjuvant in immunocompromised mice

To evaluate the safety of the different BCG vaccine prepara-

tions, we used either mice treated with anti-IFNc neutralizing

antibody or SCID mice. For the studies in mice receiving the anti-

IFNc antibody treatment, mice received intraperitoneal injections

of anti-IFNc (XMG.6) (0.5 mg) at 4 and 2 days prior to receiving

one s.c. injection of 16106 CFU of BCG or DmmaA4BCG with or

without adjuvant. The mice received antibody treatments every 10

days and were then sacrified one month after being infected for

evaluation of spleen bacterial burdens. SCID mice received one

106 CFU dose of the different BCG vaccine preparations

intravenously (i.v.) and were then sacrificed one month later to

quantify bacterial CFU in the spleens.

Flow Cytometry
Four to five unchallenged mice were used to determine the

frequency of CD4+ or CD8+ multifunctional T cells (MFT cells)

induced for each vaccine at 2 months post-immunization.

Unvaccinated (naı̈ve) mice served as the negative control. Spleen

cells from naı̈ve and vaccinated mice were isolated by disrupting

the spleens using a 3cc syringe barrel in complete DMEM

(cDMEM) consisting of 10 mM HEPES, 2.0 mM L-glutamine,

0.1 mM MEM non-essential amino acids with 10% fetal bovine

serum (FBS). After passing the spleen homogenates through a

70 mm cell strainer, the resulting single cell suspension was washed

with cDMEM and treated for 1 min with 5.0 ml ACK lysing

buffer (Lonza, Walkersville, MD). After washing the spleen cells

with an equal volume of media, the cells were resuspended in

cDMEM and added to wells of a 24-well plate at a density of

2.56106 cells per well in 1.0 ml. For measurement of antigen-

specific responses, BCG Pasteur was added to the wells at a

multiplicity of infection (MOI) of 0.5 bacilli per spleen cell. Wells

which contained only spleen cells served as unstimulated controls.

After an overnight incubation, Golgiplug (BD Biosciences, San
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Jose, CA) was added (1 ml per well) to the spleen cells and

incubated 4 hours. Unbound cells were removed from the wells

and transferred to 12675 mm tubes, washed with PBS and

resuspended in 50 ml PBS. Live-Dead stain (Invitrogen, Carlsbad,

CA) (10 ml of a 1:100 dilution) was added to each tube and

incubated for 30 min. at 4uC to allow for gating on viable cells.

After washing the cells with PBS-FBS, antibody against CD16/

CD32 (FccIII/II receptor, clone 2.4G2) (Fc block) was added in a

volume of 50 ml and incubated at 4uC for 15 min. The cells were

then stained for 30 min. at 4uC by adding antibodies against the

CD4 (rat anti-mouse CD4 Alexa Fluor 700 [AF-700] Ab, clone

RM4-5), and CD8 (rat anti-mouse CD8 peridinin chlorophyll

protein complex [PerCP] Ab, clone 53-6.7) proteins at 0.1 and

0.4 mg per tube respectively. Following the incubation, the cells

were washed twice with PBS and then fixed for 30 min. at 4uC
with 2% paraformaldehyde in PBS. After fixing, the cells were

pelleted, washed twice with PBS-FBS and stored at 4uC. Fixed

cells were washed twice with perm-wash buffer (1% FBS, 0.01 M

HEPES, 0.1% saponin in PBS) followed by intracellular staining

using the following antibodies at 0.2 mg per tube: rat anti-mouse

IFNc allophycocyanin [APC] Ab, clone XMG1.2; rat anti-mouse

TNFa fluorescein isothiocyanate [FITC] Ab, clone MP6-XT22;

rat anti-mouse IL-2 phycoerythrin [PE] Ab, clone JES6-5H4. The

cells were incubated at 4uC for 30 min., washed twice with perm-

wash buffer and then twice with PBS-FBS. All antibodies were

obtained from BD Biosciences.

The cells were analyzed using a LSRII flow cytometer (Becton

Dickinson) and FlowJo software (Tree Star Inc., Ashland, Oregon).

We acquired 250,000 events per sample and then, using FlowJo,

gated on live, single cell lymphocytes. To determine the frequency

of different populations of MFT cells, we gated on CD4 or CD8 T

cells staining positive for TNFa and IFNc, TNFa and IL-2, IFNc
and IL-2 or all three cytokines.

Median fluorescence intensity (MFI) assessments
The MFI for IFNc or TNFa for CD4 and CD8 monofunctional

and MFT cells was evaluated in the different vaccine groups using

the FlowJo software. For this study, the MFI is the fluorescence

intensity value representing the middle number of the distribution

of CD4 and CD8 T cells secreting only IFNc or TNFa, secreting

both IFNc and TNFa or cells secreting IFNc, TNFa and IL-2.

The data are presented as the mean of the individual MFI

assessments for 4–5 mice. The integrated MFI metric (iMFI) was

determined by multiplying the mean MFI values for a specific T

cell subset by its frequency.

Statistical analysis
The Graph Pad Prism 5 program was used to analyze the data

for these experiments (Graph Pad Software, San Diego CA). The

protection data, the CD4 and CD8 T cell flow cytometry results,

and the MFI data were evaluated using t test analysis. The

correlations between the iMFI values for triple positive cells and

the mean protection induced at 1 month post-challenge were

assessed using the Pearson correlation analysis.

Results

Characterization of vaccine-induced protective immunity
To assess whether the DmmaA4BCG deletion mutant formulated

with or without the DDA/TDB adjuvant induced superior anti-

tuberculosis protective immunity, the DmmaA4 BCG preparations

were tested in a mouse model of pulmonary TB. For the initial

studies, mice were vaccinated once subcutaneously with either

106 CFU of BCG Pasteur or the DmmaA4 BCG mutant.

Alternatively, mice were immunized three times with 106 CFU

of BCG Pasteur or the DmmaA4 BCG strain suspended in the

DDA/TDB adjuvant. At 2 months following the final vaccination,

the mice were aerogenically challenged with a low dose of virulent

M. tuberculosis Erdman. As seen in Experiment 1, all experimental

immunization procedures induced significant levels of protective

immunity (relative to controls) at 1 month post-challenge (Table 1).

Moreover, the protective responses elicited by immunization with

the BCG/adjuvant (21.35 log10) or the DmmaA4BCG/adjuvant

(21.75) vaccine formulations were significantly enhanced com-

pared to the live BCG control (20.73).

In a second study, we evaluated the longer term effectiveness of

these novel vaccine preparations. Again, at 1 month post-

challenge, all of the vaccine formulations induced significant

anti-tuberculosis protective immunity. Moreover, at the one

month time point, immunization with the DmmaA4BCG/Adjuvant

preparation (21.56 log10) evoked significantly elevated protective

responses compared to BCG alone (21.00). Similar results were

seen at 4 months post challenge. At this time point, all of the

vaccine preparations were protective relative to naives (p,0.05).

Furthermore, the DmmaA4BCG/adjuvant (22.12) and the BCG/

adjuvant (22.24) formulations were strikingly more protective

than BCG alone (20.90). It should be noted that one group of

mice was given BCG three times as a control in this study.

Interestingly, three doses of BCG did not evoke increased anti-

Table 1. Evaluation of the anti-tuberculosis protective
immunity induced by BCG strains formulated in DDA/TDB
adjuvant at one month and four months post-challenge.

Experiment 1

Group 1 Month 4 Months

Naive 5.4460.04

BCG 4.7160.07 (20.73)*

BCGA4 4.3760.19 (21.07)*

BCG/Adj 4.0960.16 (21.35)*#

BCGA4/Adj 3.7060.18 (21.74)*#‘

Experiment 2

Naive 4.9560.11 4.6760.13

BCG 3.9560.10 (21.00)* 3.7760.19 (20.90)*

BCG (36) 4.0560.12 (20.90)* ND

BCGA4 3.9460.21 (21.01)* 3.6860.06 (20.99)*

BCG/Adj 3.6060.25 (21.35)* 2.4360.25 (22.24)*#‘

BCGA4/Adj 3.3960.15 (21.56)*#‘ 2.5560.23 (22.12)*#‘

Experiment 3

Naive 4.6160.14 4.7460.20

BCG 3.6360.15 (20.98)* 3.6460.13 (21.10)*

BCGA4 3.6860.06 (20.93)* 3.8060.16 (20.94)*

BCG/Adj 2.8660.08 (21.75)*#‘ 3.1860.32 (21.56)*‘

BCGA4/Adj 2.4560.19 (22.16)*#‘ 3.0760.11 (21.67)*#‘

BCGA4/Adj = DmmaA4 BCG formulated in DDA/TDB adjuvant.
( ) The difference between naı̈ve and experimental CFU.
ND – not done.
*Significantly decreased CFU values compared to naive controls, p,0.05.
#Significantly decreased CFU values relative to BCG, p,0.05.
‘Significantly decreased CFU values relative to BCGA4, p,0.05.
doi:10.1371/journal.pone.0032959.t001
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tuberculosis protective responses in mice at 1 month after the

challenge when compared to a single BCG inoculation.

In a third study, vaccine-induced protective responses at one

and four months following a tuberculous infection were again

evaluated. At both time points, significantly decreased post-

challenge CFU levels were seen in all vaccine groups relative to

naı̈ve controls (p,0.05). Additionally, immunization with both

adjuvant-containing vaccine formulations (BCG/adjuvant, 21.75;

DmmaA4BCG/adjuvant, 22.16) protected significantly better than

BCG (20.98) at 1 month post-challenge. Vaccination with the

DmmaA4BCG/adjuvant mixture (21.67) also yielded significantly

enhanced protective responses relative to BCG controls (21.10) at

4 months after an aerogenic challenge. Overall, in these three

separate studies, immunization with the BCG and DmmaA4BCG-

adjuvant formulations induced significantly increased anti-tuber-

culosis protective immunity compared to BCG controls in

response to a tuberculous infection by the aerosol route.

In a fourth experiment, we tested whether significant anti-

tuberculosis protective immunity could be generated in the lung

with a single dose of the DmmaA4BCG mutant strain formulated in

DDA/TDB adjuvant. As seen in Figure 1, a single dose of BCG or

the DmmaA4BCG/adjuvant yielded substantial protection at one

month post-challenge. However, at 2 months post-challenge, the

DmmaA4BCG/adjuvant preparation induced significantly in-

creased protection in the lung compared to BCG (20.70 log10

difference). Similarly, at 4 months post-challenge, significantly

better pulmonary protective immunity (20.84 log10 difference)

was detected in mice given a single dose of the DmmaA4BCG/

adjuvant mixture relative to BCG.

Analysis of vaccine-induced CD4 T cell immune
frequencies by flow cytometry

Vaccine-induced T cell responses were evaluated using multi-

parameter flow cytometry. At 2 months following the final

immunization, spleen cells were removed from the vaccinated

and naı̈ve mice, stimulated overnight with BCG, stained for

intracellular cytokines, and analyzed by flow cytometry. Initial

analysis focused on CD4 T cell cytokine expression because CD4

T cells have been shown to be critical for controlling M. tuberculosis

infections in the mouse model [24]. As seen in Figure 2, all vaccine

preparations induced significantly increased frequencies of CD4 T

cells expressing IFNc, IFNc/TNFa and IFNc/TNFa/IL-2

relative to naı̈ve controls. Interestingly, the frequencies of cells

secreting either TNFa or TNFa/IL-2 were only elevated

(compared to naı̈ve controls) in spleen cultures recovered from

animals vaccinated with the adjuvanted BCG vaccine prepara-

tions. To identify the cellular responses which may be responsible

for the elevated levels of protection seen with the adjuvanted

vaccines, the CD4 T cell frequencies induced by immunization

with the adjuvanted preparations were compared to the cellular

frequencies evoked by vaccination with BCG. Immunization with

both the BCG/adjuvant and the DmmaA4BCG/adjuvant mixtures

induced significantly higher numbers of double-positive CD4 T

cells expressing TNFa/IL-2 than BCG (Figure 2B). Moreover,

immunization with the highly active DmmaA4BCG/adjuvant

preparation also induced elevated frequencies (relative to BCG)

of double positive CD4 T cells expressing IFNc/TNFa and triple-

positive cells secreting IFNc/TNFa/IL-2. To confirm these

findings, additional experiments were done to evaluate CD4 T

cell frequencies in BCG-vaccinated mice and mice immunized

with the DmmaA4BCG/adjuvant preparation (Figure S1). Again,

significantly higher frequencies of multifunctional CD4 T cells

expressing TNFa/IL-2 and triple positive CD4 T cells were

detected in splenocytes recovered from mice immunized with the

DmmaA4BCG/adjuvant preparation compared to BCG-vaccinated

mice.

Earlier studies have shown that CD4 T cells expressing multiple

cytokines often produce higher amounts of cytokines per cell than

monofunctional CD4 T cells [23,25,26]. To elucidate whether

vaccine-induced MFT cells produced elevated concentrations of

cytokines relative to monofunctional cells in these experiments, the

median fluorescent intensities (MFI) for IFNc and TNFa were

determined for relevant cell populations evaluated in these studies

(Figure 3A and B). However, for these experiments, the MFIs for

IL-2 were not systematically assessed because generally low levels

of IL-2 were detected in most studies. Consistent with previous

data, elevated MFI values for IFNc were detected in double-

positive IFNc/TNFa expressing CD4 T cells (3–7 fold increases)

and triple positive CD4 T cells (3.5–12 fold increases) recovered

from vaccinated mice compared to monofunctional IFNc
producing CD4 T cells from animals vaccinated with the same

vaccines (Figure 3A). For these MFT cells, the highest MFI CD4 T

cell values were again detected in mice vaccinated with the

DmmaA4BCG/adjuvant mixture.

To further evaluate vaccine-induced immune responses, the

total IFNc response of the populations of cytokine-producing CD4

T cells was assessed using the integrated MFI metric (iMFI) which

combines the magnitude and quality of T cell responses. Darrah et

al have previously shown that iMFI values (frequency6MFI) for

cells expressing IFNc, TNFa, and IL-2 correlated with the

protection induced by vaccines in a mouse model of Leishmania

[25]. For our studies, the IFNc iMFI values for IFNc, IFNc/

TNFa, and IFNc/TNFa/IL-2 producing cells induced by all of

the vaccine formulations were elevated at least 10 fold relative to

naı̈ve controls (naı̈ve iMFI data not shown). Furthermore, the

IFNc iMFI values were considerably elevated for the

DmmaA4BCG/adjuvant immunization groups compared to BCG

controls in each CD4 T cell subset evaluated. Increases relative to

BCG iMFI values of 8.4-fold for IFNc producing monfunctional

cells, 7.2 fold for IFNc/TNFa double positive cells and 5.3 fold for

triple positive CD4 T cells were detected in splenocytes from

Figure 1. Protection in C57BL/6 mice against a M. tuberculsosis
Erdman aerosol challenge after vaccination with either BCG or
the DmmaA4BCG/adjuvant formulation. Mice were challenged
with M. tuberculosis 8 weeks after a single s.c. immunization and then
were sacrificed 1, 2 or 4 months after the challenge for enumeration of
CFU’s in the lung. Significant CFU reduction relative to * naı̈ve mice
(p,0.05) or # BCG-vaccinated controls (p,0.05).
doi:10.1371/journal.pone.0032959.g001
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Figure 2. Muliparameter flow cytometry was used to determine the frequency (%) of (A) monofunctional CD4 T cells producing
only IFNc, TNFa, or IL-2 or (B) CD4 MFT cells producing both IFNc and TNFa, IFNc and IL-2, TNFa and IL-2 or all three cytokines from
naı̈ve or vaccinated mice. Splenocytes from three to five unchallenged mice per group were analyzed separately for these experiments.
* Significant differences relative to naı̈ve controls (p,0.05). # Significant differences compared to BCG-vaccinated mice (p,0.05).
doi:10.1371/journal.pone.0032959.g002

Figure 3. Median fluorescence intensity (MFI) of (A) IFNc or (B) TNFa in monofunctional or multifunctional CD4 T cells. The data are
presented as the mean of individual MFI values for 4–5 mice per vaccine group. * Significant differences relative to monofunctional cytokine
expressing cells, p,0.05. # Significant differences relative to BCG in the same T cell subset, p,0.05.
doi:10.1371/journal.pone.0032959.g003

Efficacy of a BCG mmaA4 Deletion Mutant against TB

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e32959



DmmaA4BCG/adjuvant vaccinated mice (Figure S2A). Important-

ly, Pearson analysis showed that the correlation between vaccine-

induced CD4 IFNc iMFI values for triple positive cells and the

mean protection induced at 1 month post-challenge shows a trend

toward statistical significance (p = 0.07).

Analysis of the CD4 T cell MFI values for TNFa again

demonstrated that multifunctional T cells express higher levels of

cytokines than monofunctional cells (Figure 3B). The MFIs for

TNFa were elevated about 2-fold for most experimental groups in

IFNc/TNFa expressing cells. Furthermore, striking 8–13 fold

increased TNFa MFI values were detected in triple positive CD4

T cells relative to corresponding monofunctional cells. Also, as

seen with IFNc iMFI’s, the iMFI values for TNFa were also

significantly elevated in IFNc/TNFa double positive CD4 T cells

from DmmaA4BCG/adjuvant vaccinated mice relative to CD4 T

cells from BCG-immunized mice (Figure S2B).

Analysis of vaccine-induced CD8 T cell immune
frequencies by multi-parameter flow cytometry

Although CD4 T cells have been shown to be essential for

controlling acute tuberculous infections in mice, CD8 T cells also

play a role in limiting chronic murine TB disease [24,27]. Using

flow cytometry, we also analyzed vaccine-induced CD8 multi-

functional T cell responses. As shown in Figure 4, immunization

with the live vaccines with or without adjuvant induced

significantly elevated frequencies of CD8 T cells expressing IFNc
(3–8 fold increases), IFNc/TNFa (5–11 fold) and IFNc/TNFa/

IL-2 (3–9 fold) relative to naı̈ve controls. However, no significant

differences in vaccine-induced CD8 T cell frequencies were

detected among the experimental groups.

The CD8 T cell MFI for IFNc in this study were generally

consistent with the CD4 data; substantially higher MFI values

were usually seen in vaccine-induced multifunctional CD8 cells

than in cells expressing only IFNc Figure 5A). For example, 5–20

fold increased IFNc MFI values were detected in triple positive

CD8 T cells taken from animals vaccinated with the BCG, BCG/

adjuvant or DmmaA4BCG/adjuvant vaccines relative to corre-

sponding monofunctional cell populations. Importantly, the IFNc
MFI values were increased by 7 and 9 fold, respectively, in the

BCG/adjuvant and DmmaA4BCG/adjuvant preparations com-

pared to BCG controls in triple positive CD8 T cells. Similar to

the CD4 IFNc iMFI results, elevated IFNc iMFI values for the

DmmaA4BCG/adjuvant vaccine group were detected in each CD8

T cell subset (Figure S3A). Compared to BCG controls, CD8 iMFI

values were increased by 60-fold in monofunctional cells, 4.9 fold

in IFNc/TNFa producing T cells, and 33-fold in triple positive

cells in splenocytes recovered from animals immunized with the

DmmaA4BCG/adjuvant formulation.

Among the CD8 TNFa producing cells, the MFI values for the

adjuvanted vaccines were only significantly elevated relative to

nonadjuvanted BCG controls in triple positive cells (Figure 5B).

The TNFa iMFI values detected in these triple positive cells were

increased 30-fold for the BCG/adjuvant group and 15-fold for the

DmmaA4BCG/adjuvant immunized animals compared to BCG

controls (Figure S3B).

Vaccine safety in immunocompromised mice
The safety of immunizing HIV-infected children with live

vaccines, and particularly BCG, has become an increasing public

health concern [28,29]. Since new TB vaccines will be used in

some regions of the world with high HIV infection rates, the safety

of adjuvanted BCG preparations was evaluated by assessing their

capacity to proliferate in immunocompromised mice. In an initial

study, the mice were treated with an anti-IFNc antibody to reduce

IFNc concentrations and were then given one 106 CFU dose

subcutaneously of the control and adjuvant-containing mixtures.

In the spleens of non-treated naı̈ve mice at 1 month post-infection,

nearly identical levels of BCG and the DmmaA4BCG mutant strain

Figure 4. The frequency (%) of (A) monofunctional or (B) multifunctional CD8 T cells in naı̈ve and vaccinated mice as determined by
multiparameter flow cytometry analysis. * Statistical significance relative to naives, p,0.05.
doi:10.1371/journal.pone.0032959.g004
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were detected in vaccine preparations formulated with and

without the DDA/TDB adjuvant (Figure 6A). In contrast,

significantly higher levels (.1 log10) of mycobacteria were detected

in the spleens of the BCG and DmmaA4BCG immunized IFNc
depleted mice relative to the BCG/adjuvant and DmmaA4BCG/

adjuvant infected immunodeficient mice at the 1 month time point

(p,0.05).

To further assess the safety of the adjuvanted BCG prepara-

tions, SCID mice were injected with BCG or the DmmaA4BCG

mutant as well as their adjuvanted vaccine counterparts. At 1

month post-vaccination, 5.5560.06 log10 CFU of BCG vaccine

and 5.1360.08 log10 CFU of the DmmaA4BCG mutant were

detected in the spleens of SCID mice (Figure 6B). In contrast,

compared to the non-adjuvanted controls, significantly lower CFU

(p,0.05) were recovered from the spleens of SCID mice

vaccinated with the BCG/adjuvant preparation (4.5860.07,

20.97 log10 reduction) or the DmmaA4BCG/adjuvant formulation

(4.7360.05, 20.40 log10 reduction).

Discussion

In recent years, the BCG prime/TB antigen boost immuni-

zation strategy has been a prominent strategy for improving the

effectiveness of vaccination against tuberculosis [11,12]. While

this approach is promising, it may be limited in developing

countries by potential concerns about the cost of producing

purified proteins, the safety of specific viral vectored vaccines (e.g.

adenovirus), and the complexities of prime/boost immunization

schedules. In this study, we have evaluated an alternative

relatively simple and cost effective TB vaccination strategy. This

approach combines the development of a mutant BCG strain

designed to enhance Th1 immune responses with lipid formu-

lation procedures [21]. We have shown in four separate

experiments that a mutant DmmaA4BCG strain formulated in

DDA/TDB adjuvant induced significantly elevated anti-tubercu-

losis protection relative to a BCG control at 1 and 4 months post-

challenge. These results are consistent with studies in at least five

different animal models which showed lipid encapsulation

increased the effectiveness of BCG vaccine in protecting against

tuberculosis [13–18].

The enhanced protection observed in our studies after

immunization with the adjuvant containing vaccines was associ-

ated with the induction of increased levels of multifunctional T

cells. In earlier studies, vaccine-induced amplification of MFT cells

has been shown to correlate with protection against L. major and

M. tuberculosis in mice as well as the control of SIV-viremia in non-

human primates [23,25,26,30]. Additionally, the presence of MFT

cells is characteristic of immune responses seen in non-progressive

HIV patients while HIV non-controllers generally elicit responses

dominated by monofunctional cytokine cellular responses [31].

One characteristic of MFT cells that has been associated with their

protective activity is their capacity to produce significant amounts

of IFNc and TNFa. Previous studies have demonstrated that

vaccine-induced CD4 MFT cells express 3–10 fold more IFNc
and/or TNFa than corresponding monofunctional CD4 T cells

producing only IFNc or TNFa [23,25,26]. Our MFI data and

iMFI calculations demonstrate that immunization with the

DmmaA4BCG/adjuvant preparation and to a lesser extent the

BCG/adjuvant formulation induces substantially elevated levels of

these cytokines relative to BCG controls. Our statistical analysis,

which showed that a trend in the correlation between iMFI values

for triple positive cells and vaccine-induced protection (p = 0.07),

suggests an important role for MFT cells in the protection

mediated by the adjuvanted vaccines.

Figure 5. Median fluorescence intensity (MFI) of (A) IFNc or (B) TNFa in monofunctional or multifunctional CD8 T cells. The data are
presented as the mean of individual MFI values for 4–5 mice per vaccine group. *Statistical significance relative to monofunctional cytokine
expressing cells, p,0.05. # Significant differences relative to BCG in the same T cell subset, p,0.05.
doi:10.1371/journal.pone.0032959.g005
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It is of considerable interest that both the DmmaA4BCG/

adjuvant and BCG/adjuvant formulations induced significantly

elevated levels (relative to BCG controls) of cells expressing both

TNFa and IL-2. Recently, Lindenstrom et al demonstrated that

vaccination with an Antigen 85-ESAT-6 fusion protein formulated

in DDA/TDB adjuvant also elicited high levels of TNFa/IL-2

producing cells, a long-lived central memory cell population [32].

Orme has recently speculated that the Achilles heel of BCG is its

inability to induce high numbers of central memory T cells [33].

Although BCG is very effective in inducing effector memory cells

in lungs, it is relatively ineffective at evoking the more persistent,

faster reacting central memory cells. The enhanced capacity of

DmmaA4BCG/adjuvant and BCG/adjuvant vaccine formulations

to induce elevated concentrations of the TNFa/IL-2 producing

central memory T cells may contribute to the increased anti-

tuberculosis protection seen after immunization with these

preparations. Clearly, further studies are needed to evaluate the

role of the TNFa/IL-2 expressing cells in the maintenance of long-

term anti-tuberculosis cellular responses induced by BCG-

containing vaccines.

The biological basis of the enhanced immunogenicity of the

DmmaA4BCG/adjuvant vaccine is likely multi-factorial. First, the

DDA/TDB adjuvant is known to be effective in generating Th1

and Th17 T cell responses [34,35]. DDA is a synthetic amphiphile

which forms cationic liposomes. Encapsulation of antigen within

these liposomal structures can promote a depot effect leading to

enhanced antigen persistence and increased monocyte influx into

the injection site. The presence of the immunostimulatory TDB in

the liposomes should also improve their drainage into the lymph

nodes and enhance monocyte infiltration. Second, emulsifying

BCG in the DDA/TDB adjuvant likely impacts the kinetics of

BCG survival and the location of persisting BCG infections [15].

In oral vaccination studies, lipid encapsulation of BCG was shown

to extend its persistence in vivo. Furthermore, formulating BCG in

lipids may lead to more efficient delivery of live bacilli to sites of

immune induction. Given that recent experiments have shown

that clearance of M. tuberculosis by chemotherapy permits

expansion of central memory T cells, changing the location and

persistence of BCG by lipid encapsulation could significantly alter

the relative proportion of vaccine-induced effector and central

memory cells [36]. Our flow cytometry data, including the relative

expansion of the central memory CD4 T cell subset expressing

TNFa and IL-2 seen after immunization with the DmmaA4BCG/

adjuvant vaccine, support this hypothesis. Surprisingly although

the deletion of the mmaA4 gene from M. tuberculosis has been shown

in vitro to reverse repression of IL-12 production, we were unable

to detect elevated splenocyte IL-12 message levels by RT-PCR

after vaccination with the Dmma4A4BCG deletion mutant

formulated with or without adjuvant. The reasons for the absence

of Dmma4A4BCG vaccine induced IL-12 message expression are

uncertain but may result because of differences between the

Dmma4A4 M. tuberculosis and Dmma4A4BCG mutants or may reflect

Figure 6. Reduced BCG splenic CFU levels one month after treatment of immunocompromised mice with the adjuvanted BCG
preparations. A. Mice were given two i.p. injections of anti-IFNc mAb (black bars) two days apart before receiving a single 106 CFU dose of either
BCG or DmmaA4BCG with or without adjuvant. Untreated mice served as infection controls (gray bars). The antibody treatment was repeated every
10 days until the mice were sacrificed one month post-infection to quantify the splenic BCG CFU. B. SCID mice were injected with a single 106 CFU
dose of either BCG or DmmaA4BCG with or without adjuvant. One month after the injection, splenic bacterial burdens were determined. *Significant
differences relative to adjuvanted BCG controls, p,0.05.
doi:10.1371/journal.pone.0032959.g006
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discrepancies between in vitro and in vivo experimentation.

Alternatively, the increased IL-12 expression that has been

previously observed in vitro [21] most likely occurs in microen-

vironments in vivo that may not be detectable by current methods.

Several recent published reports have shown that HIV-infected

infants are highly vulnerable to disseminated BCG infections.

Studies in South Africa and Argentina have indicated that the risk

of vaccine-related disease after BCG immunization of HIV-

infected children can be as high as one percent [28]. Consequent-

ly, the WHO has recommended that BCG should not be

administered to HIV-infected children [29]. Surprisingly, in

addition to being more immunogenic, we showed that the

adjuvant containing BCG vaccines may also be safer. In

immunocompromised mice that had been given identical doses

of vaccine, approximately 5–10 fold lower concentrations of

mycobacteria were detected in mice injected with the

DmmaA4BCG/adjuvant and BCG/adjuvant formulations relative

to non-adjuvanted controls. The mechanisms associated with the

enhanced safety of the adjuvanted live vaccines in interferon-

depleted animals and SCID mice are unknown but could result

from either differential tissue sequestration or reduced proliferative

rates of BCG suspended in the DDA/TDB mixture. Given that

one-fourth of infants born in some African countries will likely be

born to HIV-infected mothers, it is imperative that vaccine safety

concerns related to BCG immunization be emphasized and fully

evaluated as new TB vaccination strategies are being developed

[37,38].

In sum, we have shown vaccines prepared by mixing either

BCG Pasteur or a DmmaA4 mutant BCG strain with DDA/TDB

adjuvant yielded safer formulations that induced significantly more

anti-tuberculosis protective immunity than BCG controls. With

increasing pressure to develop inexpensive, safe, and more

immunogenic TB vaccination strategies, further studies are

urgently needed to confirm the increased safety and immunoge-

nicity of these adjuvanted BCG formulations.

Supporting Information

Figure S1 To verify the multifunctional T cell frequency
results that were observed in the initial experiments, a
separate group of mice were vaccinated with BCG or
BCG-A4/Adj and the frequencies (%) of CD4 (A) or CD8
(B) multifunctional T cells producing IFNc and TNFa,
IFNc and IL-2, TNFa and IL-2 or all three cytokines (TP)
were measured by flow cytometry. Splenocytes from four

unchallenged mice per group were analyzed separately. *Signif-

icant differences relative to naı̈ve controls, p,0.05. #Significant

differences relative to BCG controls, p,0.05.

(TIF)

Figure S2 The integrated MFI (iMFI) values for (A) IFNc
and (B) TNFa were calculated by multiplying the MFI
values times the frequencies of IFNc or TNFa single
positive, IFNc/TNFa double positive or triple positive
(IFNc/TNFa/IL-2) CD4 T cells. iMFI values were derived

from stimulated splenocytes from BCG, BCG/Adj. BCG-A4 or

BCG-A4/Adj vaccinated mice. #Significant differences relative to

BCG controls, p,0.05.

(TIF)

Figure S3 The iMFI values for (A) IFNc and (B) TNFa
are shown for IFNc or TNFa single positive, IFNc/TNFa
double positive or triple positive (IFNc/TNFa/IL-2) CD8
T cells using stimulated splenocytes from BCG, BCG/
Adj. BCG-A4 or BCG-A4/Adj vaccinated mice. #Significant

differences relative to BCG controls, p,0.05.

(TIF)
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