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Abstract

Functional neural activities manifest geometric patterns, as evidenced by the evolving

network topology of functional connectivities (FC) even in the resting state. In this

work, we propose a novel manifold-based geometric neural network for functional

brain networks (called “Geo-Net4Net” for short) to learn the intrinsic low-

dimensional feature representations of resting-state brain networks on the Riemann-

ian manifold. This tool allows us to answer the scientific question of how the sponta-

neous fluctuation of FC supports behavior and cognition. We deploy a set of positive

maps and rectified linear unit (ReLU) layers to uncover the intrinsic low-dimensional

feature representations of functional brain networks on the Riemannian manifold tak-

ing advantage of the symmetric positive-definite (SPD) form of the correlation matri-

ces. Due to the lack of well-defined ground truth in the resting state, existing

learning-based methods are limited to unsupervised methodologies. To go beyond

this boundary, we propose to self-supervise the feature representation learning of

resting-state functional networks by leveraging the task-based counterparts occurring

before and after the underlying resting state. With this extra heuristic, our Geo-

Net4Net allows us to establish a more reasonable understanding of resting-state FCs

by capturing the geometric patterns (aka. spectral/shape signature) associated with

resting states on the Riemannian manifold. We have conducted extensive experi-

ments on both simulated data and task-based functional resonance magnetic imaging

(fMRI) data from the Human Connectome Project (HCP) database, where our Geo-
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Net4Net not only achieves more accurate change detection results than other state-

of-the-art counterpart methods but also yields ubiquitous geometric patterns that

manifest putative insights into brain function.

K E YWORD S

deep learning, functional brain network, functional dynamics, Riemannian geometry, symmetric
positive definite matrix

1 | INTRODUCTION

One of the fundamental scientific problems in neuroscience is to have

a good understanding of how cognition and behavior emerge from

brain function. In the last couple of decades, striking efforts have been

made to establish structural and functional brain mapping in vivo

using cutting-edge neuroimaging technologies. For instance, func-

tional resonance magnetic imaging (fMRI) technology has been widely

used to characterize the synchronized functional fluctuations between

spatially distinct brain regions by examining the temporal correlation

of blood-oxygen-level-dependent (BOLD) signals (Buckner

et al., 2013).

The major body of current functional studies strives to under-

stand the brain networks generated using functional connectivity

(FC) underlying normal and abnormal brain function. Due to the high

dimensionality of whole-brain networks, dimensionality reduction

techniques are often used to study the connectivity characteristics

using compact and intrinsic feature representations. It is common to

use graph theory to generate a set of network measurements, such as

connectivity degree and local clustering coefficient (Rubinov &

Sporns, 2010) to characterize the FC profile for each node and the

entire functional brain network. Although the feature dimensionality

is significantly reduced using these measurements, the system-level

information of whole-brain connectivity can be overly simplified.

Data-driven approaches such as principal component analysis (PCA)

and t-distributed stochastic neighbor embedding (t-SNE) have also

been widely used to capture the brain network variation across indi-

viduals or task conditions (Bahrami et al., 2019; Billings et al., 2017).

Similar to the applications in computer vision and machine learning, it

is a common practice to vectorize the whole functional brain network

into a data array. By doing so, the non-Euclidean topological structure

of the functional network is distorted, which could result in limited

insights or even inaccurate conclusions from the low-dimensional net-

work representations.

Since Pearson's correlations are often used to measure the

strength of FC between two nodes in a brain network (Amaral

et al., 2008; Heuvel & Pol, 2010), each functional brain network can

be quantified by a symmetric positive-definite (SPD) matrix, which

allows for the assessment of brain networks on well-studied Rie-

mannian manifolds. To facilitate the learning and explanation, the FC

matrix needs to be mapped from the Riemannian space to the

Euclidean space by projecting it onto a tangent plane of the Rie-

mannian manifold and vice versa. In existing work, ( Dai et al., 2019)

proposed to align the FC matric from different subjects within Rie-

mannian manifold, which removes the differences between multiple

sessions of a single subject (Yair et al., 2019). Since all the algebraic

operations on functional brain networks are performed on the Rie-

mannian manifold of SPD matrices, the network topology is well

maintained during network inference. Thus, manifold-based methods

often achieve more accurate network analysis results than the coun-

terpart approaches using Euclidean operations. For instance, a novel

dimensionality reduction method is proposed by Dai, Zhang, and

Srivastava (2020), using the SPD matrix on the Riemannian manifold.

The authors demonstrated the improved classification accuracy of

functional tasks based on the low-dimensional FC matrices, com-

pared with the conventional approaches using PCA to reduce the

dimensionality.

Recently, the research focus of fMRI studies has been shifted to

functional dynamics since mounting evidence shows the brain func-

tion fluctuates even in the resting state (Filippi et al., 2019). In addi-

tion, it has been frequently reported that the dynamic behavior of

functional brain networks is closely associated with the development

of neurological diseases. In light of this, numerous methods have been

proposed to characterize functional dynamics from the observed

BOLD signals. For example, the Bayesian-based statistical inference

has been used to partition the time course into segments by modeling

the statistics of BOLD signals and the temporal transition probability

(Cribben et al., 2012; Xu & Lindquist, 2015). A recurrent neural net-

work (RNN) has been proposed in the work of Li and Fan (2018) by

considering the brain state change detection as a classification prob-

lem where the RNN is trained to predict the task pseudo-label based

on the FC signatures vectors generated through non-negative matrix

decomposition (Li et al., 2017). More recently, an increasing number

of works on analyzing dynamic FC for boosting classification/

recognition task of brain state have been introduced. Such as, a locally

linear embedding of dynamic FC has been introduced by Yang

et al. (2019), which recognizes the different FC states by detecting

the differences between brain state groups. To further consider the

spatio-temporal variations that define dynamic brain states during

task performance, Chan et al. (2020) proposed a customized salient

pattern over time and space (SPOTS) to classify brain states. Adopted

a deep network model that considers the subtle time-varying patterns

in dynamic FC for capturing temporal and spatial features of FC

sequences simultaneously. Gao et al. (2021) presented a dynamic FC

embedding, which can preserve proper temporal progression among

brain states.
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Mounting evidence shows that the human brain is a network with

distributed processing ability (Sporns, 2011; Watts & Strogatz, 1998),

where the cognitive task information is transferred between brain

regions through network topology (Ito et al., 2017). Following this

lead, it is important to understand the geometry of functional brain

networks and further characterize the dynamic behavior of brain state

change on top of the evolving geometric patterns. To that end, we

propose a manifold-based deep learning approach to uncover the

dynamic brain mapping of resting-state FC on the Riemannian

manifold.

Specifically, we regard each functional brain network as an

instance of SPD matrix on the Riemannian manifold. To capture the

functional dynamics, we use the sliding window technique (Hutchison

et al., 2013) to construct a set of functional brain networks, which

constitute a functional time series of SPD matrices on the Riemannian

manifold. Since we are interested in uncovering the intrinsic resting-

state FC map across individuals, we first remove the external inter-

subject variations from the functional brain networks by parallel

transporting all SPD matrices to a reference location on the Riemann-

ian manifold (Yair et al., 2019). Given the aligned trajectories of func-

tional brain networks, we present a manifold-based deep neural

network (DNN) to learn the low-dimensional feature representations

for resting-state FC using a set of positive maps and ReLU layers,

which produces dimension reduced SPD matrices. To gain more heu-

ristics into the learning process, we propose to include the task-based

FC matrices into the feature representation learning. Specifically, we

schedule the task-based fMRI scans before and after the resting state.

Thus, we design a pretext task1 (Jing & Tian, 2020) that encourages

the trajectory of the learned low-dimensional SPD matrices to be

aligned with the underlying change of brain states in each task-resting

alternating fMRI scan. More specifically, we cast this pretext task into

a change point detection process by stratifying SPD matrices, which

are achieved by a mean shift-based recurrent neural network (MS-

RNN) on the Riemannian manifold. All the learning components are

tailored to maintain and capture the geometric patterns on the Rie-

mannian manifold. Since our DNN is designed to discover the geo-

metric patterns of functional brain networks, we name our proposed

network “Geo-Net4Net” for short. It is worth noting that we use

change point detection, instead of cognitive task recognition, for self-

supervising the pretext task for the following two reasons. (1) Recog-

nizing/classifying cognitive tasks is not only much more challenging

than change point detection but also difficult to scale up to a large

number of tasks. (2) Recognizing each cognitive task is loosely corre-

lated with functional dynamics. That is, recognizing each cognitive

task does not necessarily lead to the accurate detection of brain state

changes, which is the main focus of this work. Since it has been con-

sistently reported in the literature that the shift of network topology

is closely related to the cognitive tasks, characterizing the change in

each SPD matrix sequence eventually promotes the temporal

coherence of learned functional feature representations on the Rie-

mannian manifold.

We demonstrate the performance of our Geo-Net4Net in the fol-

lowing experiments. First, we validate the low-dimensional feature

representations through the accuracy of brain state change detection

on both simulated data and working memory fMRI data from the HCP

database. Compared to the current learning-based change detection

methods, our Geo-Net4Net achieves not only more accurate detec-

tion results of brain state change but also higher replicability and scal-

ability on the test–retest experiments. Second, we analyze the eigen-

spectrum of functional brain networks, which form the spectral pat-

tern of FC for each cognitive task. Since the geometry of FC matrices

is well-preserved in the learning process, our Geo-Net4Net offers a

new window to understand the intrinsic FC maps of the resting state

in the low-dimensional Riemannian manifold of SPD matrix. Specifi-

cally, we explore the eigen-spectrum of resting-state networks and

the associated functional circuits, as a first-ever attempt in the neuro-

science field, where we demonstrate the potential of identifying

state-based transitions and functional brain network dynamics in the

resting brain using the Riemannian manifold.

2 | METHODS

2.1 | Geo-Net4Net overview

The input to our neural network is a set of FC matrices constructed

using the sliding window technique, where the whole sequence is

alternated between cognitive tasks and resting states (see Section 3.1).

The architecture overview of our Geo-Net4Net is shown in Figure 1,

which consists of three computational components. (1) Removing

subject-to-subject variations by parallel transportation (PT). A large

portion of network differences on Riemannian manifold can be attrib-

uted to the individual variations in the underlying brain structure/

function. Hence, we first align each trajectory of FC matrices to a

latent population mean on the Riemannian manifold, as a

preprocessing step before training Geo-Net4Net. By doing so, we

remove the intersubject variations leaving the task-specific variations.

(2) Learning feature representations for FC. We present a SPD-based

deep neural network (SPD-DNN) to learn the low-dimensional FC fea-

ture representations, consisting of a set of SPD matrix dimensionality

reduction (i.e., SPD transformation) and ReLU layers. (3) Self-

supervised learning of resting-state FC through the detection of brain

state changes. We leverage the transition between task and resting-

state to steer the feature representation learning of resting-state FC

by aligning the trajectory of learned FC feature representation with

the functional tasks. The output of our Geo-Net4Net is the low-

dimensional manifold feature representations for task-based and

resting-state FC. A major methodological advance is that the method

allows us to investigate network transitions in the resting-state even

in the absence of predefined transitions that exist when switching

between cognitive tasks. We introduce the application of Geo-

Net4Net in functional brain network analysis in Section 2.5.

1A pretext task is used in self-supervised learning to generate useful feature representations

that should be easily adaptable for other tasks (Jing & Tian, 2020).
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Specifically, since the geometry of FC matrices is well maintained in

the learning process, the geometric patterns constitute the spectral

signature of each functional task.

2.2 | Parallel transport of FC matrices on the
Riemannian manifold

Suppose we have M fMRI scans in the training dataset. We parcellate

each brain into N regions and then generate N mean time courses of

BOLD signals, where each BOLD signal has T time points. Without

the loss of generality, we assume that there are in total Q brain states

Π¼ γqjq¼1,…,Q
� �

during each scan (including tasks and resting

states). To capture the functional dynamics, we adopt the sliding win-

dow scheme (Allen et al., 2014) to construct a FC matrix trajectory

Xm¼ Xt
m t¼1,…,Tj g m¼1,…,Mð Þ

�
for mth fMRI scan, where each Xt

m

is a N�N Pearson's correlation matrix of BOLD signals within the slid-

ing window centered at scanning time t. In most fMRI studies, it is a

common practice to assume the BOLD signal at each region is inde-

pendent and their correlation matrix is a full-rank matrix given the suf-

ficient width of the sliding window. Thus, the resulting FC matrix is

symmetric and positive-definite (SPD) matrix, that is, Xt
m � SymþN .

Due to the subject-to-subject variation of brain structures, it is

highly possible that there exist external differences of FC matrices

across individuals, which might not be relevant to the state change

detection. To remove the external subject-to-subject variations of FC,

we use the parallel transporting (PT) technique (Yair et al., 2019) to

align each trajectory of FC matrices to a reference center on the Rie-

mannian manifold, as shown in Figure 1a. Thus, the remaining differ-

ence is supposed to be associated with the intrinsic representation for

the underlying functional task. On the other hand, we consider func-

tional dynamics as a trajectory of time (functional data) on the Rie-

mannian manifold, since different trajectories might have different

starting points and paces, parallel transport is necessary to align all

trajectories on the Riemannian manifold. After that, the common pat-

terns averaged in the population can be regarded as the intrinsic pat-

terns that are only specific to the underlying brain functions.

Following the domain adaptation algorithm in the study by Yair

et al. (2019), we iteratively apply the following three major steps to

align the entire sequence of FC matrices to the population center.

1. Estimate subject-specific mean within each scan. We consider

Xm¼ Xt
m t¼1,…,Tj g

�
as functional data on the Riemannian mani-

fold that evolves over time. Then we estimate the subject-specific

Fréchet mean of Xm on Riemannian manifold (Yair et al., 2019),

denoted by Xm (pink point in Figure 1a), which has the shortest

geodesic distances to all FC matrices Xt
m. Please see the

Appendix A for the detail of estimating Xm from Xt
m t¼1,…,Tj g

�
.

2. Estimate population-wise mean across individuals. Given M

subject-specific mean Xm
� �M

m¼1, we estimate the population cen-

ter X (red point in Figure 1a) using the Fréchet mean estimation

method in Appendix A.

F IGURE 1 Overview of our self-supervised learning framework for low-dimensional feature representations for resting-state functional
connectivity (FC). The backbone is the manifold-based deep neural network (Geo-Net4Net), where the input is the aligned FC matrices on the
Riemannian manifold using parallel transport technique (a). The feature-learning component (b) consists of a set of symmetric positive-definite
(SPD) transformation and rectified linear unit (ReLU) layers. Furthermore, we use the task-based FCs to self-supervise the feature learning by
requiring the learned low-dimensional feature representations to reflect the change of brain states, which is implemented in an recurrent neural
network (RNN) architecture (c).
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3. Parallel transport individual SPD trajectory to the population cen-

ter. Given the population center X , we parallel transport each Xt
m

to X on the Riemannian manifold by ΓXt
m!X
¼ EsET , where E¼

X Xt
m

� ��1
2

� �1
2

and s is the tangent vector of Xt
m at X , that is, s¼

logXX
t
m (please see Appendix A for detail).

2.3 | Feature representation learning for FC

To capture the intrinsic low-dimensional feature representations for

FC while preserving the geometrical information of network topology,

we adapt a manifold-based network (Huang & Gool, 2017) to learn

the low-dimensional geometric feature representation on the Rie-

mannian manifold of SPD matrix. In a nutshell, the architecture of the

manifold-based network for SPD matrix learning is structured in a

layer-by-layer manner as the popular DNN. The major difference

between SPD-DNN and regular DNN is that all operations in SPD-

DNN have been replaced by manifold algebra tailed for SPD matrix. In

what follows, we formulate the SPD-DNN as a function FΘ Xð Þ with

the network parameters Θ for inferring the low-dimensional geomet-

ric feature representation V � SymþP P�Nð Þ from the high-dimensional

input X� SymþN . Since we apply the same SPD-DNN FΘ to all Xt
m one

after another in the SPD matrix sequence Xm, we drop the variable t

(for time point) and subscript m (for subject) in Section 2.3, for clarity.

As shown in Figure 1b, the nonlinear dimension reduction in

SPD-DNN is achieved by alternatively applying matrix transformation

and ReLU activation. Suppose that the dimensionality of SPD matrix

has been reduced from Nk�1�Nk�1 to Nk�Nk , which forms the input

to the kth (k¼1,…,K) layer. We first learn a bilinear mapping Wk to

further reduce the dimensionality of SPD matrix from Nk�1�Nk�1 to

Nk�Nk by:

Xk ¼ fb Xk�1ð Þ¼WkXk�1W
T
k , ð1Þ

where Wk �ℝNk�Nk�1 (Nk <Nk�1). Note fb is a positive mapping func-

tion that has been well studied in quantum mechanics (see chapter

8 in Nielsen & Chaung, 2000). Similar to the ReLU layer in DNN, the

nonlinearity is obtained by a hard-thresholding smoothing process in

the spectrum domain of the underlying Xk by:

Xk ¼ fr Xkð Þ¼Ukmax εI,Λkð ÞUT
k , ð2Þ

where Uk and Λk are eigenvectors and the diagonal matrix of

corresponding eigenvalues. ε is a predefined scalar that controls the

regularization of rectifying smaller eigenvalues. At the end of Kth layer,

the output is the low-dimensional SPD matrix V � SymþP P¼NKð Þ, as
shown in Figure 1b.

It is clear that the network hyper-parameters Θ of SPD-DNN con-

sists of a set of mapping matrices, that is, Θ¼ Wkjk¼1,…,Kf g, which

project each sequence of FC matrices Xm from SymþN manifold to a

low-dimensional SPD matrix sequence Vm¼ Vt
mjt¼1,…,T

� �
in SymþP

(P�N), it sets the stage to characterize the dynamic FC changes on

the Riemannian manifold below.

2.4 | Self-supervised feature representation
learning using task transition point

Due to the lack of the known characteristics of the resting state FC, it

is difficult to cast the training of SPD-DNN in a supervised manner. In

this regard, we resort to task-based FCs and use the prior knowledge

of state changes to facilitate the feature representation learning of

resting-state FC. Although the detection of brain state changes is not

directly related to learning the low-dimensional FC feature maps on

the Riemannian manifold, a good characterization of the FC is sup-

posed to predict the transition between the task and resting-states

reliably. To that end, we design a novel pretext task that stratifies the

learned low-dimensional SPD matrices into the segments that are

aligned with the timeline of the prescheduled cognitive tasks in each

fMRI scan. We cast this pretext task as a change detection problem of

identifying the distribution modes of the learned FC matrices, which is

driven by a mean-shift (MS) process on the Riemannian manifold. Spe-

cifically, we reckon that the evolution of brain states is reflected by

the distribution of SPD matrices on the manifold, where the SPD

matrices belonging to the same brain state should fall into the same

cluster, while clusters are separable across brain states.

In general, MS operates in an iterative manner, which alternates

two considerable steps (as shown in Figure 1c): (1) estimating the MS

vector Zt
m for each instance Vt

m and (2) updating the distribution of

Vm. Specifically, we estimate the MS vector for each instance, pointing

to the weighted average mass center of all other instances, where the

weight is measured by the pairwise kernel distance. We use the func-

tion ψh Vt
m,σ

� �
to denote the calculation of MS vector Zt

m, where σ is

the kernel size. After that, it is straightforward to update each

instance to the new location by following the direction of MS vectors,

that is, Vt
m ψ z Vt

m,Z
t
m

� �
. Since the data instance is the SPD matrix on

the Riemannian manifold, we define the functions ψh and ψ z using

Riemannian algebra (please see Appendix B).

To integrate the MS process with SPD-DNN, we propose to

encapsulate it in a recurrent neural network (denoted by MS-RNN)

with the kernel sizes σ as the trainable parameters in the MS-RNN.

Although we perform MS on the Riemannian manifold, the feed-

forward process in MS-RNN also consists of a set of matrix opera-

tions. As shown in Figure 1c, the input to MS-RNN is a time course of

the low-dimensional geometric FC representations Vm for each sub-

ject. Similar to the SPD-DNN, we formulate MS-RNN as a function

Ψϕ Vmð Þ¼ψ z ψh Vmð Þð Þ with parameter ϕ¼ σeje¼1,…,Ef g, where we

suppose MS-RNN has E layers. The output is the stratified FC repre-

sentations bVm¼Ψϕ Vmð Þ, which are supposed to collapse to several

modes (cluster centers). After that, we group the obtained modes to

produce a set of grouping results ytm t¼1,…,Tj g
� �

. Therefore, the

grouped brain states can steer the learning of low-dimensional geo-

metric feature representation via minimizing the loss function in a

self-supervised manner. Given the brain state ytm �Π for each Vt
m, we

expect the pair Vt
m and Vt0

m (t≠ t0) bears a small manifold distance gtt
0

m

(i.e., high similarity dtt
0

m ) if they are in the same brain state, that is,

ytm¼ yt
0

m. Otherwise (ytm ≠ yt
0

m), their similarity dtt
0

m between Vt
m and Vt0

m

should be as small as possible, where gtt
0

m ¼ log bVt

m

� �
� log bVt0

m

� 	









F

is
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defined as the geodesic distance between SPD matrices Vt
m and Vt0

m,

the pairwise similarity matrix is derived by:

dtt
0

m ¼
1

1þgtt
0

m

: ð3Þ

Therefore, the loss function ℓ of our Geo-Net4Net is given by:

ℓ¼
XM

m¼1

XT

t,t0¼1 1 ytm¼yt
0
mf g 1�dtt0m

� �
þ1 ytm ≠ yt

0
mf g dtt0m �α

� �
þ

� �
ð4Þ

where the scalar α controls the maximum margin for negative pairs of

time points that bear with different functional tasks.

We learn the functional FC representations by finding the best net-

work parameters Θ and ϕ that minimize the loss function ℓ. Given the

input Xm, the output to our Geo-Net4Net is bVm¼Ψϕ FΘ Xmð Þð Þ. Spe-
cifically, the function of SPD-DNN can be formulated as

F ¼ fb ∘ frð Þ ∘… ∘ fb ∘ frð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K

. Likewise, the function of MS-RNN is boiled

down to Ψ¼ ψh ∘ψ zð Þ ∘… ∘ ψh ∘ψ zð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E

. We show the detail of tuning net-

work parameters Θ,ϕf g in the back-propagation process in Appendix C.

2.5 | Application of Geo-Net4Net to resting-state
functional networks

Since the geometry of FC matrices is well maintained in the whole learn-

ing process, we conceptualize that the geometric patterns constitute the

spectral signature of the resting state FC. Specifically, we consider each

instance of FC Xt
m is governed by the eigen-system of its low-

dimensional FC footprint Vt
m (output of SPD-DNN) on the Riemannian

manifold. In analogy to the shape analysis in computer vision (Cootes

et al., 1995), the eigenvalues and eigenvectors of the population-mean V
(see Appendix A for the calculation of SPD matrix mean V) yield the

spectral bases of resting-state FC on a population level. Then we can

extrapolate the complete spectrum of resting-state FCs by applying per-

turbations on these eigenvalues, which has the potential application in

simulating ground-truth data of resting-state FC. Since these spectral

bases are orthogonal and reflect the underlying network geometry, we

can introduce the well-studied physics concept such as power and

energy into the network neuroscience, which allows us to understand

the working mechanism of the entire resting-state functional network

with a greater mathematics insight. Furthermore, it is straightforward to

reconstruct the high-dimensional functional brain network from the low-

dimensional FC map Vt
m by inversing the positive maps fb (Equation 1).

Thus, our Geo-Net4Net provides a new window to identify the focal

network patterns with the underlying spectral bases.

3 | EXPERIMENTAL RESULTS

In this section, we evaluated the performance of our Geo-Net4Net

on both simulated data and real task-based fMRI data from the

Human Connectome Project (HCP) (Barch et al., 2013), see the

Section 3.1. Since Geo-Net4Net is driven by the transition between

brain states, we first evaluate the change detection accuracy in

Section 3.2. We compared our Geo-Net4Net with three methods,

including (1) the spectral clustering method (SC) (Ng et al., 2001),

(2) the recent clustering method by seeking for density peaks (DP) of

the data distribution (Rodriguez & Laio, 2014), and (3) the graph-

based change detection method (dGE) (Lin et al., 2020). In contrast

to our method, the counterpart methods first vectorize the FC matri-

ces of the brain network and then perform change detection. The

parameters of the counterpart methods use their default settings of

published versions. We used the purity score (Dan et al., 2022;

Huang, Cai, et al., 2021; Huang, Dan, et al., 2021) between the gro-

und truth (predefined task schedules) and stratified brain states to

evaluate the detection accuracy, which has been widely used in the

computer vision area for assessing clustering accuracy. In Section 3.3,

we demonstrated the spectral characteristics of geometric patterns

from resting-state functional networks by our Geo-Net4Net, which

is the first exploration in the neuroimaging field. Regarding the spec

of PC, we use an Intel (R) Core (TM) i7-8700 CPU @ 3.20 GHz PC

without graphic card. For our Geo-Net4Net, the learning rate is set

as 0.01, W is initialized as a random semiorthogonal matrix, the recti-

fying threshold ε is set to 10�4, the kernel size of mean shift σ is ini-

tialized as 0.5.

3.1 | Dataset description

3.1.1 | Simulated data

The SimTB toolbox (Erhardt et al., 2012) was utilized to generate

the simulated fMRI time series with four brain states (Q¼4).

Figure 2 (top) demonstrates four FC matrices for the predefined

states, where each FC matrix consists of three modules (communities)

along the diagonal line (State 1 in blue, State 2 in green, State 3 in

orange, and State 4 in purple). For each possible pair of nodes with

the same module, the degree of connectivity is set to one. Otherwise,

it is assigned a value of zero concerning cross-module connectivity. A

total of 2000 sets of time series were simulated to evaluate the sensi-

tivity of Geo-Net4Net regarding window size and network size (num-

ber of nodes). Each simulation included the three change points

(t¼100,t¼200,t¼300) to separate the four states (shown in the

middle of Figure 2) and each state lasted 100 s (shown in the bot-

tom of Figure 2). The simulated time series were used to generate

dynamic networks by the sliding window technology (Allen

et al., 2014). The 2000 simulated network time series were sepa-

rated into 900 training sets, 100 validation sets, and 1000 testing

sets. We generated the simulated dynamic fMRI data with

10 regions for analyzing the sensitivity using different window sizes

and increased the number of nodes to further evaluate the scalabil-

ity in network sizes, specified in Section 3.2.1. For the scalability

analyses, a window size of 25 time points was used to generate the

networks.
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3.1.2 | HCP human fMRI data

A total of 960 subjects were selected from the HCP database (Barch

et al., 2013), each with test and retest fMRI scans of the working

memory task. We split the whole fMRI data into a training set

(425 subjects), validation set (55 subjects), and testing set (480 sub-

jects), respectively. The task included 2-back and 0-back task condi-

tions for body, place, face, and tool stimuli, as well as fixation periods.

Note that there was a resting-state period after two sequential cogni-

tive task periods in an alternating fashion. We utilized the HCP mini-

mally processed data that included distortion correction and had been

warped to standard space (Glasser et al., 2013). Each fMRI scan con-

sisted of 393 scanning time points. We used two scans for each sub-

ject, the left-to-right (LR) and right-to-left (RL), with one being used

for test and the other for retest analyses. For each scan, ICA-AROMA

(Pruim, Mennes, Buitelaar, & Beckmann, 2015; Pruim, Mennes, van

Rooij, et al., 2015) was used to remove motion signal artifacts based

on temporal and spatial features in the data related to head motion. A

band-pass filter (0.009–0.08 Hz) was then applied to each scan and a

regression was performed using mean tissue signals (GM, WM, and

CSF), the six movement parameters and derivatives. The brain was

parcellated into 268 brain regions using the Shen functional atlas

(Shen et al., 2013) and the residual fMRI signal from all voxels in each

parcel was averaged. The functional brain networks were then created

by performing a cross-correlation between each and every pair of net-

work nodes (brain regions). Some analyses were limited to specific

intrinsic subnetworks and subnetworks were used to help with results

interpretations. We used seven intrinsic subnetworks commonly iden-

tified in functional brain networks: central executive network (CEN),

visual network (VN), sensorimotor network (SMN), default mode net-

work (DMN), dorsal attention network (DAN), salience network (SN),

and the basal ganglia network (BGN). In addition, regions included in

an unassigned (UA) group were located in areas with high signal drop-

out due to tissue/air artifacts near the paranasal sinuses. These sub-

networks were identified using modularity analyses (Girvan &

Newman, 2002; Moussa et al., 2012; Newman & Girvan, 2004) per-

formed on functional brain networks collected in 22 normal young

adults from a prior study (Mayhugh et al., 2016).

We evaluated (1) the accuracy of change detection in different

network dimensions and window sizes, the replicability by applying

the Geo-Net4Net trained on test data to retest data and vice versa,

the necessity of two proposed learning components (SPD-DNN and

MS-RNN), described in Section 3.2.2, (2) the network spectrum of

specific-task FC brain mappings, followed by exploring the resting-

state FC eigen-system spectrum (Section 3.3).

3.2 | Evaluation of change detection using the
learned low-dimensional feature representations

3.2.1 | Change detection on simulated data

Sensitivity analysis on different window size

We extensively evaluate the accuracy of change detection on the sim-

ulated data with varied window sizes from 10 to 60 (time points). The

left panel of Figure 3 shows the detection accuracy in terms of purity

score by our Geo-Net4Net (in red), dGE (in green), SC (in blue), and

DP (in brown). Our proposed Geo-Net4Net uniformly outperforms

the other three counterpart methods w.r.t. all settings of window

sizes, where “*” denotes significant improvement in paired t-test.

Scalability regarding network size

We further estimate the detection accuracy as we increase network

size from 10�10 to 100�100. The right panel of Figure 3 shows the

detection accuracy in terms of purity score by our Geo-Net4Net

(in red), dGE (in green) SC (in blue), and DP (in brown). Again, our pro-

posed our Geo-Net4Net achieves the highest detection accuracy over

the other three competing methods in all settings of network sizes,

indicating that our Geo-Net4Net is consistently robust in terms of

network dimension.

F IGURE 2 An example of
simulated data with 10 brain
regions and 4 brain states
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3.2.2 | Change detection in human fMRI data

Evaluation accuracy across the large-scale functional networks

We evaluated the accuracy of change detection methods across differ-

ent network sizes. We increased the size of the networks by succes-

sively adding subnetworks to the DMN in the following order: CEN,

VN, SMN, and finally all network nodes. For each scenario, we first

mixed the training sets of the test/retest fMRI data to evaluate the

accuracy of change detection. We then trained a deep model from the

mixed training sets, including 850 series (425 participants � 2, test and

retest scans) and then validated on 110 time series (55 participants �
2) in test and retest data, finally tested on the remaining 480 test

fMRI data and the corresponding 480 retest fMRI data, respectively.

The nodes included at the step in the analysis are illustrated at the top

of Figure 4, and the corresponding detection results conducted on

test and retest data are shown in Figure 4 (middle and bottom). With

the expansion of the network size, the detection accuracy of the com-

parison methods swelled and subsided, the corresponding costs were

also increased. In contrast, our method remained basically stable and

the highest accuracy was yielded in the second combination

(DMN+CEN). It is clear that Geo-Net4Net consistently significant

(p< :05) outperforms all the comparison methods on all network sizes,

as highlighted by the ‘*’. As a result, the following change detection

analyses were limited in the DMN+CEN brain regions.

Detection accuracy across window sizes in DMN + CEN

We trained models of different window sizes under the same data dis-

tribution as the previous experiment. Figure 5 (top) shows the change

detection results of a representative participant for the test (Figure 5

left) and retest data (Figure 5 right). The bar plots with different colors

and heights denote the predefined time schedule of functional tasks.

The automatic detection results by Geo-Net4Net, dGE, SC, and DP

are displayed at the bottom of the bar plot with the color matched to

the ground truth. By visually examining the temporal alignment

between the predefined functional tasks and the automatic detection

results, it is quite clear that Geo-Net4Net yields more accurate predic-

tions than the other three methods. Furthermore, we evaluated the

accuracy of brain state change detection using different sliding win-

dow sizes, ranging from 10 to 60 (time points). The mean and standard

deviation of purity scores are shown in Figure 5 (bottom) for test and

retest data separately. Similar to the result of simulated data in

Figure 3, our Geo-Net4Net (in red) significantly outperformed

(p< :0001) dGE (in green), SC (in blue), and DP (in brown) for most

window sizes. Based on these results, we set the sliding window size

to 40 time points in the following experiments.

Evaluation on replicability

We evaluated the replicability of the brain state change detections

between test and retest data where the tasks were performed in a differ-

ent order. Specifically, we first trained one Geo-Net4Net using the test

fMRI data solely (called Geo-Net4Net-LR) and another Geo-Net4Net

using the retest data only (called Geo-Net4Net-RL). Since each test and

retest data set are paired, we split them into 425 as the training set,

55 validation set, and the remaining 480 as the application set in the

same manner. Next, we applied the trained Geo-Net4Net-LR to not only

the application sets of the test fMRI data but also the application set of

the retest fMRI data where Geo-Net4Net-LR has not seen any instance

of retest fMRI data in the training stage and vice versa. We evaluated

such test/retest replicability and the accuracy of change detection on

data with the same task order versus training/testing on data with differ-

ent task orders, as summarized in Table 1. Statistically, there were no sig-

nificant differences between the purity scores of two application

scenarios. The finding implies that Geo-Net4Net is highly replicability

even when the task order is different between test and retest data.

Evaluation necessity of the proposed components for Geo-Net4Net

To assess the necessity of the proposed two-stage architecture of

Geo-Net4Net (see Figure 1), we conducted an ablation study on

human fMRI data testing the change detection accuracy after turning

on/off SPD-DNN and/or MS-RNN. With the SPD-DNN stage turned

F IGURE 3 Change detection accuracy in simulated data. Left: The accuracy of state change detection for different window sizes for each of
the four methods (note that a network size of 10�10 was used). Right: The accuracy of state change detection for different network sizes (note
that a window size of 25 time points was used). The proposed Geo-Net4Net significantly outperformed the other three comparison methods for
most window sizes and all network dimensions. “*” denotes the significant improvement in t-test (red: p< :05, black: p< :0001).
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off, the input to MS-RNN is the time series of FC matrices generated

using the sliding window procedure. By turning off the MS-RNN, the

learned geometric FC representations are used for classic spectral

clustering. By shutting down all network components, the FC matrices

are used to stratify the time points by spectrum clustering. Table 2

shows that each component plays an essential role in change detec-

tion, as evidenced by the significant difference (p< :0001) after turn-

ing off either or both components.

3.3 | Spectral characteristics of FC brain mappings

3.3.1 | Exploration on the FC eigen-spectrum

In this experiment, we chose the experimental result of the whole

brain network (268 nodes) to analyze the spectral characteristics of

FC brain mapping. To do so, we calculated the average SPD matrix

(268�268) of the observed high-dimensional function networks for

each functional task and resting state. Similarly, we calculated the

average low-dimensional FC feature representations (16�16). Note

that we used the method in Appendix A to estimate the mean on the

Riemannian manifold rather than averaging the raw connectivity

matrices. Then, we applied singular value decomposition (SVD) to the

average SPD matrices. First, we evaluated the replicability of eigen-

spectra between test (red plot) and retest data (blue plot). We plotted

the top 16 largest eigenvalues for each functional task in Figure 6,

where we used the radius to reflect the degree of each eigenvalue.

Each dashed box of Figure 6 is associated with a particular functional

task and the eigen-spectra for the high-dimensional brain networks

are on the top and the learned low-dimensional feature representa-

tions on the bottom. It is clear that the eigen-spectra from the output

of Geo-Net4Net are much more consistent (test vs. retest) than those

derived from the original high-dimensional functional networks.

Second, we plotted the trajectory of eigenvalues (in decreasing

order) for each brain state, including the resting state. Trajectories

across brain states for the eigen-spectra from 268�268 high-

dimensional FC matrices and 16�16 low-dimensional feature repre-

sentations are shown in the left and right panel of Figure 7, respec-

tively. It is apparent that the learned low-dimensional FC feature

representations have more discriminative power for differentiating

brain states in the spectral domain (the trajectories for different tasks

are minimally overlapping) compared to the high-dimensional data.

F IGURE 4 The detection accuracy for different network dimensions as we progressively include default mode network (DMN) (a), central
executive network (CEN) (b), visual network (VN) (c), sensorimotor network (SMN) (d), and remaining nodes to cover the whole brain (e).
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3.3.2 | Investigate the eigen-spectrum energy
between functional tasks and resting state

In physics, the summation of squared eigenvalues indicates the energy

of the underlying system. In light of this, we deploy a resampling test

of system energy after we estimate the network parameters of our

Geo-Net4Net. Specifically, we withdraw 70% of samples of the

learned low-dimensional FC feature representations and calculate the

eigenvalues for the underlying average FC features. We repeat this

process 1000 times. Figure 8 shows the Manhattan plot of energy for

each state, where red and blue denote the results using test and retest

data, respectively. It is clear that the total energy of the brain system

in the resting state (rightmost in Figure 8) is significantly lower than

any of the brain states for the cognitive tasks. This intriguing finding

TABLE 1 The detection results for evaluating the replicability of
change detection

Same task schedule versus
different task schedule

Geo-Net4Net-LR Mean 0.7508 versus 0.7474

STD 0.0369 versus 0.0383

t-test No significant difference

found (p< :2608)

Geo-Net4Net-RL Mean 0.7490 versus 0.7466

STD 0.0374 versus 0.0405

t-test No significant difference

found (p< :4509)

TABLE 2 Evaluation necessity of the SPD-DNN and MS-RNN in
our Geo-Net4Net

SPD-DNN � � √ √

MS-RNN � √ � √

Purity Mean 0.693 0.712 0.729 0.751

STD 0.057 0.053 0.059 0.038

t-test p<10�4 p<10�4 p<10�4 Not applicable

Note: Mean and STD denote the mean and standard deviation of purity

for the testing set. ‘�’ and ‘√’ indicate the absence and presence of the

underlying component stage in the analysis, respectively. The bold values

denote the best results, which have no statistical significance.

Abbreviations: DNN, deep neural network; MS, mean-shift; RNN,

recurrent neural network; SPD, symmetric and positive-definite.

F IGURE 5 Top: Illustrations of change detection results by the Geo-Net4Net, dGE, SC, and DP methods on test (in blue shadow) and retest
data (in orange shadow). Bottom: The detection accuracies of change detection by Geo-Net4Net (in red), dGE (in green), SC (in blue), and DP
(in brown)

DAN ET AL. 3979



motivates an examination of the characteristics of network circuits

associated with eigen-spectra in the resting state.

3.3.3 | Characteristics of eigen-spectrum in the
resting state

Suppose we have the population average of low-dimensional FC fea-

ture representations in the resting stage (please see Appendix A), that

is, taking the mean of all resting-state periods. Since the average is an

SPD matrix, we can obtain a set of eigenvalues and the corresponding

eigenvectors by SVD. Given the eigenvalues and eigenvectors, we can

reconstruct the SPD matrix. We first extract each eigenvalue and

corresponding eigenvector (in descending order) while nulling all other

eigenvalues and eigenvectors. Next, we estimated the standard devia-

tion in the population, denoted by δ (vector). Then we applied þδ and

�δ perturbations on the underlying eigenvector and yielded the simu-

lated low-dimensional SPD matrices, which describe the range of vari-

ations driven by the eigenvalue under consideration. We ultimately

reconstruct the eigenvalue-specific network circuit based on the

simulated low-dimensional SPD matrix by inverting the positive maps

fb (Equation 1). Note that we focus on the dimensionality reduction

layer fb since we propose to verify the performance of the learned

low-dimensional FC representations, the remaining network layers are

temporarily ignored. From the top to the bottom of Figure 9, we show

the perturbation results for the top three eigenvalues, where the

eigenvalue-specific brain circuit is displayed in the second column and

its variations of – δ and þδ perturbation are shown in the first and the

third columns, respectively. The color of nodes and wirings represent

the association with the large-scale functional networks such as DMN

and CEN. The size of each node reflects the connectivity degree. The

DMN, SMN, and CEN were the most connected functional networks

involved in the first, second, and third eigenvectors, respectively. The

common network circuit (the connection shared across – δ and þδ
perturbations) is mapped into the brain in the last column in Figure 9.

As shown in Table 3, DMN, SMN, and CEN contribute a total of 55%

of the total connectivities across eigenvalue-specific network circuits,

implying that these subnetworks are highly related to the working

memory tasks. It is worth noting that the associations between these

identified brain circuits and cognitive status in resting state have also

F IGURE 6 The consistency of eigen-spectra between test (red plot) and retest (blue plot) data based on the average of original high-
dimensional functional brain networks (268�268) and the average of learned low-dimensional FC feature representations 16�16ð Þ. For clarity,
we only display the top 16 eigenvalues, where the degree of each eigenvalue is indicated by the radius. It is clear that the eigen-spectra from the
learned low-dimensional feature representations exhibit better replicability in test/retest data across the functional tasks.
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been frequently reported in neuroscience literature (Chai et al., 2018;

Dai, Zhang, Cai, et al., 2020; Hutchison et al., 2013).

4 | DISCUSSION

4.1 | An in-depth discussion on shape signature of
FC in the resting stage

In our experiments, we demonstrated the performance of our

manifold-based DNN in detecting brain state changes and explored a

new approach to investigate resting-state FC using spectral analysis.

The results shown in Figure 9 and Table 3 show the potential of our

machine learning approach in understanding the functional dynamics,

which bears the following three computation and neuroscience

insights. First, we present a novel mathematical framework to under-

stand functional dynamics by studying the system behavior. Specifi-

cally, we conceptualize that a functional brain network is the

manifestation of an evolving system that vibrates as all other natural

objects in the universe. Thus, each Eigensystem (Eigenvalues and

Eigenvectors) is unique and underlines the functional task. Second, we

introduce the classic PCA approach to characterize the statistics of

F IGURE 7 For each brain state (indicated by colors), we display the average eigenvalue trajectory from the eigen-spectrum of the high-
dimensional FC matrices (left) and the learned low-dimensional FC representations (right).

F IGURE 8 The Manhattan plot of energy of the learned low-dimensional FC feature representations on test and retest data
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F IGURE 9 The eigenvalue-specific network circuit (second column) and its variations are associated with – δ (first column) and þδ (third
column) perturbations. The corresponding spatial maps of common network circuits in the brain are displayed in the last column. For clarity, we
only display the top three eigenvectors (in each row).

TABLE 3 Connectivity degree of each subnetwork, – δ and þδ, respectively, denotes that the corresponding perturbations were applied, δ¼
0 has no perturbation.

DMN (%) SMN (%) CEN (%) VN (%) DAN (%) SN (%) BGN (%) UA (%)

First largest eigenvalue – δ 6 30 30 0 15 4 4 10

δ¼ 0 26 20 22 0 16 4 3 9

þδ 29 18 12 1 17 7 5 10

Second largest eigenvalue – δ 17 22 16 7 10 5 9 14

δ¼ 0 18 29 7 7 16 6 4 14

þδ 16 17 9 25 13 11 1 8

Third largest eigenvalue – δ 18 12 15 7 12 2 17 16

δ¼ 0 15 13 18 10 13 2 18 12

þδ 9 17 26 10 15 1 10 13

Total 20 19 16 6 14 5 9 12

Note: The bold values denote the maximum connectivity degrees, which have no statistical significance.

Abbreviations: BGN, basal ganglia network; CEN, central executive network; DAN, dorsal attention network; DMN, default mode network; SMN,

sensorimotor network; SN, salience network; UA, unassigned; VN, visual network.
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system behaviors across individuals. We display three predominant

components in Figure 9, which explain the largest three variations of

functional dynamics in the spectrum domain. Third, we can further

map the Eigenvectors to the brain and obtain the brain activation

mapping of the regions that are associated with the underlying func-

tional task, which offers a new window to understand the working

mechanism of the human brain using data-driven approaches.

It is worth noting that we used task-fMRI to constrain the feature

representation learning for the resting state. Also, the HCP data used

in this work have a relatively shorter time period of the resting state

than the tasks. Considering the nature of self-supervised learning sce-

nario, it is necessary to evaluate our method on the specifically

designed fMRI sequence in future work.

4.2 | Future work

The overarching goal of our method is to understand how the fluctua-

tion of brain states results in diverse brain functions by characterizing

the task-specific geometric patterns. In this early stage work, the

major contribution of this work is a collection of Riemannian algebra

tailored for the manifold-based deep model, which allows us to under-

stand the intrinsic geometric patterns with great mathematics insight.

We demonstrate the potential in detecting brain state change and

reverse-engineering the brain circuit (a collection of activated brain

regions) associated with the underlying functional task. Our future

work includes recognizing an individual's brain states and decoding

brain states from the fMRI data.

The work presented here provides proof-of-concept for the use

of Geo-Net4Net to identify distinct states that form dynamic func-

tional networks based on tasks with known transition points. It was

further demonstrated that using self-supervised learning the informa-

tion gained from the task-based data can be applied to resting-state

periods. The HCP data used in this study only included a few short

periods of rest (�20 s periods/scan). To demonstrate the application

of the learned task transition point to the resting periods, it was

assumed that the networks at rest were stationary. However, resting-

state dynamics have become of great interest in the neuroimaging

field but doing group analyses of dynamic resting-state networks

poses a unique challenge. For a typical resting-state scan (�5–10 min

in duration), it has been found that the brain networks are not station-

ary and dynamic analyses can identify network topological changes

over time. However, it can be challenging to assess state changes

across participants because the brain states are not driven by a time-

controlled external condition like during a cognitive task. Thus, any

given participant can be in any given state at any given time.

Attempting to align these or identify state similarities across partici-

pants can be challenging. Hidden Markov modeling has been used to

identify latent states in resting-state fMRI for groups of participants

(Vidaurre et al., 2017) has been used with success for groups of data.

Our Geo-Net4Net has the potential to be used to identify state

transitions in groups and individual participants, a major focus of our

future work.

Another direction of our future is to explore functional

connectome biomarkers for diagnosing neurological diseases such as

Autism and Alzheimer's disease. Indeed, it is straightforward to extend

our proposed machine-learning framework to disease diagnosis by

replacing the current loss function (on change detection) with the

softmax loss of classification on diagnosis labels.

5 | CONCLUSIONS

We present a novel manifold-based geometric neural network for

functional brain networks (Geo-Net4Net) to capture the intrinsic fea-

ture representations of FC, with the focus on the resting state. Specif-

ically, we proposed to leverage the brain state change between tasks

and resting state to guide the learning on the resting-stage fMRI data

that often does not have well-defined ground truth. Since the geome-

try of functional brain networks is maintained in our DNN, we demon-

strate a novel approach to characterize the functional fluctuations on

the Riemannian manifold, where the well-studied mathematical con-

cepts allow us to visualize, quantify, and understand the resting-state

FC in the spectral domain. Our future work includes (1) downstream

association between the low-dimensional FC representations and the

phenotype data and (2) developing a new fMRI simulation method

based on the learned eigen-spectrum.
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APPENDIX A: ESTIMATE THE FR�ECHET MEAN FROM A SET OF

SPD MATRICES ON THE RIEMANNIAN MANIFOLD

Suppose X is the SPD matrix, that is, X �M. The log operation is used

to project X to the tangent plane T RM at R (R�M) by

y¼ logRX¼R
1
2log R�

1
2XR�

1
2

� �
R

1
2. On the contrary, the exp operation is

used to project a vector y� T RM back to the manifold M

by X¼ expR yð Þ¼R
1
2exp R�

1
2yR�

1
2

� �
R

1
2.

Given T SPD matrices Xt (t¼1,…,T), the Fréchet mean X can be

iteratively estimated by repeating (1) project each Xt to the tangent

plane of the current subject-specific mean X using log operation, den-

oted by st¼ logXXt, (2) calculate the mean tangent vector st across time

points using arithmetic averaging s¼
PT

t¼1st, and (3) update the X by

mapping the mean tangent vector back to the Riemannian manifold using

the exp operation X¼ expX sð Þ. We repeat these three steps until

converge.

APPENDIX B: MEAN-SHIFT ON THE RIEMANNIAN MANIFOLD

OF SPD MATRIX

Suppose we have a series of the low-dimensional geometric FC rep-

resentations Vm¼ Vt
mjt¼1,…,T, Vt

m � SymþP
� �

for each subject.

Mean-shift simultaneously moves each instance Vt
m toward its

corresponding distribution mode and updates the latent mode

from the new distribution of Vm. Since each Vt
m is an SPD matrix,

we tailor the iterative process of mean-shift using the algebra on the

Riemannian manifold, which consists of the following two steps.

1. Calculate the mean-shift vector Zt
m ¼ψh Vt

m,σ
� �

¼PT
t0¼1

htt
0

m log Vt0
mð Þ�log Vt

mð Þ½ �PT
t0¼1

htt
0

m

, where htt
0

m ¼ exp � gtt0m
σ

h i2� 	
denotes Gaussian

kernel, gtt0m is the geodesic distance between Vt
m and Vt0

m, σ is the ker-

nel width.

2. Update Vt
m through mean shift by Vt

m¼ψ z Vt
m,Z

t
m

� �
¼

exp log Vt
m

� �
þZt

m

� �
: Note that log �ð Þ and exp �ð Þ are Riemannian

inverses for exponential and logarithmic mapping described by

Subbarao and Meer (2009).

APPENDIX C: BACK-PROPAGATION TO SOLVE THE NETWORK

MINIMIZATION

Our network architecture is provided by Figure 10. Since the loss

function Equation (4) eventually examines the mis-stratification based

on each FC representation in bVm, we take the mth subject as an exam-

ple to illustrate the updating of network parameters in the back-

propagation process. For clarity, we abbreviate every FC matrix Vt
m at

Eth iteration of MS-RNN as VE
t (drop subscript m). The matrix loga-

rithm of VE
t is given by LEt ¼ log VE

t

� �
: Thus, the back-propagation pro-

cess starts from the gradient ∂l=∂VE0

t which can be derived from

∂l=∂LEt (Huang & Gool, 2017). ∂ l
∂LEt
¼
PT
t¼1

∂ l
∂gtt0

∂gtt0

∂LEt
þ ∂ l

∂gt0t
∂gt0t

∂LEt

� �
, where

∂gtt0

∂LEt
¼ LEt�LEt0
kLEt �LEt0 kF

, ∂ l
∂G¼� ∂ l

∂D� 1
1T�TþGð Þ2,

∂ l
∂D¼ ∂ l

∂ℓ� 1T�T�2Bð Þ and

∂ l
∂ℓ¼ 1

T21T�T , where B denotes binary indicator matrix, if ytm¼ yt0m,

Btt0 ¼1, otherwise, Btt0 ¼0,� denotes the element-wise multiplication.

Following the gradient chain in the study by Kong and Fowlkes (2018),

we can derive the gradient ∂ l
∂V0

t
at the beginning of MS-RNN. As shown

in Figure 10, the connection between SPD-DNN and MS-RNN is the

FC representations V0
t for the mth subject. Given ∂ l

∂V0
t
, we follow the

manifold-based operations in the study by Huang and Gool (2017) to

continue the back-propagation in SPD-DNN until we reach ∂ l
∂W1

. We

use the stochastic gradient descent algorithm to optimize network

hyperparameters ϕ and Θ sequentially.

F IGURE 10 The feed-forward (solid line) and back-propagation (dashed line) flows in our Geo-Net4Net
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