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Simple Summary: Commensal microbes affects the host’s health, physiology, dysbiosis, and the
disruption of microbiota homeostasis, which can lead to a wide range of diseases, including inflam-
matory bowel disease (IBD). Drosophila melanogaster was recently introduced as a model for human
intestinal infection and pathology. Here, we show that the lifespan of flies is tightly related with the
gut permeability of flies, confirming a causal relationship between gut dysbiosis and host lifespan.

Abstract: Background: Commensal microbiota live in their host with a symbiotic relationship that
affects the host’s health and physiology. Many studies showed that microbial load and composition
were changed by aging and observed that increasing the abundance and changing the composition
of commensal microbes had detrimental effects on host lifespan. We hypothesized that dysbiosis of
the intestinal microbiota leads to systemic effects in aging flies as a result of the increased intestinal
permeability. Methods: We used the fruit fly, Drosophila melanogaster, laboratory strains w1118, as a
model system with many advantages for microbe–host studies. Results: The incidence of intestinal
dysfunction was increased with age, and intestinal dysfunction increased the permeability of the
fly intestine to resident microbes. The lifespan of flies with an intestinal barrier dysfunction was
increased by removal of the microbes. Interestingly, some bacteria were also found in the hemolymph
of flies with intestinal barrier dysfunction. Conclusion: Our findings suggest the possibility that, as
the host ages, there is an increase in intestinal permeability, which leads to an increased intestinal
microbial load and a reduction in the host lifespan. Our data therefore indicate a connection between
commensal microbes and host lifespan.

Keywords: commensal microbes; intestinal barrier dysfunction; Drosophila

1. Introduction

Commensal microbiota live in their host with a symbiotic relationship that affects the
host’s health and physiology. In recent years, there has been active research on the treatment
and prevention of diseases through changes in the commensal microbiota; furthermore,
the possibility of realizing a better quality of life through these studies was suggested.
Many studies have already revealed that commensal bacteria affect many physiological
activities of the host, and especially immune system and intestinal health are closely related
to commensal bacteria [1,2].

In general, the immune response of the host eliminates the pathogens that enter the
body through ingestion of food or through other routes, such as infection. However, when
the immune system is destroyed, inflammatory reactions and intestinal microbial dysbiosis
are observed. Studies of intestinal microbial composition in patients with inflammatory
bowel disease (IBD) showed that these patients differed from healthy adults in their
microbial composition [3,4]. For example, the ileum of patients with Crohn’s disease,
one of the IBDs, has shown reduced number of Firmicutes, which are known to produce
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anti-inflammatory agents [5]. In addition, studies in rodents have found that certain
combinations of intestinal microbiota are highly effective in inducing enteritis [6]. This
suggests that IBD can be treated through changes in microbial composition in the intestine,
although it is not yet clear whether abnormal intestinal microbiota is causative of IBD.

Intestinal dysfunction is also closely related to the lifespan of organisms. Clark et al.
and Guo et al. extended the lifespan of Drosophila by preventing dysbiosis-related intestinal
barrier dysfunction and preventing dysbiosis through the activation of peptidoglycan
recognition protein SC2 (PGRP-SC2), a negative regulator of the IMD/Rel pathway [7,8].
In addition, Li et al. prevented age-related dysbiosis through inhibition of the gut com-
partmentalization defect, extending the lifespan of Drosophila [9]. In our previous study,
we demonstrated that the removal of commensal bacteria without harmful side effects
increased fly lifespan, and that bacterial load was a significant determinant of lifespan [10],
although the studies on the effect of commensal microbes on the lifespan of Drosophila
melanogaster are controversial [7,11,12]. However, in previous studies, we did not present
how increased commensal bacteria shorten the lifespan of fruit flies. Therefore, we hy-
pothesized that the relationship between intestinal dysfunction and commensal bacterial
abundance would determine the lifespan of the host.

This study focused on the relationship between commensal microbiota and host
longevity in D. melanogaster, which is a well-established model organism in aging and
host-microbe studies. Especially, the present study explores the mechanisms by which
commensal bacterial load affects the host lifespan in D. melanogaster.

2. Materials and Methods
2.1. Fly Husbandry and Generation of Axenic D. melanogaster

Experiments were conducted using the D. melanogaster wild-type strain w1118, which
was provided by the Bloomington Drosophila Stock Center (Indiana University, Indi-
anapolis, IN, USA) and has been adapting to our laboratory environment over the last
10 years. The flies were cultured and reared at 25 ◦C and 65% humidity in a 12:12 h
light:dark cycle. The sterile standard cornmeal-sugar-yeast (CSY) medium (5.2% corn-
meal, 11% sugar, 2.5% instant yeast, 0.5% propionic acid, 0.04% methyl-4-hydroxybenzoate
(Sigma-Aldrich, St. Louis, MO, USA), and 1% agar) was used during culture and rearing
of the flies. For the sterile CSY diet, the above-mentioned CSY medium was autoclaved
at 120 ◦C for 20 min, and all vials for food were exposed to UV light for 20 min on a
clean bench.

Axenic (Ax) flies were generated by bleaching the embryos. Embryos were collected
for 12 h and were dechorionated for 50 sec in 5% sodium hypochlorite solution (Wako,
Japan), rinsed for 50 s in 70% ethanol, and washed for 1 min in sterile distilled water [10].
Sterile embryos were transferred into sterile CSY food bottles on a clean bench. The eggs in
an Ax condition were passed through repeated generations and became third-generation
flies. In this study, we used the third-generation Ax fly from bleached eggs. All Ax flies
were maintained on a clean bench and transferred to fresh food every two days. Axenic
conditions were confirmed by plating fly homogenates on plate count agar (PCA) (A
Neogen Corporation, Lansing, MI, USA) containing 0.5% tryptone, 0.25% yeast extract,
0.1% glucose, and 1.5% bacto agar, and the DNA extracted from whole-fly homogenate
underwent 16S rRNA gene PCR using a bacterial 16S rRNA universal primer (27F and
1492R) provided by Macrogen (Seoul, Korea).

2.2. Lifespan of Smurf Fly Measurement

Newly eclosed w1118 adult female flies were collected for 2 days and were reared in
sterile CSY medium until the emergence of the Smurf fly. Dyed medium was prepared using
CSY medium supplemented with blue dye no. 1 (2.5% w/v). Flies were transferred onto
the blue-dye-containing food after starvation for 4 h and were then maintained on the dyed
medium for 9 h. Because the number of Smurf flies was not sufficient for experimentation,
10-day-old flies were pre-treated with 1% dextran sodium sulfate (DSS). The DSS solution
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containing 5% sucrose was sprinkled on each vial containing two filter papers, and the
filter papers were moderately dried for about 10–30 min. For the treatment of flies with
DSS, 10-day-old flies were transferred into the prepared DSS-containing vial and incubated
for 10 days. A fly was collected as a Smurf fly when the dye coloration could be observed
in the body. For their survival, Smurf flies were assigned to sterile CSY food vial. Dead
flies were counted every 3 h, and the number was recorded.

2.3. Hemolymph Collection

To make a hemolymph collection tube, a 0.5 mL centrifuge tube with a perforated
bottom was placed inside 1.5 mL centrifuge tube. The thoraxes from 10 female flies were
washed with 70% EtOH to remove any external bacteria, after which the thoraxes were
pricked using a φ25 needle. To collect the hemolymph, the flies were transferred into
hemolymph collection tube and centrifuged at 5000 rpm for 5 min at 25 ◦C.

2.4. Bacteria Culture Conditions

Lactobacillus was grown on 5.5% MRS media (Lactobacilli MRS Broth, BD & Difco,
Sparks, MD, USA) containing 1% peptone, 1% beef extract, 0.5% yeast extract, 2% dextrose,
0.1% polysorbate, 0.2% ammonium citrate, 0.5% sodium acetate, 0.01% magnesium sulfate,
0.005% manganese sulfate, 0.2% dipotassium phosphate, and 1.5% bacto agar (BD & Difco).
Acetobacter was grown on Acetobacter-selective (AS) media containing 2.5% D-mannitol (BD
& Difco), 0.5% yeast extract (BD & Difco), 0.3% peptone (BD & Difco), and 1.5% bacto agar.
All microbes were incubated at 29 ◦C.

2.5. Quantitative Analysis and Identification of Bacteria

For CFU determination, dissected guts from 6 females were homogenized and plated
onto MRS media or AS media. At least 3 replicates were established for each group. For
microbe isolation, hemolymph from 10- or 50-day-old (non-Smurf or Smurf) flies were
plated on a MRS and AS media plate. After incubation of a single colony at 29 ◦C for 3 days,
each colony was transferred to MRS media broth or AS media broth. After culture for
24 h, the cell walls of isolated microbes were broken down by bead beating using Glass
Beads 0.1 mm in diameter (BioSpec Products, Bartlesville, OK, USA). PCR assays were
performed with a 55 ◦C annealing temperature and 45 cycles with the universal primers 27F
and 1492R. PCR products were sequenced by using 16S sequencing (Macrogen Inc., Seoul,
Korea) with the universal primers, 518F and 800R, and then analyzed by using EzTaxon
blast and NCBI blast.

2.6. Fluorescence Imaging

Differentiation of intestinal stem cells caused by intestinal epithelial damage was
observed by fluorescence image of the escargot (esg), expressed in intestinal stem cells and
enteroblasts of the fly midgut. Newly eclosed esg-GPF adult female flies were collected
for two days and were fed 0%, 0.5%, 1%, or 5% dextran sodium sulfate with 5% sucrose
for 10 days. The guts were dissected in PBST (phosphate-buffered saline + 0.1% Triton
X-100) solution. The esg-GFP fusion protein was observed using an Olympus IX71 inverted
microscope equipped with a U-RFL-T (Olympus) mercury lamp and a TH4-200 (Olympus)
photosystem.

2.7. Reverse Treanscriptase-Quantitative PCR

The total RNA was extracted from 10- or 50-day-old 15 female flies for Figure 1B, and
from 5 non-Smurf or Smurf female flies using RNAiso (Takara Bio, Kusatsu, Japan), as
shown in Figure 2C. The total RNA (2 µg) was reverse transcribed using M-MLV reverse
transcriptase (Promega, Madison, WI, USA). RT-qPCR was performed using the Prism 7500
Sequence Detection System (Applied Biosystems, Foster City, CA, USA) and TOPrealTM
qPCR 2 × PreMix (Enzynomics, Daejeon, Korea) according to the manufacturer’s instruc-
tions. At least three replicates were established for each group, and all experiments were
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repeated at least three times. Relative expression levels of the target genes were analyzed
using 2∆∆Ct. The data are presented as the mean ± standard error of the mean. Ribosomal
protein 49 (rp49), the stable housekeeping gene, was used as the internal control. rp49,
Forward (F): 5′-ATC GGT TAC GGA TCG AAC AA-3′, Reverse (R): 5′-GAC AAT CTC CTT
GCG CTT CT-3′; Attacin C (F): 5′-CCA ATG GCT TCA AGT TCG AT-3′, (R): 5′-AGG GTC
CAC TTG TCC ACT TG-3′; Drosocin, (F): 5′-ATT TGT CCA CCA CTC CAA GC-3′, (R): 5′-
GGC AGC TTG AGT CAG GTG AT-3′; Defensin, (F): 5′-GTG GAT CCA ATT CCA GAG
GA-3′, (R): 5′- CAC AGA GCG AAA CGA AAT CA-3′; Drosomycin, (F): 5′-AGC GCG GAT
GGA ACG ATA TT-3′, (R): 5′-CAC AAT GCC CAC GCT CTT GT-3′.
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Figure 1. Aging increases the incidence of intestinal dysfunction and the expression of AMPs in the
fly. (A) Smurf fly incidence is significantly increased with age. (B) The mRNA levels of attacin C,
drosocin, defensin, and drosomycin were analyzed in the whole bodies of 10-day-old (young) or
50-day-old (old) flies. Asterisks indicate significant differences between young and old flies for each
gene (t-test, * p < 0.05, ** p < 0.005).
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Figure 2. Flies with an intestinal barrier dysfunction have a severely decreased remaining lifespan
regardless of their age, and also show increased expression of AMP genes and the presence of
microbes in the hemolymph. (A,B) The remaining mean (A) and median (B) lifespans of non-Smurf
or Smurf flies. Smurf flies have < 2.2 days remaining lifespan regardless of their chronological
age. (C) The mRNA levels of attacin C and drosocin were analyzed in the 50 guts of 30-day-old
non-Smurf and Smurf flies. Asterisks indicate significant differences compared to young flies for
each gene (t-test, * p < 0.05). (D) The total number of CFUs from 10-day-old, 50-day-old non-Smurf,
and 50-day-old Smurf flies in Lactobacillus-selective (MRS) media (upper) or Acetobacter-selective (AS)
media (lower) plates.

2.8. Statistical Analysis

Log-rank tests were carried out to determine the statistical significance of the results of
the survival analysis. The JMP statistical package (SAS, Cary, NC, USA) was used for the
analyses. The statistical probability of CFU and OTU numbers were determined by using the
two-sample t-test. Spearman’s correlation coefficients were derived by using R 3.5.1 software.

3. Results

Many studies showed that the commensal bacterial abundances were increased, and
intestinal dysfunction was developed as aging progresses [10,13]. Additionally, the activa-
tion of the peptidoglycan recognition protein SC2 (PGRP-SC2), plays a vital role in innate
immune response, prevents dysbiosis and dysbiosis-related intestinal barrier dysfunction,
inducing an extension in the lifespan of D. melanogaster [7,8]. Based on these studies, we
hypothesized that intestinal barrier dysfunction allows for the leaking of intestinal microbes
into the body cavity from the gut and leads to excessive systemic inflammation in the host,
causing a reduction in lifespan. We first investigated whether the incidence of the intestinal
barrier dysfunction (IBD) and immune response increased with age in the fly w1118 strain
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that we were investigating (Figure 1). The ratio of Smurf flies, which is an indicator of flies
with IBD, as described in a previous study [13], gradually increased with age (Figure 1A).
The expression levels of immune-response genes in either 10-day-old (young) or 50-day-old
(old) flies was measured by RT-qPCR using gene primers for three antimicrobial peptides
(AMPs) (attacin C, drosocin, defensin, and drosomycin). The gene expression level of
attacin C was not changed, but that of drosocin, defensin and drosomycin were increased
(Figure 1B) in old flies indicating that the flies have an exacerbating immune response as
they age.

Additionally, the remaining mean and median lifespans of the Smurf flies were less
than 2.2 days, regardless of their chronological age (Figure 2A,B), indicating that the ap-
pearance of the Smurf phenotype is an index of immediate death. Interestingly, the Smurf
flies showed increased expression levels of AMPs and microbe colonization compared with
those in non-Smurf flies (Figure 2C,D), indicating that intestinal barrier dysfunction is asso-
ciated with increased inflammation, which is caused by an increase in microbial abundance.
Thus, flies with an intestinal barrier dysfunction have a severely decreased remaining
lifespan regardless of their age, and also show increased expression of AMP genes.

To investigate whether the increased mortality of the Smurf flies was related to com-
mensal microbes, we measured the lifespan of Smurf flies with and without commensal
microbes (Figure 3). In order to collect sufficient Smurf flies, Ax and conventionally
reared (Conv) flies were aged for 30 days because the incidence ratio is low in young flies
(Figure 3A). As previously reported [7], 30-day-old Ax Smurf flies lived longer than Conv
Smurf flies (Figure 3A,B 30d SmurfConv, 77.17 ± 9.78 h; 30d SmurfAx, 104.16 ± 11.69 h,
34.98% increase, log-rank test, χ2 = 5.54, p < 0.05). To remove the effects of a decrease in
other physiological parameters in the Smurf flies, we also confirmed our data with young
flies. To increase the incidence ratio of the Smurf phenotype in young flies, we treated
10-day-old flies with dextran sodium sulfate (DSS), which is known to induce intestinal
epithelial damage [14]. Because the differentiation of intestinal stem cells (ISCs) caused by
intestinal epithelial damage affects fly lifespan, we first investigated the concentration of
DSS, when DSS did not accompany ISC differentiation in esg-GFP flies (Figure 3C). Interest-
ingly, the data showed that ISC differentiation was induced by 5% DSS treatment, but not
by 0.5% and 1% DSS treatment. However, 1% DSS treatment decreased the lifespan of flies,
but 0.5% DSS treatment did not affect the lifespan of flies, indicating intestinal dysfunction
related with lifespan occurred only in 1% DSS (data not shown). Because 1% DSS treatment
affects the lifespan of flies without ISC differentiation, we used 1% DSS in our following
experiment. Next, we collected 10-day-old Smurf flies (Ax and Conv) that had been treated
with 1% DSS for 1 week and measured the lifespan of the Smurf flies. Similarly, survival
increased in the 10-day-old Ax Smurf flies (10d SmurfAx, 103.08 ± 8.66 h) compared to the
10-day-old Conv Smurf flies (10d SmurfConv, 70.37 ± 5.80, 31.73% decrease, log-rank test,
χ2 = 15.71, p < 0.0001) (Figure 3B,D), indicating that the shortened lifespan of the Smurf
flies was at least partly related to commensal microbes.

To determine whether the intestinal microbes leak into the body cavity of flies through
the loosened intestinal barrier, we collected hemolymph from young, old non-Smurf, and
old Smurf flies, and measured the number of CFUs in hemolymph (Figure 4A). As expected,
colonies were only found in the hemolymph of old flies, but not in that of young flies.
Moreover, the number of CFUs was increased in Smurf flies compared to that in non-Smurf
flies, although, interestingly, the flies were of the same age. We identified the different
bacterial species found in the colony from Smurf fly hemolymph (Figure 4B). Lactobacillus
plantarum (30%) was the most dominant bacterial species in the hemolymph from Smurf flies
and followed by Sphingomonas yunnanensis (18%), Lactobacillus brevis (12%) and Acetobacter
indonesiensis (12%). Taken together, these data suggest that intestinal barrier dysfunction
allows the commensal microbes to enter into the body cavity of flies, and this permeation
ultimately causes an increase in fly mortality through increased systemic inflammation.
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of 16S rRNA genes.
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4. Discussion

The mechanism by which commensal bacteria can regulate host lifespan is a fasci-
nating topic. Our data indicate that increased commensal microbial abundance might
reduce the host lifespan through the chronic inflammation initiated by the intestinal barrier
dysfunction with aging. Interestingly, the mean survival time of SmurfAx flies was not
different in 10-day-old and 30-day-old flies, whereas the mean survival time of 30-day-old
SmurfConv flies was longer than that of 10-day-old SmurfConv flies (Figure 3), indicating
that commensal bacteria in 10-day-old flies may have a more adverse effect on host lifespan
than those in 30-day-old flies.

Some studies have shown that preventing dysbiosis by inhibiting IBD increases the
host lifespan [7,8], indicating that the effect of dysbiosis on the host lifespan is closely related
to intestinal barrier dysfunction. However, in our study, the removal of the commensal
microbe did not completely recover the lifespan of the Smurf fly (Figure 3). This result
implies that the short lifespan of Smurf flies cannot only be explained by the chronic
inflammation caused by intestinal barrier dysfunction but flies with an intestinal barrier
dysfunction must also have other physiological defects. One limitation of our study is
that we did not confirm whether the bacteria found in the hemolymph from Smurf flies
originated in the intestine. In future studies, it will be important to confirm that bacteria
fed to old flies can indeed leak into the body cavity from the gut.

As mentioned above, there is growing evidence indicating that commensal microbes,
directly and indirectly, affect the lifespan of a host. However, the studies on the effect of
commensal microbes on the lifespan of D. melanogaster are controversial. These differing
results could be due to differences in the composition of commensal microbiota of flies
maintained in the laboratory. For example, the mono-association of flies with Gluconobacter
morbifer, which is observed in certain laboratories, was reported to reduce the lifespan of
these flies [15]. In addition, other bacteria such as Weissella paramesenteroides [16], Corynebac-
terium variabile [17], Commensalibacter, and Serratia [18] are reported specifically in different
laboratories. In our previous study, we showed that Acetobacter persici and L. brevis were
dominant in the gut of young flies, while Acetobacter malorum and L. plantarum were domi-
nant in the gut of old flies in our laboratory fruit flies [10]. However, in hemolymph, the
composition of the predominant bacteria was altered (Figure 4B) indicating that the affinity
of leaking into the hemolymph is different for each bacteria species. Thus, bacterial species
leaking into hemolymph through intestinal barrier dysfunction can become more diverse
as fruit flies have a different composition of commensal bacteria in each environment. On
the other hand, it was observed that the ratio of L. plantarum was very dominant in the
hemolymph in Figure 4B, and it can be inferred that more bacteria were leaked because
they are the dominant species in the gut of the aged fruit flies.

5. Conclusions

Taken together, our findings suggest that as the host ages, increased intestinal perme-
ability may have led to the migration of commensal bacteria from the gut to the hemolymph,
resulting in increased systemic inflammatory responses in fruit flies, possibly reducing
lifespan. The present study indicates that a decreased lifespan by intestinal dysfunction is
directly related with the migration of commensal bacteria in the host body.
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