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Abstract
Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the

most frequent childhood brain malignancy. Current treatments for MB combine radiation

and chemotherapy and are often associated with relevant side effects; novel therapeutic

strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a

synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-toler-

ated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from

breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell

lines and identified the mechanism of action for a potential use in therapy of MB. Flow

cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen

reactive species (ROS) production, as well as cell cycle effects. Functional analysis to

determine 4-HPR ability to interfere with MB cell migration and invasion were performed.

Western Blot analysis were used to investigate the crucial molecules involved in selected

signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival

(ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces

caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased

ROS generation, suggesting that free radical intermediates might be directly involved. We

observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and

inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to tar-

get MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by

flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and

ONS-76 spheroid formation, in term of number and size. Decreased expression of the sur-

face markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were

observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally,

we analyzed 4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice. Taken

together, our data suggest that 4-HPR targets both parental and MB tumor stem/initiating
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cell-like populations. Since 4-HPR exerts low toxicity, it could represent a valid compound

in the treatment of human MB.

Introduction
Medulloblastoma (MB) is a highly aggressive pediatric tumor of the cerebellum, usually located
in the posterior fossa and represents the most common malignancy of the cerebellum in child-
hood, accounting for 13–20% of all pediatric central nervous system tumors [1, 2].

Current treatments include the combination of surgical resection, whole brain and spinal
cord radiation and aggressive systemic multidrug-chemotherapy [3, 4]. These combined
approaches have significantly boosted 5-year survival rates beyond 80%, [5] improving patient
survival, however, these aggressively treated children can develop serious long-term side effects
[6, 7].

Recently, different molecular subtypes of MB have been identified, on the basis of gene
expression and immunohistochemistry differences and have been described as Wingless
(Wnt), Sonic Hedgehog (SHH), Group 3 and Group 4 [1, 4, 8–12]. This knowledge has also
strongly influenced the clinical therapy and possible intervention strategies, allowing a deeper
understanding of the different mechanisms involved in MB genesis and development and in
responsiveness to chemotherapy [11, 13].

The Wnt molecular subtype correlates with a good prognosis [14], Group 3 MB were associ-
ated with a worse outcome, while SHH and Group 4 patients displayed an intermediate prog-
nosis [1, 4, 8–12]. The knowledge of the MB molecular profiling has led to several attempts at
targeted therapies [14, 15] in preclinical studies and still open clinical trials that focused their
attention mainly on SHH pathway antagonists, and among all the inhibitors of Smoothened
(SMO) [11, 13]. However, mostly of these molecules might be ineffective in a clinical context
due to secondary resistence onset in treated patients, suggesting that further studies are needed
[12, 13].

The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR, or fenretinide), a cancer
chemopreventive and therapeutic agent [16–19] showed enhanced activity and reduced toxic-
ity compared to natural retinoids in vitro and in clinical studies. 4-HPR is able to induce bio-
logical effects and apoptosis in several cancer cell lines [20], in particular in breast cancer cells
[17, 21–23], prostate carcinoma cells [24–26], human pancreatic cancer cells [27] and myeloid
leukemia [28]. Moreover, 4-HPR has been employed successfully in several clinical trials for
the treatment of breast [17, 29–31] and prostate cancer [25]. Among the mechanisms by which
4-HPR induces cell death, the enhancement of reactive oxygen species (ROS) production and
mitochondrial damages have been shown to play a crucial role [32, 33]. 4-HPR has proven to
be effective also on cells of neuroectodermal origin such as neuroblastoma [34–36], gliomas
[14, 37, 38] and melanoma [39]. Preliminary evidence of action on MB cells is available [18].
4-HPR has been reported to affect the survival and to induce cell death in MB cell lines, modu-
lating caspase-3 activation and PARP-1 cleavage [18].

Experimental and studies indicate the ability of 4-HPR to cross the blood brain barrier
(BBB), indicating its potential in the treatment of brain pathologies [37, 38, 40].

In the context of MB heterogeneity [41], a cell population was identified from primary
MB that displayed marked ability of proliferation, self-renewal and differentiation, demon-
strating the presence of cancer stem like/initiating cells (CSCs/CICs), termed MB brain
tumor-initiating cells (BTICs) [42]. CSCs/CICs showed several characteristics including poor
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differentiation, low rates of replication and expression of drug-resistance pumps that are
associated with chemoinsensitivity [43–46]. The concept of CSCs came from the experimen-
tal evidence that only a small subpopulation of tumor cells is able to give rise to tumors in
vivo [43, 44]. CSCs, when transplanted in an in vivomodel, give rise to a tumor masses that
recapitulate all the features of the original tumor [43, 44]. CSCs, due to their slow replication
rates and expression of drug-resistance pumps, escape standard chemotherapeutic treat-
ments, thus they are clearly implicated in tumor relapse and metastatic disease [45, 47]. Like
the stem cells of normal tissues, CSCs are thought to undergo asymmetric division [43, 46,
48, 49]. BTICs represent a significant target for MB therapy due to their relevance in relapse
and metastatic disease [50–52].

Culturing cells in spheroids has been considered a valid model for the isolation and investi-
gation of CIC-CSC like tumor cells [41, 43, 44, 53].

Here, we evaluated the effects of 4-HPR on two widely used and characterized human MB
cell lines, DAOY and ONS-76. We found that 4-HPR induces caspase 9-dependent cell death
in DAOY and ONS-76 cells, as far as ROS generation. 4-HPR was able to promote cell cycle
arrest in DAOY cells. 4-HPR targets ERK 1/2 and the Wnt3a/β-catenin pathway and inhibits
MB cell migration and invasion. In the spheroid model for brain tumor initiating cells (BTICs)
induction, 4-HPR was able to inhibit, in terms of size and number, spheroid formation. We
also observed decreased levels of CD133+ and ABCG2+ cells as well as Oct-4 and Sox-2 gene
expression in 4-HPR treated BTICs and inhibited invasive properties. Finally, we analyzed
4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice.

Altogether, our data demonstrated that 4-HPR is able to target both parental and MB tumor
stem/initiating cell-like populations, suggesting that fenretinide might represent a valid com-
pound in the treatment of human MB.

Materials and Methods

Cell Culture
Two different and well characterized cell lines were used in our study, DAOY cells that directly
derived from primary MB and ONS-76, described as a more immature cell line with a primitive
profile [54]. DAOY and ONS-76 human MB cell lines were purchased from the American
Type Culture Collection, (Manassas, VA). DAOY cells were cultured in Eagle's minimal essen-
tial medium (EMEM) supplemented with 1% Penicillin/Streptomycin and 10% fetal bovine
serum (FBS) (all from Sigma-Aldrich, Milan, Italy) while ONS-76 was cultured in RPMI 1640
(GIBCO Cell Culture, Burlington, Ontario) containing 10% FBS, 1% L-glutamine 2 mM and
1% Penicillin/Streptomycin (Sigma-Aldrich). Cells were treated with 4-HPR (a kind gift from
Dr. James A. Crowell, Division of Cancer Prevention, National Cancer Institute, Bethesda,
MD, and Dr. Gregg Bullard, McKessonBio, Rockville, MD) dissolved in absolute ethanol in a
stock solution of 10 mM and used at indicated concentrations for different time periods.

Cell Proliferation assays
The effect of 4-HPR on MB cell proliferation was determined by 3-(4,5-dimethythiazol-2-yl)-
2,5-diphenyl tetrazolium bromide (MTT, Sigma Aldrich) assay. Briefly, 1 x103 cells were
seeded into 96-well plates and incubated at 37°C overnight. The medium was then replaced
with fresh 4-HPR containing medium (range 100 nM- 10 μM) and incubated for 24, 48, 72 or
96 h. MTT reagent 5 (mg/ml) was added to cell cultures and incubated for 3 hours at 37°C.
After incubation, medium was replaced with 100 μL of DMSO and the amount of solubilized
formazan was quantified at 570 nm in a SpectraMax M2 (Molecular Devices, Sunnyvale CA).
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Determination of apoptotic effect by Flow Cytometry
DAOY and ONS-76 cells in logarithmic phase of growth were treated with 4-HPR (range
1 μM– 20 μM) for 6 and 24 h. At the end of the incubation, cells were collected and stained
with FITC-conjugated Annexin V (Becton Dickinson (BD) Bioscences, San Jose, CA) and
7-AAD (BD) in Annexin V Buffer 1X (0,1 M HEPES pH 7,4, 1,4M NaCl, 25 mM CaCl2 and
H2O). This method allows discrimination between viable cells (FITC negative, 7-AAD nega-
tive), early apoptotic cells with intact cell membranes (FITC positive), late apoptotic (FITC
positive, 7-AAD positive), and dead cells (FITC negative, 7-AAD positive). Analysis was per-
formed on 10,000 gated cells to exclude cell debris using a FACSCanto (BD), with excitation
set at 488 nm and emission at 518 nm (FITC detector) and 620 nm (7-AAD fluorescence
detector).

Cell cycle analysis
Asyncronized DAOY and ONS-76 cells were treated with 4-HPR (5–10 μM) or Vincristine
(50 μM) as positive control, for 24h trypsinized, and fixed in cold 70% ethanol. DNA was
stained with 100 μg/ml propidium iodide (PI) (Sigma- Aldrich) in hypotonic citrate buffer
with 20 μg/ml ribonuclease A. Stained nuclei were analyzed for DNA-PI fluorescence using a
FACSCanto flow cytometer. Resulting DNA distributions G0/G1, S, G2/M and apoptotic
phase of the cell cycle were analyzed with FACSDiva software. 4-HPR effects on cell cycle were
also investigated by detection of phosphorylated ciclin-kinase2 (anti-phospho-Chk2, Cell Sig-
naling Technology, Danvers, MA) levels by cytofluorimetric analysis. Cells treated with 10 μM
Etoposide were used as positive control. Briefly, cells were detached, collected by centrifugation
and fixed/permeabilized using Cytofix-Cytoperm solution (BD) for 10 minutes at 4°C at dark.
Unconjungated phospho-Chk2 primary antibody was added to each tube for 1h at room tem-
perature. Cells were then washed and incubated with the secondary antibody conjugated with
Alexa Fluor 482 (Life Technologies, Monza, Italy) for 30 minutes at room temperature. Cells
were then rinsed, resuspended in PBS 1X and analyzed by flow cytometry. Expression levels of
Cyclin D1 and CDK4 were detected by Western Blot analysis (see below).

Determination of cellular ROS
ONS-76 and DAOY at 5 x 105 cells/ml were treated with 5 and 10 μM 4 HPR for 2h. Treatment
with H2O2 100 μM for 15min at 37°C was used as positive control. Cells were incubated with
50μM 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA, Sigma-Aldrich) 20 minutes
before the end of the treatment, washed twice with PBS and resuspended in the same medium.
Cells were then analyzed with a flow cytometer FACSCantoII (BD Biosciences, San Jose, CA,
USA) with excitation set at 488 nm and emission at 530 nm. The analysis was performed on
10,000 gated cells. Pre-incubation with 10 mMN-Acetyl-Cysteine (NAC, Sigma-Aldrich) for
1h was performed to evaluate its scavenger activity on ROS production induced by 4-HPR.

Spheroids formation and stemness assessment
DAOY and ONS-76 human MB cells were cultured as described until 70% confluence. Cells
were then detached by trypsinization and spheroid formation was performed by plating 1 x 104

cells/ml in Neural Stem Medium composed by Dulbecco’s modified Eagle’s medium DMEM/
F12 (Gibco, Burlington, Ontario), supplemented with 1% N2 (Gibco), 2% B27 (Gibco), 20 ng/
ml epidermal growth factor (EGF; R&D Systems, Minneapolis, MN), and 20 ng/ml basic fibro-
blast growth factor (bFGF; R&D Systems) into six-well ultra low attachment plates (Corning,
Turin, Italy). Spheres formation was monitored every day and 300 μL of new medium with
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fresh factors were added every 3 days. After 12 days spheroids were mechanically and enzymat-
ically dispersed with Acutase (Stem Cell technologies, Milan Italy) to single cell suspension
with Acutase. The single cell suspension was used in part for secondary spheres formation
assessment (plated at 1000 cells/mL) and for stem cell surface markers evaluation. For flow
cytometry analyses, 150,000 cells per tube were stained with anti-human 7-AAD (BD), CD133-
APC (Miltenyi Biotec), anti human ABCG2-PE (R&D Systems) and analyzed with a FACS
Canto II device. Briefly, CD133 and ABCG2 expression was evaluated as the percentage of pos-
itive cells on 7-AAD negative viable cells. DAOY and ONS-76 derived-spheroids were also sub-
jected to quantitative polymerase chain reaction (qPCR) for Oct-4 and Sox-2 expression. Total
RNA was extracted with Triazol reagent (Life Technologies). First-strand cDNA was synthe-
sized using the iScript Kit (BioRad) followed by amplification with iQSyberGreen kit (BioRad).
The following PCR conditions were used: 50°C for 2 minutes, 95°C for 2 minutes, and 40 cycles
of 95°C for 15 seconds and 60°C for 30 seconds. qPCR was performed using iQ-SYBR Green
qPCR SuperMix (Biorad) on a IQTM5 Multicolor qPCR thermal cycler (Biorad). The ΔΔCt
method was used to estimate the fold change expression over control samples. All values were
normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

Evaluation of 4-HPR effects on MB-derived spheroids
DAOY and ONS-76 cells were seeded at 1 x 104 cells/ml, in NSC medium, into ultra low attach-
ment six wells plates (Corning) and treated with 4-HPR at 100-250-500-1000 nM; cells were
pulsed every 3 days by adding 4-HPR and 300 L of fresh medium, for 12 days. The effect of
4-HPR on sphere morphology and number was monitored with a Zeiss Microscope associated
with a Nikon camera. Spheres falling in 5 random selected different fields for each well were
counted. Flow cytometry analyses for the CD133 and ABCG2 surface markers were performed
as described above. The ability of 4-HPR to modulate Oct-4 and Sox-2 expression level was also
assessed by qPCR analyses as described above.

Evaluation of 4-HPR effects on MB parental and tumor initiating cells
migration and invasion
Chemoinvasion and chemotaxis assays were performed in modified Boyden chambers, as
described previously [55, 56]. Briefly, viable DAOY and ONS-76 cells (5 x 104), treated with
4-HPR (2.5, 5 and 10 μM) for 24 h, were washed with PBS, resuspended in serum-free medium
and placed in the upper compartment of the chamber. Chemoattractant (FBS) in EMEM or
RPMI, for DAOY and ONS-76 respectively, was added in the lower compartment. 10 μm pore-
size polycarbonate filters were pre-coated with matrigel (1 mg/ml, BD) for the chemoinvasion
assay, and with collagen IV (50 μg/ml, Sigma Aldrich) for the chemotaxis assay. After 24h (che-
moinvasion) or 6h (chemotaxis) of incubation, the filters were recovered, cells on the upper
surface mechanically removed and migrated or invaded cells on the lower filter surface were
fixed with absolute ethanol and stained with DAPI. Cells were counted in a double-blind
manner in 5 consecutive fields each with a Zeiss Microscope associated with a Nikon camera.
Experiments were performed in triplicate. The same protocol was applied to evaluate whether
4-HPR treatment affected invasive ability of BTIC derived from MB spheroids.

Immunoblotting analysis
MB cells were treated for 6 or 24 h with 4-HPR (2.5, 5, 10 μM). Lysates were prepared using
Cell Lysis Buffer (Cell Signaling Technology) and protein concentrations evaluated by the DC
Protein Assay (Bio-Rad, Hercules, CA, USA). Protein extracts (20 μg) were separated on 8 or
12% SDS—polyacrylamide gel electrophoresis under reducing conditions and transferred onto
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polyvinylidene difluoride (PVDF) membranes (Amersham, Biosciences, Otelfingen, CH, USA)
that, following blocking with 5% bovine serum albumin (BSA) and 0.1% Tween-20, were then
incubated with the antibodies (dilution 1:1000) directed against the following human antigens:
Caspase-9, AKT, WNT3a, β-Catenin, Phospho-GSK3-β (Ser 9), Axin-1, STAT3, NF-kB, phos-
pho-Checkpoint kinase2 (Chk2), Cyclin D1, Cyclin-dependent kinase 4 (CDK4), Nrf2, Vincu-
lin, β-actin, GAPDH, tubulin (all from Cell Signaling Technology). The primary antibodies
were diluted in Tris buffer supplemented with 5% BSA and 0.1% Tween. PVDF membranes,
following rinsing in TBS 0,1% Tween-20 were then incubated with horseradish-peroxidase-
conjugated anti- rabbit or anti-mouse secondary antibodies (Cell Signaling Technology;
1:5000) and reactions were visualized with the enhanced chemiluminescence kit (ECL plus,
Amersham, Biosciences, Otelfingen, CH, USA).

In vivo xenograft tumor cell growth
All the procedures involving the animals and their care were conformed to the institutional
guidelines, in compliance with national and international laws and guidelines for the use of
animals in biomedical research and housed in pathogen-free conditions. All the procedure
applied were approved by the local animal experimentation ethics committee Comitato Etico
per la Sperimentazione Animale (ID#05/13) of the University of Insubria and by the Health
Ministry. CD1 nu/nu female mice (age 6–7 weeks) were obtained from Charles River Italia
(Calco, Italy). Animals (5 per group) were injected intraperitoneally (IP) with 12 mg/kg 4-HPR
following a prevention/intervention protocol: 2 days prior tumor cell inoculation and every 2
days throughout the course of the experiment. The injection mixture was composed of 12.5%
of 4-HPR (dissolved in 100% ethanol), 12.5% of polyethoxylated castor oil vehicle (CREMO-
PHOR, Sigma Aldrich) and 75% of PBS. The same mixture with ethanol alone was used for the
control group. On day 0, DAOY and ONS-76 cells (8 x 105) mixed with 100 μL 10 mg/mL liq-
uid Matrigel (BD) and 12 mg/Kg 4-HPR or control solution to a final volume of 300 μl, were
injected subcutaneously [57] in the flank of the nude mice. Tumor size was monitored by mea-
suring length and width with a caliper every 2 days. Mice were sacrificed 24 days after tumor
cell injection, the tumors were removed and photographed. Part of the tumors were enzymati-
cally digested with collagenase IV to obtain a single cell suspension further subjected to flow
cytometry analysis for the CD133 and ABCG2 stemness marker expression as described above.
Part of the tumors were included in OCT (Polyscience, Eppelheim, Germany) and immediately
frozen for histological examination. The tumors were cryosectioned (5μm sections) that were
stained with hematoxylin and eosin.

Statistical analysis
Data are expressed as means ± SEM. The statistical significance between multiple data sets was
determined by one-way ANOVA using Graph-Pad PRISM, tumor growth curves were deter-
mined by two-way ANOVA. FACS data were analyzed by the FACSDiva software. ImageJ soft-
ware was used for WB band quantification.

Results

4-HPR affects cell viability of MB cell lines
To determine the inhibitory effect of 4-HPR on cell proliferation, we treated DAOY and ONS-
76 cells with increasing concentrations of 4-HPR (range 100 nM-10 μM) for 24, 48, 72 and 96
hs; cell viability was determined by MTT assay. We observed that 4-HPR was able to inhibit the
proliferation of DAOYMB cell lines at 5–10 μM and ONS-76 2–10 μM in a dose-dependent
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and time-dependent manner (S1 Fig). These data indicate that 4-HPR was active in inhibiting
the growth of ONS-76 and DAOY cells, consistent with previous reports on medulloblastoma
cell lines [18].

To evaluate whether 4-HPR triggers apoptosis in MB cells, we performed flow cytometry
analyses by staining control and treated cells with Annexin V and 7-AAD. The data showed
that increased concentrations of 4-HPR treatment enhanced cell death of both cell lines (Fig
1A–1D). Following 6h treatment, ONS-76 cell line seemed to be more sensitive to 4-HPR than
DAOY cells. Even thougth, after 24 h treatment, a lower percentage of DAOY viable cells was
observed compared with ONS-76, suggesting that longer exposition might be needed to induce
apoptosis in DAOY cells (Fig 1B). Apoptosis appeared to be a key mechanism induced by
4-HPR, as confirmed by Western Blot analysis for selected mitochondrial pathway associated
with caspase-9 and poly ADP-ribose polymerase (PARP) levels, on both DAOY and ONS-76
cell lines treated with 2.5, 5 and 10 μM of 4-HPR for 24h (Fig 1E–1H). 4-HPR increased the
expression of full length and active caspase-9 as well as cleaved PARP expression in a dose-
dependent manner after 24hs of treatment in both DAOY and ONS-76 cells (Fig 1E–1H).
Enhanced levels of Caspase-9 were particularly evident in ONS-76 cells (Fig 1F). Together,
these results suggested that 4-HPR triggers apoptosis in MB cells by activating a mitochondrial
pathway.

4-HPR induces cell cycle arrest in DAOY and ONS-76 cells
4-HPR ability to induce cell cycle arrest on both MB cells investigated, was evaluated by flow
cytometry. The data highlight that DAOY and ONS-76 showed a different behavior in response
to 4-HPR treatment (Fig 2A and 2B) 4-HPR induced a dose-dependent increase in percentage
of DAOY cells in the S-phase, while an enhanced apoptotic rate was observed for ONS-76 cells,
confirming western blot and FACS results shown in Fig 1. Vincristine, that has already been
reported to induce a cell cycle arrest in G2/M phase, was used as positive control. We also eval-
uated the expression of proteins involved in cell cycle regulation and checkpoints, including
Cyclin D1, CDK4 and phospho-Chk2. Our results indicated that 4-HPR treatment induced
down-regulation of Cyclin D1 (Fig 2C) and CDK4 (Fig 2E) expression in DAOY cells, while
only 10 μM 4-HPR induced a down-regulation of CDK4 in ONS 76 cells (Fig 2D and 2F). 2.5
and 5 μM of 4-HPR were able to induce phosphorylation of Chk2 (Fig 2G and 2H), associated
with an arrest of the cell cycle in S-phase.

Effects of 4-HPR on ROS production and life survival selected pathways
Pro apoptotic effects of 4-HPR have been shown to be mediated mainly by ROS production,
associated with mitochondrial membrane permeabilization and the release of cytochrome c
and pro-apoptotic proteins [32, 36, 58].

Here we examined the effects of 4-HPR on ROS production in treated MB cells. H2O2 was
used as a control radical inducer while N-acetyl cysteine (NAC), was used as a potent and
widely recognize ROS scavenger. 4-HPR was able to significantly induce ROS production by
MB cells (Fig 3). Treatment with 10 mMNAC decreased ROS production induced by 4-HPR
and restored ROS levels to those detected in control cells (Fig 3A and 3B).

To determine the role of ROS in 4-HPR mediated cytotoxicity, we investigated the Keap1/
Nrf2/ARE cytoprotective pathway, whose activation leads to the transcription of anti-oxidant
enzymes involved in cellular response against oxidative stress. We observed that Nrf2 expres-
sion decreased in 6 hour 4HPR treated DAOY cells in a dose dependent manner, even at low
doses, while only 10 μM 4-HPR induced a down-regulation of Nrf2 in ONS 76 (Fig 3C and
3D). These data are consistent with the resistance to 4-HPR induced apoptosis in DAOY cells
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Fig 1. Effects of fenretinide (4-HPR) on apoptosis of MB cell lines. Flow cytometry analysis showed that treatment with 4-HPR
(1–20 μM, 6–24 hours) resulted in DAOY (A, B) and ONS-76 (C, D) increased rates in apoptotic (AnnexinV+7-AAD-/+) and necrotic
(7-AAD+) cells. Western blotting analysis (WB) for caspase-9 and PARP on cell lysate obtained from DAOY (E, G) and ONS-76 (F,
H) cells treated for 24 hours with 4-HPR (2.5–10 μM) show an increase of full length/cleaved Caspase-9 and cleaved PARP-1,
confirming data obtained by flow cytometry.

doi:10.1371/journal.pone.0154111.g001
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Fig 2. Effects of fenretinide (4-HPR) onMB cell cycle. Flow cytometry analysis (PI- staining) showed that 24-hour treatment
with 4-HPR (5–10 μM) resulted in a blockage of S-phase in DAOY cells (A) while an increased rate in apoptosis was observed
in ONS-76 cells (B). Western blotting analysis (WB) shows a down-regulation of Cyclin- D1 and CDK4 in 4-HPR treated DAOY.
In ONS-76 cells Cyclin D1 decreased expression was not observed while CDK4 level was diminished only at the highes dose
of 4-HPR (D, F). FACS analysis for phospo-Chk2 showed increased phosphorylated protein levels in 4-HPR treated DAOY
confirming the cell-cycle arrest, while the same effect was not observed in ONS-76 (G, H). Vincristine (50 μM) and Etoposide
(10 μM) were used as positive controls. Experiments were performed using 2 replicate for 3 repetitions.

doi:10.1371/journal.pone.0154111.g002
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Fig 3. Effects of fenretinide (4-HPR) on ROS induction and MB cell survival. Flow cytometry using the H2DCFDA dye of 4-HPR
(5–10 μM) pre-treated (2 hours) MB cells lines showed significant increased ROS production in MB cell lines (A, B), while co-
treatment with the ROS scavenger NAC blocked this effect. H2O2 was used as a positive control. WB analysis for Nrf2 revealed
down-regulation in 4-HPR (2.5–10 μM) treated (6–24 hours) DAOY (C) while this effect was observed in ONS-76 (D) only at the
highest dose (10 μM). WB analysis for pathways involved in survival showed an overall down-regulation of pERK1/2 (E, F) and
STAT3 (G, H) in 4-HPR treated (6–24 hours) DAOY and ONS-76 cells. Results are representative of 2 independent experiments
and are showed as Mean ± SEM *p<0.05; **p<0.01; ***p<0.001 (one-way ANOVA).

doi:10.1371/journal.pone.0154111.g003
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and relative sensitivity to apoptosis in ONS 76 cells in response to 4-HPR treatments shown in
Fig 1.

We then investigated the effects of 4-HPR on selected pathways reported to be modulated
by phytochemicals in other systems [16, 31, 59, 60], such as ERK 1/2 and STAT-3 pathways.
We observed a down-regulation of P-ERK 1/2 and STAT-3 in both MB cell lines, after 24h of
treatment (Fig 3E–3H).

Effects of 4-HPR on migration and the Wnt3a/β-Catenin pathway in MB
cells
We also investigated the effect of 4-HPR on MB cell lines invasion and migration in vitro,
using the chemoinvasion and chemotaxis assays, as previously described [55, 56]. 4-HPR
(2.5–10 μM) inhibited both DAOY and ONS-76 migration and invasion in a dose-dependent
manner (Fig 4A, 4B, 4C and 4D). Since Wnt3a/β-Catenin pathway is one of the major signal-
ing pathways involved cancer cell migration and invasion (ref), we studied whether 4-HPR
was able to interfere with the Wnt3a pathway in MB cells. 4-HPR induced a down-regulation
of Wnt3a levels in both DAOY and ONS-76 cells (Fig 5A and 5B) as western blot analyses.
We also investigated the effects of 4-HPR on the modulation of Axin-1, GSκ3β and β-Catenin,
key downstream factors in Wnt pathway. 5 and 10 μM 4-HPR decreased the expression levels
of Axin-1 (Fig 5C and 5D) and phospho-GSκ3β (Fig 5E and 5F) after 24 hours of treatment
of both MB cell lines. Decreased levels of β-Catenin (Fig 5G and 5H) were also observed fol-
lowing 4-HPR treatment in both cells This could be correlated with a reduced invasion and
migration of MB cells and to increased levels of apoptotic cell rates after 4-HPR treatment
observed in Fig 4.

Effects of 4-HPR on MB-derived Cancer Stem/Initiating Cells
Effects on BTIC-like in MB cells were assessed by evaluating the ability of 4 HPR to inhibit
spheroid formation. When cultured in stemness conditions, DAOY and ONS-76 cells are able
to form floating spheroids typical of BTICs. These spheroids, that represent a validated and
widely used method to study cancer stem cells in vitro [61–63], are enriched in cells with stem-
like phenotype, expressing CD133, ABCG-2, Oct-4, Sox-2 that are directly associated with
stemness features and tumor formation in vivo [48, 53, 63–65]. Treatment with 4-HPR at
nanomolar concentrations inhibited spheroid formation by DAOY and ONS-76 in terms of
size (Fig 6A and 6G) and number (Fig 6B and 6H) in a dose dependent manner. This impaired
ability to form spheroids is associated with decreased levels of CD133 and ABCG-2 (Fig 6C, 6D
and 6I–6L), as assessed by flow cytometry and Oct-4, Sox-2 expression (Fig 6E, 6F, 6M and 6N)
determined by qPCR. 4-HPR is able to inhibit invasive abilities in DAOY and ONS-76 derived-
BTICs (Fig 6O and 6P), BTICs of both DAOY and ONS-76 appear to be much more sensitive
to 4-HPR than the parental cells.

Effects of 4-HPR on MB DAOY and ONS-76 cell growth in vivo
To evaluate the ability of 4-HPR to inhibit in vivo tumor growth in DAOY and ONS-76 cell
lines, CD1 nu/nu female mice (age 6–7 weeks) were injected intraperitoneal (IP) with 12 mg/
kg 4-HPR, corresponding to the concentration range used in vitro (approximately 7.6 μM), 2
days prior subcutaneous tumor cell inoculation in the mice flank and pulsed every 2 days
throughout the course of the experiment. Tumor growth was monitored for 24 days using a
caliper according to the formula V = ½ (LxW2).

In DAOY tumors, the differences between the treated and the control mice were observed
after 9 days and became highly significant from day 14 (Fig 7A). The difference for ONS-76
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tumors was also significant at day 14 (Fig 7b), although these cells appeared less sensitive to
4-hpr. MB tumors formed a consistent structure while MB tumors from 4-HPR treated mice
were a soft mass. Histology showed the presence of cysts, likely filled by liquid resulting in a
porous-sponge like tissue (Fig 7C and 7D). Facs analysis on tumor cells pooled from tumors
derived from either treated or control animals, revealed decreased number of CD133+ and
ABCG2+ BTICs in tumor from 4-HPR treated animals (Fig 7E and 7F) confirming in vivo the
ability of fenretinide to target the MB stem component shown in vitro (Fig 6).

Discussion
Retinoids have been reported to play a relevant role in the regulation of cell differentiation
[66], immune cell function [67], tumor growth and development [68]. Currently, one of the

Fig 4. Effects of fenretinide (4-HPR) on MB cells migration and invasion. Fenretinide (4-HPR) reduces DAOY and ONS-76 cell
migration (A, B) and invasion (C, D). Results are representative of 3 independent experiments and showed as Mean ± SEM *p <0.05;
**p<0.001; ***p<0.001(one-way ANOVA).

doi:10.1371/journal.pone.0154111.g004
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Fig 5. Effects of fenretinide (4-HPR) onWnt3a/β-catenin pathway.WB analysis for proteins involved in Wnt3a/β-catenin pathway show
decreased level of Wnt3a in DAOY cells (A) treated for 24 hours with 4-HPR at the highest dose while Wnt3a down-regulation started at
2.5 μM in ONS-76 cells (B). Axin-1 and pGSK3β decreased in DAOY and ONS-76 cells treated as above (C-F). Decreased levels of β-
catenin was observed at 6 and 24 hours following 4-HPR treatment in DAOY and ONS-76 cells (G, H).

doi:10.1371/journal.pone.0154111.g005
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Fig 6. Effects of fenretinide (4-HPR) on MB brain tumor initiating cells (BTICs). Fenretinide inhibits MB spheroid
formation at nanomolar concentration (100–1000 nM) in DAOY (A) and ONS-76 (B) cells cultured in stemness
condition, as confirmed by sphere counts (B, H), following 4-HPR exposition. The inhibition of spheroid formation is
associated by decreased levels of CD133 and ABCG2, as showed by flow cytometry (C, D; I, L) as far as down-
regulation ofOct-4 and Sox-2 genes (E, F; M, N), as assessed by q-PCRC. Results are showed as Mean ± SEM,
*p <0.05; **p<0.001; ***p<0.001. Fenretinide (4-HPR) decreases DAOY and ONS-76 BTIC invasive activity (O, P).
Results are showed as Mean ± SEM, *p <0.05; **p<0.01; ***p<0.001. Results are representative of 3 independent
experiments.

doi:10.1371/journal.pone.0154111.g006
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most promising clinically tested synthetic retinoid analogues is fenretinide (4-HPR). 4-HPR
has shown biological activity against numerous cancer cell types in vitro, in vivo and in preclin-
ical studies. 4-HPR has been reported to exhibit anti-tumor effects on breast cancer cells,
through suppressing NF-KB activation and inhibiting matrix metalloproteinase-9 expression

Fig 7. Effects of fenretinide (4-HPR) on MB tumor cell growth in vivo. Fenretinide interferes with MB
tumor cell growth of subcutaneously injected cell lines (A-B). Results are shown as Mean ± SEM, *p <0.05;
**p<0.001; ***p<0.001 (two-way ANOVA). Hematoxylin/eosin (5X and 20X magnification) for sections
derived from DAOY and ONS-76 excised tumors shows an altered tumor tissue organization in 4-HPR-
treated animals, associated with the induction of cisternae-like structures (C-D). FACS analysis for CD133
and ABCG2 expression in DAOY and ONS-76 tumors (E-F). 5 mice per group were used.

doi:10.1371/journal.pone.0154111.g007
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[21–23], on prostate carcinoma cells, by modulating the pro-apoptotic/anti-apoptotic protein
ratio, leading to an alteration of mitochondrial membrane potential and down regulating the
levels of survivin [24, 25], and myeloid leukemia [28], human pancreatic cancer cells [27].

Recently, Mittal et al demonstrated that fenretinide exhibited a relevant anti-tumor activity
on endometrial cancer cells, both in vitro and in vivo [69]. 4-HPR has been reported to decrease
cell viability of endometrial cells inducing apoptosis mediated by PARP and caspase-9 activa-
tion [69]. Antiangiogenic and angiopreventive properties by 4-HPR have been also reported
[31, 60, 70]. 4-HPR shows potential synergy with cytotoxic drugs: the combinations 4HPR/cis-
platin, 4HPR/paclitaxel and 4HPR/etoposide were more than additive compared with mono-
therapy in human lung cancer cells [19, 71]and the combination of fenretinide/indole-3-
carbinol has increased the cytotoxic activity compared with agents administered as monother-
apy by enhancing apoptosis in human breast cancer cell lines [72].

During the last decades, given the promising data obtained in pre-clinical studies, several
clinical trials have been developed demonstrating that 4-HPR is a highly active and promising
therapeutic agent against breast cancer [21, 29, 30, 72], lung cancer [19, 71, 73] and neuroblas-
toma [74, 75]. Preventive activity for secondary breast cancer by 4-HPR has also been reported
[29]. Clinical trials from patients with glioma indicated that 4-HPR is able to cross the blood
brain barrier (BBB), suggesting its potential for the treatment of central nervous system tumors
[37, 38, 40].

Medulloblastoma (MB) is a highly aggressive pediatric tumor of the cerebellum, usually rep-
resenting the most common malignancy of the cerebellum in childhood. MB accounts for 13–
20% of all pediatric central nervous system tumors [1, 2]. Recently, on the basis of gene expres-
sion and immunohistochemistry analysis, four subtypes of MB have been recognized and
termed as Wingless (WNT), Sonic Hedgehog (SHH), Group 3 and Group 4 [76, 77], suggesting
that the molecular differences of MB groups may be relevant also for clinicians and may predict
the responsiveness to treatment [9, 12]. In the brain tumor context, preliminary data from
Damodar et al showed the evidence that fenretinide was able to affect human MB cell viability
in vitro, inducing apoptosis mediated by the activation of caspase-3 and supported by the cleav-
age of PARP-1 [18], even if more detailed mechanisms and molecular targets have not been
investigated.

Here we investigated the effects of 4-HPR on the different pathways that regulate MB prolif-
eration, survival, migration and invasion. In this study, two different and well characterized
human MB cell lines were used, DAOY cells which demonstrate properties of SHH tumors
[78], and ONS-76, described as a more immature cell line [54].

According to the literature, we show that in both MB cell lines, 4-HPR treatment was able
to inhibit cell proliferation, mainly due to the induction of apoptosis (Fig 1C, 1D, 1F and 1H)
in ONS-76 cells, while in DAOY cells we also observed a cell cycle arrest in S phase (Figs 1A,
1B, 1E and 1G and 2A, 2C, 2E and 2G). 4HPR-induced apoptosis on MB cell lines appeared to
be due to activation of the mitochondrial pathway, mediated by caspase-9 whose levels were
enhanced in both MB cell lines after treatment (Fig 1E and 1F).

We also observed that 4-HPR was able to interfere with pro-survival pathways, including
MAPK and STAT-3 signaling, down-regulating the expression levels of both P-ERK-1/2 and
STAT-3 (Fig 3E, 3F, 3G and 3H), suggesting that the effects on caspases are not the only mech-
anism through which fenretinide exerts its anti-tumor activity.

Several studies demonstrated that the increase of ROS and mitochondrial alterations are
involved in 4HPR-induced cell death of different brain tumor cell lines in vitro [33], including
in MB cells [18]. According with this evidence, we observed that a substantial increase in intra-
cellular ROS production occurred in 4HPR-treated DAOY and ONS-76 MB cell lines (Fig 3).
We also found that DAOY and ONS-76 are differently able to produce ROS, following 4-HPR
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treatment. Indeed, it appears that the ONS-76 cell line had a higher baseline level of ROS than
DAOY (Fig 3A and 3B). The antioxidant NAC is able to prevent ROS production in MB
treated cell lines, consistent with previous reports indicting that L-ascorbic acid, another anti-
oxidant, prevented cell death in MB cell lines [18] indicating that free radicals can mediate MB
cell death. We also observed that 4-HPR was not only able to enhance ROS production, but it
was also able to affect Nrf2 anti-oxidant pathway, down-regulating Nrf2 expression levels after
6h treatment in both MB cell lines, particularly in the DAOY cell line (Fig 3C and 3D).

The Wnt pathway and its different components play a pivotal role in several malignancies
including MB [79]. Normally, in the absence of Wnt signal, GSκ3β and Axin-1 are complexed
with β-Catenin and this complex favors β-Catenin phosphorylation, driving its degradation.
Zhang et al have previously demonstrated that fenretinide was able to affect Wnt signaling,
showing that in treated leukemia stem cells, 4-HPR suppressed β-catenin, its directly associated
transcription factor LEF1, the Wnt pathway activatorsMYCN and PRKCH, and the Wnt target
genes CCND1 and c-MYC [80]. According to these findings, our data showed that 4-HPR
affected Wnt3a signalling pathway in MB, down-regulating Axin-1 and P-GSκ3β expression
(Fig 4). Reduced activation of Wnt3a pathway resulted in decreased level of β-Catenin, leading
to inhibition of different genes involved in cell cycle, including cyclin D1, whose levels were
down-regulated by 4-HPR treatment, blocking G1/S phase transition.

Treatment with 4-HPR resulted also in reduced invasion ability of MB cell lines, as observed
in the chemotaxis and chemoinvasion assay, where 24h pre-treatment with 4-HPR 2.5, 5 and
10 μM of DAOY cells significantly reduced invasion in a dose dependent manner (Fig 6A–6C
and 6B–6D). ONS-76 cells, seems to be less affected by 4-HPR. The ability of fenretinide to
impair migration and invasion properties in vitro was previously demonstrated for human
prostate cancer cells, where 4-HPR treatment downregulated FAK and AKT and enhanced β-
catenin degradation leading to the suppression of its target genes, including cyclin D1, survivin
and VEGF and decreasing invasive and migratory properties [16].

Since MB is a tumor characterized by an “embryonic” phenotype [42, 51], we evaluated
whether 4-HPR was able to affect the spheroid model for MB cancer-stem-like/cancer initiat-
ing cells (BTICs). When cultured in stem-like condition [63], both DAOY and ONS-76 cells
are able to form large spheres (Fig 5A, 5B, 5G and 5H). We show that 4-HPR inhibited the
DAOY and ONS-76 capability to form spheroids. 4-HPR was able to decrease the expression
CD133 and ABCG-2 surface antigens as well as Oct-4 and Sox-2 gene expression in BTICs (Fig
5C, 5D and 5I–5L) and (Fig 5E, 5F, 5M and 5N), suggesting that 4-HPR targets the BTIC
tumor component (Fig 5). 4-HPR decreased also DAOY and ONS-76 BTIC invasive ability
(Fig 6E and 6F). The MB BTIC population appeared to be more sensitive to 4-HPR that the
parental cells for both cell lines. Similarly, fenretinide has been shown to target acute myeloge-
nous leukemia and chronic myeloid leukemia stem cells as well as ovarian cancer stem cells in
vitro reducing sphere formation [28, 80, 81].

4-HPR significantly reduced the growth of MB tumors in vivo in the prevention/interven-
tion approach. Histological inspection of MB excised tumor from treated animals, showed
alteration in the tumor mass, with induction of cisternae-like structures (Fig 7). Finally, we
confirmed the ability of 4-HPR to target the BTIC component within the tumor mass, as
showed by the CD133+ and ABCG2+ reduced cell percentage in the excised tumors from
treated animals.

Taken together, our study demonstrates the ability of 4-HPR to interfere with MB tumor
cell growth both in vitro and in vivo, acting on several molecular targets associated with cell
survival and death, cell cycle, migration, invasion and stemness that we summarized in Table 1.
These findings contribute to provide the basis for the development of a new approach to con-
trol MB while limiting side effects and increasing therapeutic options.
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Supporting Information
S1 Fig. Effects of fenretinide (4-HPR) on MB cell line proliferation. Fenretinide (100 nM-
10 μM) inhibits DAOY and ONS-76 MB cell proliferation in a time and dose dependent man-
ner, as shown by an MTT assay. Results are showed as Mean ± SEM, �p<0.05; ��p<0.001
���p<0.001 (two-way ANOVA). Three independent experiments, using 12 replicates were per-
formed.
(TIF)
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Table 1. Effects of 4-HPR on selected targets in DAOY and ONS-76 MB cell lines.

BIOLOGICAL PROCESS TARGET DAOY ONS-76

Apoptosis Casp9 up up

PARP-1 up up

Cell survival ERK1/2 down down

pStat3 up down

Cell cycle pCHK-2 up -

CyclinD1 down -

ROS Nrf2 down -

Invasion Wnt3a down down

pGSK3β - down

β-catenin down down

Stemness CD133 down down

Oct-04 down down

Sox-2 down down

Effects of 4-HPR on MB cells are summarized classified for biological process: apoptosis, life survival, cell

cycle, ROS, invasion and stemness features. Red = up regulation, green = down regulation, yellow = not

modulated).

doi:10.1371/journal.pone.0154111.t001
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