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Abstract: Nucleic acids participate in a large number of biological processes. However, current
approaches for small molecules targeting protein are incompatible with nucleic acids. On the other
hand, the lack of crystallization of nucleic acid is the limiting factor for nucleic acid drug design.
Because of the improvements in crystallization in recent years, a great many structures of nucleic
acids have been reported, providing basic information for nucleic acid drug discovery. This review
focuses on the discovery and development of small molecules targeting nucleic acids.
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1. Introduction

Nucleic acids play significant roles in variety kinds of biological processes [1–5]. According to
the differences on sugar scaffold, nucleic acids can be classified into two categories. DNAs and
RNAs participate in gene storage, replication, transcription and other important biological activities.
Thus, targeting nucleic acids can regulate a large range of biological processes, especially genetic
diseases. Nucleic acids play significant roles in anticancer [6] and antiviral [7] processes. Therefore, the
small molecules targeting nucleic acids are desirable and have become a topic issue in recent years.

However, small molecules targeting nucleic acids are more difficult to discover than targeting
protein, which result from various reasons. Nucleic acid lacks spatial structure information from X-ray
crystallization, nuclear magnetic resonance (NMR) or other imaging methods. Current approaches for
small molecules targeting protein are incompatible with nucleic acids. Most of the docking methods,
for example, do not regard RNA and DNA receptors as flexible bodies [8–10], which constrains the
conformational changes of nucleic acids. Fortunately, the areas of structural biology and computational
chemistry have improved dramatically. A large number of structures of nucleic acids have been
reported. Several computational methods and force fields have been developed and modified [11,12].
These improvements provide a new horizon to discovery and design novel small molecules targeting
nucleic acids.

Depending on the differences on sugar scaffold of nucleic acids, small molecules targeting nucleic
acids can be separated into two main categories: small molecules targeting DNA and small molecules
targeting RNA (in which DNA and RNA can form different conformations). This review focuses on
the recent discovery and development of small molecules targeting DNA and RNA.
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2. Small Molecules Targeting DNA

2.1. Small Molecules Targeting DNA Duplex

2.1.1. Small Molecules Forming Covalent Bonds with DNA Duplex

Psoralen or psoralene has been used as mutagen to treat skin diseases including psoriasis and
vitiligo. Psoralen interacts with standard DNA duplex, through the 5,6 double bond in pyrimidine ring,
which can stop replication and transcription. 41-(Hydroxymethyl)-4,51,8-trimethylpsoralen, short for
HMT, has reasonable water solubility and high DNA binding affinity, as shown in Figure 1A. Figure 2B
shows the crystal structure of a short DNA complex with HMT reported by Spielmann et al. [13].
The HMT structure crosses both the minor and major grooves through the 5,6 double bonds of
pyrimidine ring and two thymines. There are apparent stacking interactions from the ring system of
HMT and the bases nearby. The high binding affinity of HMT and duplex results from aromatic rings
stacking and hydrophobic interactions. The crystal study of the complex of DNA and HMT showed the
Holliday junction was formed in the adduct of DNA-HMT. The interaction between DNA and HMT
is related with sequence, which may play a role in repairing the psoralen damage in chemotherapy
treatment. The conformation of DNA is extremely twisted at the bases of thymine connected with the
hexatomic pyrone of the molecule.
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Figure 1. (A) Chemical structure of HMT; and (B) NMR structure of a short DNA complex with HMT
(RCSB Protein Data Bank (PDB) code: 204D). The orange structure represents the small molecule.
The purple structure represents the backbone of nucleic acid; the blue and red atoms in the molecule
represent nitrogen and oxygen atoms, respectively.
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Aflatoxin B1 (AFB) is a common contaminant in a variety of foods including peanuts, cottonseed
meal, corn, and other grains as well as animal feeds. Aflatoxin B1 is considered the most toxic aflatoxin
and it is highly implicated in hepatocellular carcinoma (HCC) in humans [14]. The epoxide metabolite
of AFB can react with duplex DNA to produce a cationic adduct (Figure 2A). An NMR structure of
this adduct has been resolved and reported by Stone [15], as shown in Figure 2B. This NMR structure
shows that Aflatoxin B1 substructure inserts into DNA duplex strand. The adduct acts as a covalent
binder, which can crosslink to duplex DNA conformation inducing the modification and change in the
DNA conformation. The changed DNA will stop interacting with related proteins, which can block
the process of replication or transcription.

Another DNA duplex adduct, a synthetic N4C–ethyl–N4C (Figure 3A), was discovered to interact
with DNA by Miller [16]. The DNA study indicated that the ethyl cross-linked the base pairs in
the structure solution. However, the ethyl linker does not remarkably change the B-form DNA
conformation [17], as shown in Figure 3B.
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Figure 3. (A) Chemical structure of N4C–ethyl–N4C adduct; and (B) one strand of NMR structure
of a DNA duplex complex with N4C–ethyl–N4C adduct (PDB code: 2OKS). The orange structure
represents the small molecule; the purple structure represents the backbone of nucleic acid; the blue
and red atoms in the molecule represent nitrogen and oxygen atoms, respectively.

Similar interactions were reported in the trimethylene related structures (Figure 4A) and DNA
duplex conformation [18]. Two DNA duplexes structures were resolved and submitted to Protein
Data Bank. Although the stacking between the linked bases and neighbor bases was different, both of
the two structures indicated that the duplexes could maintain the hydrogen bonds and the B-form
geometry (Figure 4B,C).

Mitomycin C (Figure 5A) is a member of mitomycins, which contains aziridine substructure
and are extracted from natural products isolated from streptomycetes. The molecule is used as
a chemotherapy drug for cancer. Mitomycin C alkylates the guanine in C–G base pairs of the
DNA conformation [19]. The crystal complex of a short DNA with mitomycin C was reported
by Patel et al. [20]. Unlike other standard DNA duplexes, the mitomycin alkylated DNA duplex shows
A-form base pair stacking and B-form sugar puckers. The ring of mitomycin locates in the minor
groove. And the ring of indoloquinone forms a 45˝ to the helix axis, as shown in Figure 5B.

As mentioned, these small molecules can modify and change the overall conformation of
the conformation by cross-linking to DNA duplexes. The changed DNA conformations will stop
interacting with the corresponding biological partners, thus the transcription or replication process
will be blocked. This is how this kind of molecules works in the chemotherapeutics treatment.
These molecules showed high toxicity in normal cells, just because of its low selectivity. To decrease
resistance and promote selectivity, the comprehension of the interaction mechanism between DNA
and drugs will be of significant importance.
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To affect the gene expression, the small molecules can not only insert into the DNA strand, but 
also bind to the major or minor grooves of high binding affinity. For minor groove, typical small 
molecules are heterocylic dications and polyamides, including netropsin, berenil, and pentamidine, 
as shown in Figure 6. Originally, these molecules were found to bind AT-rich areas preferentially. 
Then, these molecules appeared near G–C and C–G base pairs [21,22]. The molecules targeting minor 
groove have been studied as a series of therapeutics with anti-viral, anti-tumor and anti-bacterial 

Figure 4. (A) Chemical structure of N2G–trimethylene–N2G; (B) crystal complex of a DNA with
N2G–trimethylene–N2G cross-link (PDB code: 2KNK); and (C) crystal complex of a DNA with
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molecule; the purple structure represents the backbone of nucleic acid; the blue and red atoms in the
molecule represent nitrogen and oxygen atoms, respectively.
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2.1.2. Small Molecules Targeting with DNA Duplex in Minor Groove

To affect the gene expression, the small molecules can not only insert into the DNA strand, but
also bind to the major or minor grooves of high binding affinity. For minor groove, typical small
molecules are heterocylic dications and polyamides, including netropsin, berenil, and pentamidine,
as shown in Figure 6. Originally, these molecules were found to bind AT-rich areas preferentially.
Then, these molecules appeared near G–C and C–G base pairs [21,22]. The molecules targeting minor
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groove have been studied as a series of therapeutics with anti-viral, anti-tumor and anti-bacterial
activities [23–25]. Some structural studies have been investigated as the basis of the design of small
molecules [26–30]. The crystal complex of DNA duplex and Hoechst 33528 is shown in Figure 7.
The Hoechst 33528 is clamped in the minor groove of the DNA structure.
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represents the small molecule; the purple structure represents the backbone of nucleic acid; the blue
and red atoms in the molecule represent nitrogen and oxygen atoms, respectively.

Except for the drug-like molecules, some unusual compounds were also identified to locate in
the minor groove of DNA. An 8 ring molecule (Figure 8A) was reported that it can bind to a DNA
duplex [31]. The resolved structure indicates that the DNA conformation has been remarkably changed.
The minor groove has been widened, and the major groove has been narrowed. The minor and major
grooves are both approximate 4 Å (Figure 8B). Additionally, the helix center direction is twisted more
than 18˝ to the major groove, in comparison with the inherent counterparts. The distortion provides
a fundamental element for supporting the concept of allosteric change of the DNA conformation with
inhibitors locating in minor grooves.
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The small molecules can bind to nonstandard DNA duplex as well. Hoogsteen base pairs may
occur in alternating A–T sequences, which are abundant in eukaryotic animals. Because of the lack of
structural information, however, there is little analysis in this field. Recently, the complex of Hoogsteen
DNA duplex and pentamidine (Figure 9A) was determined and reported [32]. The X-ray DNA structure
presents a mixture of Watson–Crick and Hoogsteen pattern (Figure 9B). Unlike previous minor binders,
pentamidine does not bind to the minor groove totally. Only the center of the pentamidine is bound to
the minor groove, leaving the positively charged ends detached from the DNA and free to interact
with phosphate groups from adjacent duplexes in the crystal. This new binding pattern has potent
inspiration for antibacterial design of pentamidine.
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Figure 9. (A) Chemical structure of pentamidine; and (B) complex of DNA with pentamidine (PDB
code: 3EY0). The orange structure represents the small molecule; the purple structure represents
the backbone of nucleic acid; the blue and red atoms in the molecule represent nitrogen and oxygen
atoms, respectively.
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2.1.3. Small Molecules Targeting with DNA Duplex in Major Groove

For major groove studies, there are less reports of small molecule targeting information. Due to
the requirement of larger compounds, few complexes of molecules and DNA major grooves are
determined. Although majority of carbohydrates bind to the DNA minor grooves, some of them can
show binding affinity to DNA major groove. The reason for this major groove binding is the large size
of carbohydrates and their hydrophilic and hydrophobic substructures. Some classic major groove
binders are listed in Figure 10 [33].
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Neocarzinostatin and related derivatives have been used as anti-tumor agents for decades [34,35].
This kind of molecule can form a complex with protein and damage DNA by hydrogen abstraction [36].
In order to understand the mechanism and interaction between DNA duplex and molecule, the complex
of the DNA duplex and neocarzinostatin were reported. Neocarzinostatin-gb and neocarzinostatin-glu
were used as ligand to bind to the DNA duplex. As shown in Figure 11, both of the two complex
structures are observed [37,38]. The majority of the neocarzinostatin-gb binds to the major groove.
The two rings of the molecule are close to each other in the structure. However, the neocarzinostatin-glu
binds to the minor groove. The differences of the two binding modes provide significant inspiration
into small molecule-DNA specific targeting.
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Figure 11. (A) Chemical structure of neocarzinostatin-gb; (B) complex of a DNA with neocarzinostatin-gb
(PDB code: 1KVH); (C) chemical structure of neocarzinostatin-glu; and (D) complex of DNA with
neocarzinostatin-glu (PDB code: 1MP7). The orange structure represents the small molecule; the purple
structure represents the backbone of nucleic acid; the blue and red atoms in the molecule represent
nitrogen and oxygen atoms, respectively.

2.1.4. Small Molecules Intercalating into DNA Duplex

Inserting a molecule between the base pairs of DNA is another binding pattern of small molecules
targeting DNA duplexes. Inserting to the base pairs can interrupt DNA replication and transcription.
The insertion results from hydrophobic, hydrogen bonding and van der Waals forces [39]. The insertion
lengthens the length of DNA and reduces the helical twist [40,41]. In previous study, only molecules
with fused ring systems were found to insert into the base pairs of DNA duplexes. Later, molecules with
electrophilic or cationic groups behaved the same insertion pattern. However, the ring systems were
not required [42,43]. Various compounds have been identified as intercalators, including ditercalinium,
dactinomycin, daunomycin and adriamycine. Intercalators can be used as anti-fungal, anti-tumor, and
anti-neoplastic agents. However, due to the toxicity, most of the compounds were failed during the
clinical trial [44].

Daunomycin (trade name Cerubidine) is used to treat various cancers as chemotherapy drug [45].
Specifically, the most common use is treating some types of leukemia. Daunomycin (Figure 12A)
consists of a planar ring, an amino sugar structure and a fused cyclohexane ring system. A lot
of structural studies have been investigated to understand the interaction between DNA duplex
and molecule [28,46–51]. Most of the structures indicate that two daunomycin molecules insert
into the G–C steps with the sugar moiety in duplex, as shown in Figure 12B. Through sequence
selectivity investigation by different biophysical methods, it was revealed that this ligand prefers
a purine-pyrimidine step and the DNA duplexes are usually elongated or twisted after binding to the
small molecule.

Adriamycin (Figure 12C) contains an extra hydroxyl group, compared to daunomycin. Although, the
daunomycin and adriamyc in have nearly the same structure, their functions are remarkably diverse.
Adriamycin is used to treat the tumor, while daunomycin is an effective drug in leukemias [47].
The complex structures of DNA duplex and compounds have been determined. In order to understand
the differences between the two compounds, the complexes of the two molecules with a same DNA
were resolved. The two complex structures showed a little differences between each other. Moreover,
the hydroxyl group of the adriamycin interacts with a water molecule in the complex (Figure 12D).

Ditercalinium, as shown in Figure 13A, is regarded as a DNA intercalator in treatment of cancer.
The structure of ditercalinium is a dimer of pyridocarbozole. Thus, the molecule can bind to DNA
duplex by bis-intercalation and then induce DNA repair in eukaryotic or prokaryotic cell [52–54].
Afterwards, pyridocarbozole derivatives and related bioactivity have been studied [55–57]. The structure
of DNA duplex and ditercalinium showed that the dimer of the molecule inserted to two G–C steps
of the conformation (Figure 13B). The duplex of the DNA maintains a right-handed helix and has
a binding site in major groove. The nitrogens with positive charge of the molecule make the charge
interaction toward major groove of DNA [58]. In the complex structure, the helix is twisted at
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approximate 15˝ to minor groove of DNA. The mentioned structural features give inspiration on
further research of optimizing this kind of molecules.
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Actually, the specificity of DNA intercalators is the reason for drug toxicity. Molecules can bind 
to unexpected DNA sequence for new treatment. Cryptolepine (Figure 14A) is a good example for 
occasional drug discovery. Cryptolepine is isolated from Cryptolepis triangular and used as anti-
malarial and cytotoxic agent [59]. This compound can insert with C–G rich sequences [60]. The crystal 
complex structure indicates that the drug interacts with the duplex in a base stacking insertion 

Figure 12. (A) Chemical structure of daunomycin; (B) one strand of a DNA duplex complex with
daunomycin (PDB code: 1D10); (C) chemical structure of adriamycin; and (D) one strand of a DNA
duplex complex with adriamycin (PDB code: 1D12). The orange structure represents the small molecule;
the purple structure represents the backbone of nucleic acid; the red dots represent the water molecules;
the blue and red atoms in the molecule represent nitrogen and oxygen atoms, respectively. The green
square represents the water molecule that interacts with the small molecule.
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Actually, the specificity of DNA intercalators is the reason for drug toxicity. Molecules can bind
to unexpected DNA sequence for new treatment. Cryptolepine (Figure 14A) is a good example for
occasional drug discovery. Cryptolepine is isolated from Cryptolepis triangular and used as anti-malarial
and cytotoxic agent [59]. This compound can insert with C–G rich sequences [60]. The crystal
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complex structure indicates that the drug interacts with the duplex in a base stacking insertion pattern
(Figure 14B). The molecule and two consecutive C–G base pairs form a sandwich conformation with
two C–G rich sequences. And the hexatomic ring stacks in the middle of cytosine and guanine.
Structurally, cryptolepine was mildly twisted at about 6.8˝ between two aromatic rings. Besides, the
charged nitrogen can improve the stability of the complex with the interaction between molecule
and DNA duplex. The insertion into base pair steps and the molecular dissymmetry were important
elements for this interaction.
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2.1.5. Small Molecules Targeting with DNA Duplex through Multiple Binding Patterns

Small molecules can not only bind to DNA duplex in a single mode, but also interact with DNA
duplex in multiple binding patterns, which will make the complex more stable [61,62]. PBD-BIMZ
(Figure 15A) binds to a DNA duplex in a covalent link to a guanine base. The complex shows that
the hybrid molecule orients in the minor groove (Figure 15B) [63]. Although the covalent binding
distorts the DNA helix, the overall duplex still maintains the standard B-form conformation. It is
revealed that covalent binding site in local region possesses specific twisted helix. By comparison,
the piperazine ring shows a high flexibility with various conformations. Later, the same group
reported another ligand (Figure 15C) in complex with the same DNA duplex. This hybrid compound
binds to a guanine in a covalent link and the naphthalimide substructure embeds to (A–T)2 steps, as
shown in Figure 15D [64]. The covalent binding will remarkably make the DNA and ligand stable.
Moreover, because many molecules have low specificity for sequence, the multiple patterns can make
the molecules sequence targetable.
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Figure 15. (A) Chemical structure of PBD-BIMZ; (B) complex of a DNA duplex with PBD-BIMZ (PDB
code: 2KTT); (C) chemical structure of PBD-naphthalimide; and (D) complex of a DNA duplex with
PBD-naphthalimide (PDB code: 2KY7). The orange structure represents the small molecule; the purple
structure represents the backbone of nucleic acid; the blue and red atoms in the molecule represent
nitrogen and oxygen atoms, respectively.

2.2. Small Molecules Targeting DNA Triplex

Single strand DNA can bind to a DNA duplex structure to form a triplex conformation DNA [65].
The interactions between strands are Hoogsteen or reverse Hoogsteen base pairs. Small molecules can
bind to triplex DNA groove, blocking the access of other DNA natural substrate [66]. The DNA triplex
can display two forms, intermolecular triplexes and intramolecular triplexes [67]. Intermolecular triplex
is generated from a DNA chain of an extra DNA structure. Generally, the intermolecular triplex has
attracted attention due to the possible treatment for various cancers or other diseases. In fact, most of
the DNA duplex intercalators can insert to the triplex as well [68].

As mentioned above, neomycin is a typical major DNA groove binder. In triplex system,
neomycin can make the base mixed DNA triplexes and T–A–T triplex stable. The computational
docking conformation [69] of the triplex and neomycin is shown in Figure 16. The computational and
biophysical researches both indicate that this Watson–Hoogsteen complementarity leads to the selectivity.
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Figure 16. Computer generated model of neomycin bound to a DNA triplex. Ring I of neomycin
locates in the middle of the DNA groove, and Ring II and IV facilitate bridging the pyrimidine strands;
the orange, green and purple structures represent the three chains of the DNA; the blue and red atoms
in the molecule represent nitrogen and oxygen atoms, respectively.
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Similar to major groove binders, neomycin conjugates are also found to bind with the DNA triplex
structures. Computational modeling of pyrene–neomycin indicates pyrene will insert into the base
pairs when neomycin bind with Watson–Hoogsteen groove [70].

2.3. Small Molecules Targeting DNA Quadruplex

Telomere regulation has been regarded as a significant potential strategy for cancer therapy.
Guanosine rich nucleic acids are regarded as a new class of non-antisense nucleic acids with active
G-quartet conformation [71]. Except for telomerase, G-quadruplex-forming sequences have also been
found in the promoter regions of many other genes. Small molecules can stabilize G-quartet structure,
causing the telomerase low activity [72–74]. Therefore, the G-quadruplex structures have attracted
more attention for drug design.

Because G-quartet conformations consist of planar stacked guanine bases, numbers of small
molecules with electron deficient aromatic rings are identified to bind [75]. As mentioned above,
distamycin A and daunomycin are typical intercalators for DNA duplex. In quadruplex systems, these
compounds are able to bind to DNA quadruplex structures. The first complex of G-quadruplex and
daunomycin was determined and reported by Neidle [76]. Figure 17 shows the four parallel strands
and three daunomycin molecules at the end of the complex. This complex indicates that the structure
shows high stability with the molecules stacking on the end.
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Figure 17. Crystal complex of a DNA quadruplex with daunomycin (PDB code: 1O0K). The orange
structure represents the small molecule; the purple structure represents the backbone of nucleic acid;
the blue and red atoms in the molecule represent nitrogen and oxygen atoms, respectively.

It is known that distamycin A binds with the minor groove of DNA duplex. The structure of
G-quadruplex and distamycin A was determined and reported by Randazzo [77]. The structure
indicates that molecule performs the similar binding to DNA duplex minor groove binding.
The dimer of the molecule binds at the converse position of the quadruplex conformation (Figure 18).
The quadruplex conformation is made up of four identical parallel sequences TGGGGT. At the top of
the structure, three stacking daunomycins with sodium ions are located. The quadruplex conformation
resembles the inherent counterpart. The structures of daunomycins interact to the DNA grooves
by forming hydrogen bonds and van der Waals forces. The complex shows the structure is more
stable when the molecules stack at the top than intercalate, because of the large termination of the
molecule surface.
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Compared to DNA duplex binding molecules, some novel kinds of molecules have been found.
These molecules can bind specifically to DNA quadruplex structures, as shown in Figure 19. The structural
and biochemical studies displayed detailed information of the interaction between small molecules
and DNA quadruplex. In addition, it also provideda novel platform for further drug design targeting
DNA quadruplex. The progress in this field has been reported [78].
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3. Small Molecules Targeting RNA

3.1. Small Molecules Targeting Ribosome

The ribosomal RNA (rRNA) is the most comprehensively studied among various kinds of RNA
types. The ribosome is an attractive anti-bacterial target due to its important function in protein
expression [79–83]. The ribosomes in prokaryotic cells mainly contain 30S and 50S subunits. The subunit
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30S is for ensuring that the tRNA can locate in the correct position. The subunit 50S is responsible for
peptide connection. Various kinds of compounds have been identified to bind the subunits of rRNA,
including pleuromutilin, oxazolidinones and aminoglycosides, as shown in Figure 20 [84,85].
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Figure 20. Typical structures of small molecules for 30S or 50S subunit of rRNA.

Amikacin (Figure 21A), a member of aminoglycoside antibiotics, is used to inhibit replication of
various kinds of bacteria. Amikacin binds with the 30S subunits of rRNA, leading to the wrong reading
of message RNA and making the bacteria cell incapable of translation and growing. The structure of
RNA duplex is nearly the same with the previous RNA-aminoglycoside complexes [86–90]. One of
the aromatic rings inserts into A site helix by stacking. Another aromatic ring forms four hydrogen
bonds to the H-bond acceptors nearby. These common interactions make the amikacin bind to RNA
duplex tightly, as shown in Figure 21B [91], and help maintain A1493 and A1492 in the bulge structure,
corresponding with the “on” state in 30S subunit.
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Figure 21. (A) Chemical structure of amikacin; and (B) complex of a RNA duplex with amikacin
(PDB code: 4P20). The orange structure represents the small molecule; the purple structure represents
the backbone of nucleic acid; the blue and red atoms in the molecule represent nitrogen and oxygen
atoms, respectively.
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Other aminoglycoside compounds have also been determined and reported. The paromomycin
(Figure 22A) is also called monomycin and aminosidine. The detailed complex of two paromomycin
molecules and an RNA fragment was solved. The molecule is located in the deep position of the RNA
groove forming hydrogen bonds with water, as shown in Figure 22B [88]. Neomycin B (Figure 22C)
is an aminoglycoside antibiotic different with paromomycin. Neomycin B contains an ammonium
group not hydroxyl group in the structure. The complex structure (Figure 22D) of neomycin B and
RNA duplex shows a similar interaction, compared to other aminoglycosides [86].
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Figure 22. (A) Chemical structure of paromomycin; (B) complex of a RNA duplex with paromomycin
(PDB code: 1J7T); (C) chemical structure of neomycin B; and (D) complex of a RNA duplex with
neomycin B (PDB code: 2ET4). The orange structure represents the small molecule; the purple structure
represents the backbone of nucleic acid; the blue and red atoms in the molecule represent nitrogen and
oxygen atoms, respectively.

3.2. Small Molecules Targeting Riboswitches

In molecular biology, a riboswitch is a regulatory segment of a messenger RNA (mRNA) molecule,
resulting in a change in production of the proteins encoded by the mRNA. Riboswitch consists of
an aptamer domain and an expression platform. In recent years, various kinds of riboswitches
have been reported [92–95]. Because riboswitch can bind a ligand naturally, it is an ideal target for
anti-bacterial agent.

The tetrahydrofolate (THF) riboswitch can regulate the transportation and metabolism of folate
through combining THF molecules. This riboswitch was identified to bind various kinds of folates,
such as dihydrofolate (DHF) and tetrahydrobiopterin (BH4). Tetrahydrobiopterin (Figure 23A), for
example, is an important cofactor of the hydroxylase enzymes of aromatic amino acid. The complex
of BH4 and THF riboswitch (Figure 23B) indicates that the placement of the pterin ring in BH4 is
identical to that of THF. Pemetrexed (Figure 23C) is a structural analog with folic acid and is also
used as chemotherapeutic drug in treatment. The crystal complex of riboswitch and pemetrexed
indicates that the compound binds to the RNA structure almost identically as THF, as shown in
Figure 23D [96]. Both structures reveal that reduced folates are primarily recognized by the RNA
through their pterin moiety.
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Recently, some aminoglycosides are identified to bind with the riboswitch RNA, including
ribostamycin and paromomycin [97].To understand the biochemical elements for the significant
riboswitch specificity, the complexes of paromomycin (Figure 24A) and ribostamycin (Figure 24C)
with neomycin riboswitch RNA were resolved. The complexes of the two structures indicate that
the two helix structures of the rRNA formed a consecutive A-form helical structure through stacking
between two G–C base pairs, as shown in Figure 24B,D. In the two complex structures, the 61 substructures
of the two molecules locate at a close area, near the hinge region between the upper and the lower
helix stem.
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Figure 24. (A) Chemical structure of paromomycin; (B) complex of a neomycin riboswitch RNA
with paromomycin (PDB code: 2MXS); (C) chemical structure of ribostamycin; and (D) complex of
a neomycin riboswitch RNA with ribostamycin (PDB code: 2N0J). The orange structure represents the
small molecule; the purple structure represents the backbone of nucleic acid; the blue and red atoms in
the molecule represent nitrogen and oxygen atoms, respectively.

3.3. Small Molecules Targeting MicroRNA

MicroRNAs (miRNA), a class of noncoding RNA molecules, contain ~22 length nucleotides,
which function for gene expression [98–100]. In order to understand the structure of miRNA and the
interaction between miRNA and small molecules, computational high throughput screenings play
an important role, because computers could drastically speed up the identification and optimization
of compounds targeting miRNA, compared to traditional drug discovery strategy.

Recently, Shi et al. discovered that AC1MMYR2 (Figure 25) was an efficient and selective inhibitor
of microRNA-21 through in silicon virtual screening [101]. The pre-miRNA-21 was modeled by
MC-Fold/MC-Sym [102] pipeline. Forty-eight predicted compounds were selected by AutoDock.
Finally, AC1MMYR2 was identified to inhibit tumor proliferation and migration.
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3.4. Small Molecules Targeting Long Non-Coding RNA

Long noncoding RNA (lncRNA) has been shown to play important functional roles in development
and disease processes [103–106]. Influenza A virus contains eight separated, single-stranded RNAs
that encode 13 kinds of proteins. The RNA dependent RNA polymerase (RdRp) can recognize
a specific RNA conformation, lncRNA in particular, regulating the beginning of replication and
transcription process [107,108]. A small molecule (DPQ, Figure 26A) was found to bind with the
lncRNA [109]. The crystal structure showed small molecule locates in the major groove of the (A–A)–U
loop (Figure 26B). The bindings of small molecule widen the major groove close the position of
G14–C21 and G13–C22 base pairs.
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RNA attracts less attention than DNA targets. Nevertheless, recently, much progress has been 
made in discovering small molecule inhibitor stargeting to RNA with high specificity and bioactivity. 
In silico virtual screening for novel inhibitors targeting RNA has produced original small molecule 
RNA binders. 

In summary, small molecules targeting nucleic acids can regulate a large number of biological 
processes. However, major challenges and issues are yet to be resolved. Therefore, the study and 
development of promising small molecules targeting nucleic acids strategies is ongoing. 
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Figure 26. (A) Chemical structure of DPQ; and (B) structure of a RNA promoter complex with DPQ
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4. Conclusions

Nucleic acid drug discovery is a sophisticated system and comprises of a large number of
stages, including target selection, binding site verification, potent inhibitor screening, and compound
optimization. Small molecule targeting nucleic acid is still a tremendous challenge. Due to the low
specificity of DNA or RNA binders, high rate of the failure in clinical trials is the obstacle of nucleic
acid drug discovery. The progress of nucleic acid drug discovery needs the development of structural
biology and other related technologies.

DNAs as the fundamental target of various small molecules, for instance antibiotics and antitumor
agents, have been verified. It is obvious that small molecules bind with different mechanisms to
different DNA conformation. Small molecules can bind to DNA duplex in various kinds of mechanisms,
including covalent binding, insertion, and some multifunction. For triplex and quadruplex, however,
the intercalation or insertion is the common binding mode for small molecules. In particular, the
majority of such small molecules contain planar aromatic ring systems. Such substructure can keep
the complex more stable.

RNA attracts less attention than DNA targets. Nevertheless, recently, much progress has been
made in discovering small molecule inhibitor stargeting to RNA with high specificity and bioactivity.
In silico virtual screening for novel inhibitors targeting RNA has produced original small molecule
RNA binders.

In summary, small molecules targeting nucleic acids can regulate a large number of biological
processes. However, major challenges and issues are yet to be resolved. Therefore, the study and
development of promising small molecules targeting nucleic acids strategies is ongoing.
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