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Topological distortion and 
reorganized modular structure 
of gut microbial co-occurrence 
networks in inflammatory bowel 
disease
Steven N. Baldassano1,2 & Danielle S. Bassett1,2,3

The gut microbiome plays a key role in human health, and alterations of the normal gut flora are 
associated with a variety of distinct disease states. Yet, the natural dependencies between microbes in 
healthy and diseased individuals remain far from understood. Here we use a network-based approach 
to characterize microbial co-occurrence in individuals with inflammatory bowel disease (IBD) and 
healthy (non-IBD control) individuals. We find that microbial networks in patients with IBD differ in 
both global structure and local connectivity patterns. While a “core” microbiome is preserved, network 
topology of other densely interconnected microbe modules is distorted, with potent inflammation-
mediating organisms assuming roles as integrative and highly connected inter-modular hubs. We show 
that while both networks display a rich-club organization, in which a small set of microbes commonly 
co-occur, the healthy network is more easily disrupted by elimination of a small number of key species. 
Further investigation of network alterations in disease might offer mechanistic insights into the specific 
pathogens responsible for microbiome-mediated inflammation in IBD.

The human gut is home to complex microbial ecosystems responsible for one source of human genetic and meta-
bolic diversity. Humans and bacteria have co-evolved; as hosts, we benefit from an adaptive network of organisms 
for non-nutrient factors, increased digestive capacity, and protection from colonization by pathogens1. We coexist 
synergistically with our gut microbiota, but this relationship can sometimes become pathological2. Advancements 
in sequencing technology now reveal the composition of species that inhabit the human body in both healthy and 
diseased states. While there exists significant variability in microbiome composition among healthy individuals, 
the populations of flora found in the healthy human gut appear to be far from random sets of possible microbes, 
and instead demonstrate significant overlap potentially constituting an essential core microbiome1.

The specific factors governing the composition of an individual’s microbiome evolve across the lifespan. As a 
newborn, the microbiome is initially primed through colonization during passage through the birth canal and 
ingestion of maternal antibodies in breast milk. Throughout life, the microbiome is continually modified by host 
genetics, diet, and additional exposures such as antibiotic use or parasitic infection. Recent data suggests that 
most individuals can be clustered into a small number of enterotypes, defined as populations with similar microbi-
ome compositions3. The particular makeup of one’s microbiome appears to play a critical role in the development 
of the immune system, especially for T-cell maturation4. However, perturbation of the microbiome has been 
shown to be a major risk factor for opportunistic infections such as C. difficile as well as conditions such as obesity 
and inflammatory bowel disease; in fact, several studies in mice have demonstrated that the microbiome may be 
a directly causative agent for these diseases5,6. Although the specific mechanism of pathogenicity is unknown, it 
has been hypothesized that disruption of the core microbiome may play a pivotal role in the dysregulated immune 
response present in inflammatory bowel disease (IBD)7,8.
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Previous studies have focused on alterations in abundance levels of microbial species in disease, with less 
consideration of changes in larger-scale interspecies relationships. As no single organism has been identified 
as having predominant importance in the pathogenesis of IBD, investigation of the microbial network may be 
a fruitful approach for identifying the changes in the microbiome responsible for disease. Modeling of species 
co-occurrence is a common approach used for characterization of microbial ecosystems9 across a wide variety of 
habitats10–13. In recent years this approach has been increasingly applied to the study of the human gut, revealing 
prominent co-occurrence patterns across individuals3,14,15. Co-occurrence modeling has provided a standard of 
measurement for assessing the relationship between microbiome composition and host factors such as genetics16 
and long-term diet17. In addition, co-occurrence patterns in the human microbiome have been shown to correlate 
with predicted metabolic interactions18, suggesting that these networks capture relevant ecological relationships 
among microbes. While co-occurrence modeling has been frequently used for characterization of the microbi-
ome and study of coexistence or competitive exclusion among species9, application of advanced network statistics 
to microbial co-occurrence patterns remains rare. In IBD in particular, network analysis has yet to be widely 
applied to co-occurrence data despite early suggestions of its utility19.

In this work, we seek to characterize and compare the networks of microbiota in patients with IBD and healthy 
(non-IBD) controls by modeling species co-occurrence (Fig. 1). We characterize these networks using both global 
metrics and local motif detection, and identify species with significantly altered influence in IBD network struc-
ture as estimated by a commonly used centrality measure. To complement these statistical techniques, we also 
compare healthy and diseased networks using mesoscale analytic techniques, which can offer insights into the 
structure of clusters of microbes that tend to co-occur with one another relatively consistently over individ-
uals. Specifically, using community detection methods (which are clustering methods developed specifically 
for networks), we identify clusters of co-occurring species characteristic of the healthy and diseased guts. We 
hypothesize that these clusters will be distorted in disease, and that alterations will be most prominent in clusters 
containing a predominance of pathogenic organisms. Such a loss of microbial cluster structure could result in 
altered gut metabolism, less efficient nutrient processing, and changes in immune education and response4. We 
identify and compare the species serving as inter-cluster hubs in IBD patients and non-IBD controls, with many 
co-occurrences across clusters, and we hypothesize that species with altered roles within or between the clusters 
contribute to the development or maintenance of the disease.

Critically, the network organization can have a direct impact on the system’s robustness. Thus, in a final assess-
ment, we study the mutual interconnections of network hubs (a characteristic known as a “rich-club”), and we 
hypothesize that this structure will be less conducive to interspecies interaction in IBD. Finally, we measure the 
robustness of each network to simulated attacks in which species are removed to assess their topological role. This 
simulation technique enables us to compare the predicted fragilities of the healthy and diseased networks and to 
gain insight into the possible effects of broad-spectrum antibiotic use.

This hierarchical, graph-based analysis of co-occurrence networks in IBD provides a unique perspective for 
the identification of potential pathogenic species, comparison of microbial communities, and assessment of 
global network fitness.

Results
We assess the organization of microbial co-occurrence networks with a battery of statistics drawn from the tool-
box of techniques developed in the field of network science. Each assessment addresses a different scale of organ-
ization within the networks. Collectively, these assessments offer a comprehensive view of the conserved and 
variable architectures present in healthy and diseased microbiomes.

Computation of Global Network Measures. We began by assessing the structure of each network using 
several global network measures and we compared these measures to those of common benchmark networks. The 
benchmark networks included (i) a random network and (ii) a lattice network (see Methods). The values of global 
network measures for both the real and benchmark networks are found in Table 1.

The clustering coefficient represents the probability that two co-occurring species also co-occur with a third spe-
cies. We found that both the healthy and IBD networks have average clustering coefficients significantly larger than 
those of a comparable random network (p <  0.001). These results imply that the various microbial populations pres-
ent in the human gut do not co-occur randomly, but rather that certain bacterial species are highly likely to be found 
together. This interspecies correlation is present within the IBD population to a lesser extent, suggesting that the com-
position of multispecies microbial communities characteristic of the healthy gut may be disturbed in the disease state.

That the human gut microbiome is composed of non-random clusters of species is also supported through 
evaluation of the characteristic path lengths of these networks, defined as the average shortest network distance 
between two species. Networks in healthy and IBD populations possessed intermediate values of the character-
istic path length, with magnitudes greater than those observed in random benchmarks but also less than those 
observed in lattice networks. A complementary view is offered by the global efficiency, which represents the aver-
age inverse shortest path length between two species. As expected, the healthy and IBD networks display global 
efficiency values that are lower than those observed in the random benchmarks, but higher than those observed 
in lattice networks. Together, these results support the notion that the human gut microbiome is composed of 
non-random clusters of species that are highly likely to be found together.

Motif Detection. To better characterize local patterns of species co-occurrence, we searched each network 
for motifs composed of 3 species (also known as 3-species motifs) and motifs composed of 4 species (also known 
as 4-species motifs)20. The numbers of motifs of each variety found in each network are shown in Supplemental 
Fig. 1. In all cases, the motif frequency differed in a statistically significant manner between the real and random 
networks (p <  0.0001 for all differences). These differences are consistent with the finding of significantly higher 
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clustering in the real networks (both IBD and healthy) compared to random; motifs with highly interconnected 
nodes occur more often in the real networks, while motifs with fewer connections occur more often in the ran-
dom networks.

Figure 1. Microbial co-occurrence networks. (A) Fecal samples harvested from healthy subjects and subjects 
with IBD. Organisms identified by total DNA deep sequencing and alignment with reference genomes. (B) Co- 
occurrence matrices generated from abundance data using Jaccard similarity. The raw co-occurrence matrix 
containing weighted data from healthy population is shown. (C) Healthy co-occurrence matrix after thresholding 
to isolate the strongest 20% of connections. For additional details regarding data and computational methods, see 
Methods. Panel (A) reprinted by permission from Macmillan Publishers Ltd: Nature, Qin, et al.65, copyright 2010.

Network C PL E Q

Healthy 0.679 2.86 0.482 0.480 ±  0.003

IBD 0.596 2.47 0.508 0.411 ±  0.005

Random 0.218 1.77 0.608 0.123 ±  0.004

Lattice 0.762 6.45 0.288 0.663 ±  0.003

Table 1.  Global network measures. C =  average clustering coefficient; PL =  characteristic path length; 
E =  global efficiency; Q =  modularity index.
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However, we observed one motif, marked with a star in Fig. 2, that occurs with significantly higher frequency 
in the IBD network than in the healthy network. Notably, this motif is solely responsible for the difference in motif 
profile between healthy and IBD networks (p =  0.03 with motif included; no significant difference with motif 
omitted). This particular motif is interesting in that it contains a fully clustered component (A →  B →  C →  A) with 
an additional, unclustered connection (C →  D), thus representing an intermediate structure uncharacteristic of 
either the random (generally unclustered) or healthy (generally clustered) networks. The recurrence of this motif 
in the IBD network demonstrates the local topological derangements responsible for the decreased clustering 
and modularity of this system, as edges are less exclusively restricted to distinct clusters. Interestingly, the cluster-
ing coefficient of this motif (0.583) is similar to the average clustering coefficient of the network. An alternative 
explanation for this finding is that interpersonal microbial variability is greater among IBD subjects than among 
healthy subjects. Common occurrence of this motif suggests stratification at the subject level; species A, B, and 
C cohabitate in some subjects while species C and D cohabitate in others, with relatively uncommon overlap of 
these two microbial profiles.

While nearly all organisms participated in this motif more often in IBD than in health, we can identify par-
ticular species with the greatest differential participation. Since motif participation is strongly related to node 
degree, we computed the expected motif count for each species based solely on node degree using a linear regres-
sion model. This approach allows us to compute a residual count for each species describing motif participa-
tion relative to expectation. Comparing normalized participation counts between the healthy and diseased states 
reveals that the local connectivity of four species is most strongly skewed toward this motif in IBD. Three of these 
species are in the Bifidobacterium genus (catenulatum, animalis subsp. lactis, and bifidum), while the fourth is 
Mitsuokella multiacida. These species of Bifidobacteria are known inflammatory-mediators with probiotic effects 
in the gut21, and may offer therapeutic benefit in IBD22. Although the association between Mitsuokella multiacida 
and gut inflammation remains unstudied, this species is increased in the feces of patients with ulcerative colitis23. 
This analysis suggests that the local connectivity of anti-inflammatory species is disproportionately altered in 
IBD, reflecting the imbalance in pro- and anti-inflammatory drivers characteristic of these diseases.

Identification of Key Organisms by Eigenvector Centrality. While the previously described results 
suggest a global topological architecture that is altered in the IBD network, it is possible that these observations 
could be driven by a few specific organisms, whose pattern of connections have a greater-than-average influence 
on the network. To test this possibility, we sought to identify specific species with disparate importance in healthy 
and IBD networks using a measure of species influence referred to as the eigenvector centrality.

We calculated the normalized eigenvector centrality of each species and identified species with the greatest 
change in centrality between control and diseased networks (Supplemental Fig. 2). The species with the most 
enhanced centrality in the healthy network are Akkermansia muciniphilia, a probiotic organism shown to decrease 
gut inflammation with potentially protective effects against diabetes and obesity24, and Coprococcus eutactus, 
an organism found in greater abundance in healthy controls than in patients with IBD25 or IBS26. Conversely, 
the species with most enhanced centrality in IBD are Catenibacterium mitsuokai, a microbe implicated in gut 
inflammation and diet-induced microbiome dysbiosis27, and Bifidobacterium bifidum, a potent probiotic shown 
to decrease Th1-driven intestinal inflammation28,29. The striking map between (a) species identified in this net-
work approach as having altered influence and (b) species described in prior literature as impacting the disease, 
offers validation of this network-based approach and suggests that the approach might yield additional, not yet 
studied, microbial targets. Furthermore, the inclusion of Bifidobacterium bifidum as more highly influential in 
IBD illustrates that this network-based analysis provides a perspective that complements pure abundance data; 
while Bifidobacterium bifidum is actually decreased in abundance in IBD30,31, it becomes more significant in the 
co-occurrence network, possibly assuming a counter-regulatory role in the inflammatory milieu.

Computation of Modularity and Consensus Partitions. The results thus far indicate that the global 
architecture of microbial co-occurence networks differs in diseased individuals, and that key species might play 
an influential role in observed network function. We now turn to assess these networks from a meso-scale per-
spective, to better understand the rules governing sets of species that tend to co-occur together with one another.

We begin by studying a mesoscale feature known as community structure; networks that display community 
structure contain sets of nodes that are densely interconnected with one another, more so than expected in an 

Figure 2. Motifs in microbial co-occurrence networks. Illustration of bidirectional motifs of 3 (A) and 4 (B) 
nodes. IBD networks have a significantly higher frequency of 4-node motif number 3.
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appropriate null model. While many methods exist to identify and characterize community structure, we employ 
the common modularity maximization approach32 (see Methods). Specifically, we calculated the maximum mod-
ularity index of the healthy and IBD networks, as well as of benchmark networks (Table 1). Both the healthy and 
IBD networks possess modularity indices that are significantly greater than those expected in the random net-
work null model (p <  0.0001 in each case). This difference supports the hypothesis that the microbiome is char-
acterized by relatively distinct groups of species that tend to co-occur with one another. Notably, the modularity 
index of the healthy network was significantly greater (p <  0.0001) than that of the IBD network, suggesting that 
the communities of co-occurring organisms present in the healthy gut might be disrupted in the disease state.

It is important to note that the modularity maximization approach is a heuristic approach, and that the opti-
mization of the modularity quality function is traditionally performed many times to ensure an adequate sam-
pling of the modularity landscape33. Over 1000 optimizations, we therefore distill a consensus partition in which 
nodes are assigned to their most likely communities (see Methods). This approach yielded 4 communities in the 
healthy population and 3 communities in the IBD population (Fig. 3A and Supplemental Fig. 3B). These consen-
sus partitions were fairly representative of the community structure in individual optimizations: in the healthy 
population, 4 communities were detected in 87% of optimizations, and in the IBD population, 3 communities 
were detected in 99.9% of optimizations.

The modules of microbial co-occurrence detected in the gut in health and disease may represent clusters of 
symbiotic organisms, and we can gain insight into the potential function of each module through examination 
of its species profile. A complete list of the consensus partitions of the organisms in healthy and IBD networks 

Figure 3. Identification of Microbial Communities in Health and Disease. (A) Healthy network color-coded 
by consensus partition. Community I =  Green; Community II =  Red; Community III =  Orange; Community 
IV =  Blue. Representative, high-degree species from each module are labeled. (B) IBD network color-coded by 
consensus partition of healthy network. (C) Heat map of control network and (D) Heat map of IBD network 
with nodes arranged according to consensus partition.
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is listed in Supplemental Table 1. In the healthy, non-IBD control network, 4 distinct clusters are identified. 
Community I (Green, Fig. 3A) is primarily composed of species in the Bacteroides, Bifidobacterium, Prevatella, 
and Ruminococcus genera. These organisms are ubiquitously found in the normal gut microbiome, and make 
up a significant fraction of the overall microbiome1. Community II (Red) consists primarily of Clostridium and 
Bacteroides species. These organisms are commonly found in the gut of asymptomatic individuals, although sev-
eral members of the Clostridium genus are associated with opportunistic gastroenteritis if the microbiome is 
acutely stressed34. Community III (Orange) consists largely of Enterococcus, Streptococcus, and Bifidobacteria, 
with a smaller section of Clostridium. These organisms are primarily commensals, found in the gut of all individ-
uals albeit in lower quantities than the organisms of Community I. Community IV (Blue) consists primarily of 
Lactobacillus, Proteus, and Citrobacter. These organisms may play an important role in regulating the inflamma-
tory milieu of the gut (see Discussion).

In IBD, three communities are detected. Community I* (Green, Supplemental Fig. 3B) is comparable 
to Community I from the healthy gut, composed mainly of Bacteroides, Bifidobacterium, Prevatella, and 
Ruminococcus. Community II* (Red) consists primarily of Lactobacillus and Clostridium, while Community III* 
(Blue) contains a diverse group of microbes including Streptococcus, Clostridium, and Enterococcus.

Comparison of Community Structure in Health and Disease. While both co-occurrence networks 
are characterized by a high degree of modularity, we wished to investigate whether these communities are quan-
titatively comparable in healthy and diseased populations. To assess similarity between the partitions of species 
into communities, we use the Rand index35, which is a statistical measure that quantifies similarities between 
partitions of items into sets. We observed that the Rand index between the healthy and IBD consensus partitions 
was significantly greater than that expected under the null hypothesis of no differences between networks (true 
Rand index 0.76; Null Rand index obtained by permutation testing was 0.58 ±  0.004; See Supplemental Fig. 4). 
This calculation indicates that while there are differences in community structure between the healthy and IBD 
networks, the partitions are still much more similar than would be expected by chance (p <  0.0001), implying that 
much of the global community structure is conserved.

Despite this global similarity, we wished to more accurately quantify the local differences between healthy and 
IBD partitions. We observed that the perturbation of community structure in disease could be clearly visualized 
by color-coding nodes (species) of the disease network by community identity in the healthy network (Fig. 3B). 
Community I is largely preserved in the disease state, implying that the relationship among these microbes is 
unaffected in IBD. While Community II still shows a high degree of clustering, it is less distinct from Community 
I in the IBD population than in the healthy population. However, the community structure of Communities 
III and IV is lost in IBD, as these organisms no longer distinctly co-occur. In healthy individuals, the organ-
isms in these communities do not significantly co-occur with those in the core microbiome; in IBD, however, 
many of these organisms do co-occur with the core microbes, indicating that they may play a larger role in 
the IBD gut environment. Community III includes many organisms in the Enterococcus and Bifidobacterium 
genera. Several pro-inflammatory species of Enterococcus have been shown to induce IBD40,41, and virulence fac-
tors from Enterococcus are isolated from patients with IBD41. These alterations in bacterial communities are also 
consistent with direct analysis of patient samples, which show increased populations of Enterococcus in patients 
with IBD41. Conversely, Bifidobacteria are probiotic in nature and may help to mitigate the pro-inflammatory 
effects of Enterococci42. Community IV also consists of organisms with opposing roles in gut inflammation. 
While Proteus and Citrobacter bacteria can be associated with inflammation, urinary tract infections, and occa-
sionally gastroenteritis36,37, Lactobacillus is a known probiotic that tends to decrease gut inflammation. In fact, 
Lactobacillus supplementation has been shown to decrease the virulence of both Proteus38 and Citrobacter39, and 
is used both preventatively and therapeutically for individuals with recurrent infections from these organisms. 
The clustering of these organisms in the healthy network may represent the required balance between pro- and 
anti-inflammatory factors in healthy, asymptomatic individuals. The loss of clustering in IBD may be in response 
to the high-inflammation environment, or may play a role in the generation of such an environment.

On closer inspection of this altered community structure, we observed four species that had no significant 
co-occurrences (degree zero) in the healthy gut, and yet were connected to up to 21% of all other species in IBD. 
This striking over-connection in IBD suggests a possible role for these organisms in disease. The four species, 
highlighted in yellow in Fig. 3B, are Klebsiella pneumonia, Campylobacter hominis, and two species of Bifidobacter. 
Klebsiella pneumonia and Campylobacter hominis are potent pro-inflammatory agents: Klebsiella has been show 
to play a major role in the initiation of inflammation in IBD43, and Campylobacter is a common cause of severe 
gastroenteritis. The two species of Bifidobacter may serve to protect the gut mucosa through inhibition of NFκB44, 
and upregulation of these anti-inflammatory species in IBD is consistent with data from patient fecal samples 
showing increased populations of probiotics such as Bifidobacterium and Lactobacillus45.

Network Roles of Microbial Species within Co-Occurrence Communities. In a final assessment 
of the community structure in healthy and IBD states, we investigated the roles that individual nodes served in 
the network, as specified by their distributions of intra- and inter-community connections. Specifically, for each 
node, we calculated two complementary statistics that have previously been used46 to define node roles within 
networks displaying community structure: (i) the intra-module degree Z-score, which quantifies a node’s con-
nections within its own community, and (ii) the participation coefficient, which quantifies a node’s preference 
to connect to nodes in other communities. Nodes that play the role of connector nodes display high participa-
tion coefficients with relatively low intra-module degree Z-scores; conversely, nodes that play the role of provin-
cial nodes display high intra-module degree Z-scores with relatively low participation coefficients. Note that the 
inter-modular connections of each species were counted absolutely to prevent spurious findings due to low node 
degree (Supplemental Fig. 5).
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We visualize the role that each species plays in the community structure by mapping the intra-module degree 
Z-score and participation coefficient in a 2-dimensional plane (Fig. 4). In the healthy network, we assign 6 dif-
ferent roles to microbes by tiling the plane according to two rules (i) separating species with Z greater than vs 
less than zero, and (ii) separating species with P less than 0.2, greater than 0.2 but less than 0.55, and greater than 
0.55. These cutoff values mimic those used by Guimerá46; the lower cutoff indicates that 90% of a node’s edges 
are intra-modular, while the upper cutoff indicates that 33% of a node’s edges are inter-modular. We observed 
that species spanned all 6 roles in both the healthy and IBD networks. However, we also noticed that the roles 
that species play in the healthy network can be quite different than the roles that the species play in the IBD 
network (which is evident in Fig. 4 as nodes are color-coded by their role in the healthy network). A particularly 
interesting finding is shuffling of species with a participation coefficient of zero. We find that connector nodes 
of the healthy network often lose this role entirely in IBD, reflecting an underlying shift in community structure 
at a population level. Conversely, many species with no out-of-module co-occurrences in the healthy network 
demonstrate significant increases in P in IBD. These observations indicate that different species are serving as 
connector nodes in health and disease. Newly important species in the IBD network likely either contribute to 
the inflammatory environment directly or benefit from elimination of competitive rivals. As such, the unique 
perspective provided by examination of the network role of individual species may help to identify potentially 
pathogenic targets for further study.

Role of Hubs in the Microbial Co-Occurrence Networks. The functional importance of network hubs 
motivates closer study of their mutual interconnections. We hypothesize that microbial networks are character-
ized by “rich clubs”, meaning that hub nodes are more likely to be connected to each other than expected based on 
their degree alone47. This structure would suggest that species with high degree comprise a stable core community 
with common co-occurrence. By investigating the rich club character of the healthy and IBD networks, we can 
gain insight into the relative structure and robustness of these networks.

Rich-club architecture is often illustrated by curves of the rich-club coefficient (φ) as a function of the degree 
k (Fig. 5). Yet, the curves from real networks are difficult to interpret without reference to benchmark networks. 
We therefore also depict in this figure the average rich-club coefficient curves for a set of comparable random net-
works to model the expected rich-club character based solely on network degree distribution. The ratio of these 
two curves (real and random) represents the normalized rich-club coefficients for the network under study. This 
analysis demonstrates that both healthy and IBD networks clearly possess rich club organization, with φnorm(k) 1, 
at degrees greater than k =  3 (p ≤  0.001). Comparing these two networks, we find that the IBD network possesses 
a greater rich-club organization at degrees between 15 and 41 (p <  0.01 by permutation testing; see Methods), 
while the healthy network has more rich-club character at degrees above 42 (p <  0.01). In this sense, the healthy 
network possesses a canonical rich-club organization, with a small number of highly interconnected nodes of 
high degree, while the IBD network contains more of a bourgeoisie-club organization, with a larger number of 
disproportionately interconnected nodes of slightly lower degree.

Analysis of Network Robustness. We investigated the effect of the differing network topology in health 
and disease on network robustness using a technique called fragility percolation48. In this technique, we itera-
tively remove nodes from the network and assess changes in the values of network statistics including global 
efficiency, network diameter, and the size of the largest connected component. The network diameter is defined 
as the longest of the pairwise shortest path lengths. This method is commonly applied in microbial49–51 and eco-
logical52,53 co-occurrence networks to assess the dependence of global network structure on particular species. 
While co-occurrence networks do not allow for direct prediction of the impact of network perturbation in an 
individual, they do provide insight to population-level ramifications of species removal. If a species plays a unique 
and important role in the network, its removal will significantly impact global network statistics; conversely, the 
removal of species serving redundant or trivial roles will have little effect. This process was carried out both with 
random attack - in which nodes are removed with a uniform probability - as well as with targeted attack - in 

Figure 4. Network Roles of Microbial Species within Co-Occurrence Communities. Stratification of node 
roles in healthy (A) and IBD (B) networks using the intra-module degree Z-score, Z, and the participation 
coefficient, P. Nodes are color coded by their role in the healthy network.
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which the node with the highest degree is removed at each step to selectively impact hubs. We use targeted attack 
to mimic the removal of “keystone species”54 that cohabitate with many others and are likely to be particularly 
important in determining overall network structure.

Overall network structure in both health and disease is strongly robust to random attack, with minimal change 
in diameter and efficiency until approximately 50% of network nodes have been eliminated and no fragmenta-
tion of the largest component until approximately 80% of nodes have been eliminated (Fig. 6A, Supplemental 
Fig. 6A,B). This finding indicates that, in general, these networks contain sufficient redundancy in interspecies 
connections to remain stable in structure despite elimination of a significant number of species. Targeted attack on 
hub regions, however, results in an immediate decline in efficiency in both networks due to the removal of highly 
connected species (Supplemental Fig. 6C). Interestingly, while both networks experience an increase in diameter 
with targeted attack, the healthy network exhibits a more rapid rate of increase (Fig. 6B; p <  0.001 by permutation 
testing), with effects seen with as few as 11% of nodes removed (p =  0.04). The more rapid increase in diameter 
of the healthy network under targeted attack reflects the underlying difference in organization of the healthy and 
diseased states; the non-IBD system is characterized by greater rich-club organization, increasing dependence on 
hub nodes, resulting in greater fragility under targeted attack. In contrast, the IBD network is less affected due to 
its less organized initial state, and experiences a change in diameter more similar to that of the random network.

Discussion
In this study we sought to investigate microbial co-occurrence patterns over a range of network resolutions and 
to compare these patterns between patients with and without IBD. While previous studies have demonstrated 
distortion of the microbiome in IBD, the network-based approach presented here offers a unique set of tools 
for quantifying these changes. We have shown that, on a population level, gut bacteria co-occur in different 
communities in the disease state. Furthermore, different species assume the roles of network hubs which govern 
the organization of these communities. Through this work, we provide a novel means of measuring microbiome 
alterations and establish a comprehensive baseline analysis of such alterations in the present cohort. In addition, 

Figure 5. Role of Hubs in the Microbial Co-Occurrence Networks. Rich-club coefficients in healthy (A) 
and IBD (B) networks as a function of minimum node degree. The normalized coefficient curve is the ratio of 
coefficient curves of the real networks and comparable random networks. A normalized coefficient greater than 
one indicates more rich-club organization that expected by chance.
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we present two methods (eigenvector centrality analysis and participation coefficient measurement) that may 
prove useful for identification of targets for pathogen-specific studies.

We found that both healthy and IBD gut microbial networks exhibit significant clustering above what would 
be expected in a random network, indicating that the microbiome is composed of collections of associated species 
that tend to cohabitate. These organisms may thrive due to synergistic effects on the gut metabolism or immune 
response, and may generate nutrients or biochemical intermediates on which other species in the cluster depend. 
It is also possible that these communities form as a result of habitat filtering, and that species tend to co-occur 
more frequently with other species with which they strongly compete18.

We used motif detection to obtain a more detailed view of differences in local connectivity patterns among 
IBD, healthy control, and random networks. While differences between real and random networks were consist-
ent with expectations based on clustering, we identified one key motif with significantly elevated frequency in 
IBD networks. This finding reflects disruption of clustering and demonstrates that species, in some cases, differ 
in local network topology and small-scale clustering in IBD. These species-specific network differences can be 
further quantified through differential eigenvector centrality. We have shown that this method of analysis is suc-
cessful in identifying species previously implicated in IBD, suggesting that a graph theoretical perspective may be 
useful both in corroborating prior literature and generating new suspects for pathogenicity.

The healthy gut microbiome is characterized by well-defined communities of bacteria with strong intra- 
community co-occurrence relationships, and these communities are variably affected in IBD. One community 
(Community I) consists of organisms ubiquitously present in the normal gut microbiome. These organisms 
(Bacteroides, Prevatella, Ruminococcus) compose the bulk of the microbiome, and the relative quantities of these 
microbes are often used to categorize individuals into certain “enterotypes”, or microbiome profiles3,17. This com-
munity is conserved in IBD, indicating that there may be a “core” microbiome essential for gut function that is 
resistant to alteration. This observation also suggests that alterations in this community of organisms may not 
play a major role in the pathogenesis of IBD. However, we have shown that other communities (III and IV, for 
example), show significant distortion in IBD. These communities are characterized by many bacteria with pro- or 
anti-inflammatory properties, suggesting that they may mediate and/or respond to the gut inflammatory milieu. 
In addition, our results indicate that inter-modular connectivity is mediated by different species in IBD. These 
findings may provide direction for future study into the mechanisms by which certain communities of microbes 
induce a dysregulated immune response in IBD.

The finding of rich-club organization in the healthy gut microbiome provides insight into the large-scale 
structure of this system. Just as rich-club regions are suggested to facilitate rapid information transfer in brain 
networks55,56, rich-club species may play a crucial role in interspecies communication, allowing for efficient trans-
fer of metabolites and small molecules. These species form a central core of hubs, decreasing the network distance 
between disparate species. In IBD the exclusivity of the rich-club is reduced, with a much larger number of nodes 

Figure 6. Network Robustness and Resilience. (A) Global network efficiencies measured as nodes are 
randomly removed from the networks. Network efficiencies are robust to random attack. (B) Network diameter 
measured as the highest-degree nodes are removed. Network diameter is affected by targeted attack, especially 
in the healthy network.
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of lesser degree playing a role. This represents a loss of central organization with increased reliance on more local 
hubs, supporting our hypothesis that the microbial network in IBD is topologically suboptimal for interspecies 
interaction. Our finding of rich-club structure in these networks warrants further work to understand the impor-
tance of this organization and its distortion in disease.

The rich-club organization of these networks also has implications for network robustness. Our investigation 
using fragility percolation revealed that both healthy and IBD networks are robust to random attack. However, 
the healthy network may be more susceptible to targeted attack, with increased diameter and decreased efficiency 
seen with removal of only a few crucial species. The finding that the global structure of the healthy microbiome 
network can be perturbed with removal of relatively few key species provides emphasis for the need for judicious 
use of antibiotics. Antibiotic use, comparable to the simultaneous removal of many nodes, has previously been 
implicated as a risk factor for development of IBD57,58. In particular, anti-anaerobic antibiotics, effective against 
many of the rich-club species removed in the simulated targeted attack on hubs, may contribute to pediatric IBD 
through disruption of the microbiome59,60.

Methodological Considerations. There are several methodological considerations to address. We found 
that both healthy and IBD gut microbial networks exhibited significant clustering and modularity, above what 
would be expected in a random network. Some degree of community formation is expected given the method by 
which the adjacency matrices were defined; among the 154 species in the initial census are many closely related 
species including 23 species within the genus Bacteroides. However, the community structure of this network is 
not fully explained by these interactions, as each community contains several major genera and species of major 
genera are also distributed across communities. Thus, the high degree of modularity found in the gut microbiome 
most likely represents true collections of associated species that tend to cohabitate. Further analysis as to the spe-
cific metabolic and immunologic interactions among species within a community is warranted.

It is also important to note several of the limitations of the network models we have generated. While we 
have demonstrated that the community structure of the microbiome is altered in disease, we cannot distinguish 
between pathologic and reactionary changes in the network. In addition, our analysis only provides informa-
tion regarding co-occurrence on a population scale, and does not provide direct information as to the micro-
bial communities present in an individual. Future studies should include comparison of microbial populations 
among individuals to determine whether subjects from each population cluster based on their microbial profiles. 
Individuals should also be drawn from a more heterogeneous population than used in this study in order to assess 
variability within the healthy population as a function of factors such as diet, age, and genetics. Lastly, in this 
study we used binary edges to indicate co-occurrence above a certain threshold. Future analysis could utilize a 
weighted network to take into account the strength of co-occurrence between species.

The influence of medication on the microbial network was not assessed due to unavailability of data. All IBD 
patients were in clinical remission at the time of fecal sampling. Previous research in a mouse model of colitis 
suggests that while antibiotic use causes significant variation in gut microbial composition, typical IBD ther-
apies including immunomodulation (anti-TNF-α) and dietary interventions induce changes of much smaller 
effect size61. This finding has been replicated in human studies showing that non-antibiotic therapies includ-
ing immunosuppression, NSAIDs (mesalamine), and oral corticosteroids cause only modest effects on overall 
microbiome alteration, with the most significant impacts being a reduction in Eschericia/Shigella (associated with 
mesalamine)62,63 and a slight increase in Enterococcus (associated with mesalamine and immunosuppression)62. 
Although IBD therapeutics may impact microbiome composition, variability in the microbial community net-
work due to treatment is significant less than that associated with interindividual or intercohort variation64. As 
chronic therapy of IBD patients in clinical remission remains unstandardized, it is unlikely that our study cap-
tures the effects of any one particular therapy. Further studies should be conducted in order to compare microbial 
network structure across treatment groups to that of treatment-naive patients.

Conclusion
In summary, we have characterized the trophic relationships among bacteria in the human gut in individuals 
with and without IBD through comparison of global and local connectivity and identification of well-defined 
microbial communities. At the individual species level, we show that local connectivity motifs are altered in 
IBD and that eigenvector centrality may have utility in implicating novel microbial targets in the pathogenicity 
of this disease. Global community structure is distorted in IBD, possibly representing an imbalance of pro- and 
anti-inflammatory organisms, but a core module of organisms is conserved in disease. We have also demon-
strated that while the overall degree of inter-modular connectivity is similar in health and disease, the species 
responsible for inter-modular co-occurrence differ. These alterations in network structure result in a system that 
has decreased rich-club organization and may be less conducive to metabolic fitness. Finally, we demonstrate that 
healthy microbiome structure is susceptible to targeted attack on key species. Examination of topological changes 
in microbial co-occurrence networks provides a unique perspective on the changes of the microbiome in IBD at 
both global and species-specific scales.

Methods
Data Collection and Cohort. This work used data generated by the MetaHIT (Metagenomics of the Human 
Intestinal Tract) Consortium65 and provided by the Borenstein Lab (University of Washington). As part of the 
multi-institutional MetaHIT project, ninety-nine non-IBD control individuals and twenty-five individuals with 
inflammatory bowel disease were recruited to characterize the human microbiome65. In this study we refer to the 
non-IBD control population as “healthy”. Total DNA was extracted from fecal samples with an average of 4.5 Gb 
per sample, providing confidence that most novelty would be captured during sequencing65.
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Species Identification. Species populations were identified as part of the MetaHIT project. Illumina 
Genome Analyzer (GA) technology was used to carry out deep sequencing of total fecal DNA. Illumina GA reads 
were then aligned with a non-redundant set of 650 sequenced bacterial and archaeal genomes. Using a 90% iden-
tity threshold, the proportion of genes covered by the reads that aligned on to only a single position in the set was 
determined. This approach allows for computation of the normalized species abundance within each individual. 
The final species population list consists of 154 bacterial species that compose the vast majority of the healthy gut 
microbiome, and for which whole genome sequence is available and that had sequence coverage 1% in a metagen-
omic sample from at least 1 of the 124 patients analyzed. This full list is supplied in Supplementary Table 1. More 
details regarding the methods of data collection and analysis can be found in Qin, et al.65.

Construction of Co-occurrence Adjacency Matrix Space. A co-occurrence adjacency matrix was con-
structed by calculating the Jaccard similarity index between pairwise species18,66. This method was developed to 
maintain the influence of relative species abundance in the calculated index. The resulting value exists between 0 
(no co-occurrence in any samples) and 1 (perfectly overlapping profiles of species occurrence). These similarity 
indices were compiled into an adjacency matrix as shown in the heat map in Fig. 1. While this matrix provides 
weighted values indicating the degree of co-occurrence between two species, our analysis was performed on a 
binary, undirected, thresholded version of this matrix. The threshold was chosen to preserve connections with 
Jaccard similarity greater than one standard deviation above the mean in order to ensure that these connections 
are biologically significant and to limit the impact of statistical noise. As a result, the final matrix used for analysis 
contained approximately the strongest 20% of co-occurrences. Robustness of our results to the chosen threshold 
is demonstrated in Supplemental Fig. 7. In the case of the healthy population, 6 species became individually dis-
connected; similarly, in the IBD population 1 species became disconnected. Thus, the resulting healthy and IBD 
networks contained 148 and 153 connected nodes, respectively, representing each bacterial species, connected 
by 2356 edges, representing significant co-occurrence after thresholding. The degree of each node is defined as 
the number of edges connected to that node. Species were included in the analysis if they maintained at least one 
significant connection in at least one network. Network analyses was carried out using a combination of the Brain 
Connectivity Toolbox67 and in-house software.

Generation of Benchmark Null Models. Null models were generated for the control and disease net-
works through randomization of edges with preserved degree distribution. It is important to consider that our 
experimental networks are constructed using Jaccard similarity. The Jaccard similarity between nodes i and k, 
Js(i, k), can be related to a distance metric, 1 −  Js(i, k), such that triplets of connected nodes must satisfy the trian-
gle inequality. While we did not impose this constraint during null model design, review of 1000 null networks 
demonstrated that the triangle inequality was violated in only 0.4 ±  0.08% of triplets, suggesting that the omission 
of this criterion had a negligible effect on global network characteristics such as the clustering coefficient or rich 
club coefficient.

Measuring Influence with Eigenvector Centrality. Eigenvector centrality is a characteristic of network 
nodes that provides a more sophisticated view of local connections than the node degree by also considering the 
degree of a node’s neighbors. This approach accounts for the fact that all edges are not equal: connections to a 
highly connected node may render a node more significant or influential. We define the centrality of node i, xi, as 
a proportion of the average centrality of its neighbors as

∑λ=x A x , (1)i ij j

where λ is a constant. Defining the vector of centralities x =  (x1, x2, ...), we can rewrite this equation in matrix 
form as

λ =x Ax, (2)

thereby demonstrating that x is an eigenvector of the adjacency matrix with eigenvalue λ. To ensure that centrality 
values are non-negative, λ must be the largest eigenvalue of A and x must be the corresponding eigenvector68,69.

Identifying Microbial Clusters: Modularity Optimization. We investigated whether the microbial 
co-occurrence networks displayed modular characteristics by determining their community structure via mod-
ularity maximization using a Louvain-like locally greedy algorithm32,70. This method creates subdivisions into 
non-overlapping groups of nodes in a locally greedy manner that maximizes within group edges in comparison to 
an appropriate null model. Specifically, nodes are allocated to modules (also known as communities) by a greedy 
algorithm that maximizes the modularity index Q, defined as:
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where Aij is the adjacency matrix, Ai is the strength of node i, ‑A is the average strength of the network, Ci is the 
community to which node i is assigned and γ is a scaling parameter used to adjust the size of the modules (see 
supplemental section on Determination of Community Resolution). To account for the near degeneracy of the 
modularity landscape33, the optimization was repeated 1000 times, and we calculated the mean maximum mod-
ularity of the network. In the case of the random network benchmark, modularity maximization was applied 100 
times to each of 100 generated networks.
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Regional Intra- and Inter-Module Connectivity. We sought to investigate the potential role of each indi-
vidual species by examining its intra-module connectivity and its inter-module connectivity46. We hypothesized 
that species with many connections across modules may be important in regulating global network dynamics. We 
determined the intra-module degree Z-score and participation coefficient of each node. The intra-module degree 
Z-score, Zi, measures the degree of intra-module connectivity of node i relative to other nodes in the module and 
is defined as:

σ
=

− ‑
Z a A ,

(4)i
i s

s

where ai is the number of intra-module connections of node i, ‑As is the mean number of intra-modular connec-
tions in module s, and σs is the standard deviation. A high value of Zi indicates strong intra-modular connectivity 
of node i. Inter-modular connectivity was measured using the participation coefficient, defined as:
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where ais is the number of connections of node i in module s and ai is the total number of connections of node i. 
The participation coefficient will be close to zero if almost all connections are intra-modular, and will be closer to 
one if a greater proportion of connections are inter-modular.

Rich-Club Organization. The rich-club coefficient was calculated as a function of node degree (k) using the 
Brain Connectivity Toolbox67. For each value k, all nodes with degree less than or equal to k were removed from 
the network. For the remaining network, the rich-club coefficient φ(k) is calculated as the ratio of the number of 
existing edges to the total number of possible edges in the reduced network47. Formally, the rich-club coefficient 
is given by
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−

>

> >
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where E>k is the number of edges in the reduced network and N k is the maximum possible number of edges.
The rich-club coefficient curve for the random benchmark networks was generated by averaging results from 

1000 random networks with preserved degree distribution. To determine the statistical significance of rich-club 
organization, permutation testing was used71. In constructing comparable random networks, we generated a null 
distribution of rich-club coefficients from random topologies. The one-sided p-value was calculated over a range 
of k by measuring the percentage of φrandom that exceeded φ. Statistical comparison of the normalized rich-club 
curves in control and disease networks was carried out using functional data analysis72. For each k, the difference 
between the curves was calculated. Individual observations from each group were then randomly reassigned in 
order to determine the expected mean and standard deviation of this difference under the null hypothesis. This 
distribution was used to generate a one-sided p-value for the observed difference between the curves.
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