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As the world navigates the coronavirus disease 2019 (COVID-19) pandemic, there is
a growing need to assess its impact in patients with autoimmune rheumatic diseases,
such as systemic lupus erythematosus (SLE). Patients with SLE are a unique population
when considering the risk of contracting COVID-19 and infection outcomes. The use
of systemic glucocorticoids and immunosuppressants, and underlying organ dam-
age from SLE are potential susceptibility factors. Most patients with SLE have evidence
of high type I interferon activity, which may theoretically act as an antiviral line of
defense or contribute to the development of a deleterious hyperinflammatory
response in COVID-19. Other immunopathogenic mechanisms of SLE may overlap
with those described in COVID-19, thus, studies in SLE could provide some insight into
immune responses occurring in severe cases of the viral infection. We reviewed the
literature to date on COVID-19 in patients with SLE and provide an in-depth review of
current research in the area, including immune pathway activation, epidemiology,
clinical features, outcomes, and the psychosocial impact of the pandemic in those
with autoimmune disease. (Translational Research 2021; 232:13�36)
Abbreviations: Act-1 = Adaptor protein NF-κ activator; ACE2 = Angiotensin-converting
enzyme 2; AZA = Azathioprine; C5aR1 = C5a receptor; COVID-19 = Coronavirus disease 2019;
C-19-GRA = COVID-19 Global Rheumatology Alliance; CYC = Cyclophosphamide; EBV =
Epstein-Barr virus; HCQ = Hydroxychloroquine; ICU = Intensive care unit; IFN = Interferon; IRF =
Interferon regulatory factor; ISG = Interferon-stimulated gene; IFNAR = Interferon-α/β receptor;
IL = Interleukin; JAK = Janus kinase; LOF = Loss-of-function; MASP-2 = Manna-binding lectin
associated serine protease-2; mTOR = Mechanistic (mammalian) target of rapamycin; MMF =
Mycophenolate mofetil; MyD88 = Myeloid differentiation primary response 88; NAC = N-Ace-
tylcisteine; NET = Neutrophil extracellular trap; NYC = New York City; pDC = Plasmacytoid den-
dritic cell; PI3K = Phosphatidylinositol 3-kinase; Treg = Regulatory T cell; RT-PCR = Reverse
transcription polymerase chain reaction; pS6 = Ribosomal protein 6; SARS-CoV-2 = Severe
acute respiratory syndrome coronavirus 2; STAT = Signal Transducer and Activator of Transcrip-
tion; SDH = Social determinants of health; sGC = Systemic glucocorticoids; SLE = Systemic
Lupus Erythematosus; Th17 = T helper 17; TBK1 = TANK-binding kinase 1; TLR = Toll-like receptor;
TNF = Tumor necrosis factor; TRAF = Tumor necrosis factor receptor-associated factor; TRIF =
TIRdomain-containing adapter-inducing interferon-β
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), the causal agent of coronavirus disease

2019 (COVID-19), has infected millions of people

worldwide. The mortality of the virus is likely underes-

timated in official counts, as we have observed a 20%

increase in deaths over the average expected number

between March 1 and August 1, 2020 in the United

States.1 It is clear that outcomes following COVID-19

infection vary considerably between people, and some

populations are at particularly high risk. Thus, there

has been a need to assess the impact of COVID-19 in

patients with autoimmune disease, including those

with systemic lupus erythematosus (SLE).

Patients with SLE are a unique population when con-

sidering the risk of contracting COVID-19 and the out-

comes of the infection. The underlying organ damage

from SLE and the use of systemic glucocorticoids (sGC)

and immunosuppressants could be risk factors for the

development of severe COVID-19.2 SLE is more preva-

lent and severe in ancestrally African and Hispanic

patients, which overlaps with high-risk groups associ-

ated with poor outcomes of COVID-19, although the

association with the latter may be mediated more by

social determinants of health (SDH) as opposed to bio-

logic factors.3-6 In contrast, SLE is a female-predomi-

nant disease which may represent a protective factor, as

COVID-19 has been shown to affect males more

severely.3,7-10 One interesting feature is that inflamma-

tion in SLE is often characterized by elevation of type I

interferon (IFN), which has antiviral properties and

could potentially be protective. This is not known, how-

ever, and even if true, it could be offset by other socio-

demographic, biologic, and clinical aspects of the

disease and its management. In addition, excessive com-

plement activation with consequent development of

thrombotic microangiopathy has been identified in

many patients with COVID-19 and seems to at least par-

tially mediate organ dysfunction in severe cases, resem-

bling a complement-mediated thrombotic

microangiopathy.11,12 Although complement consump-

tion is a classic feature of SLE, the classical pathway is

often the main target of activation by immune com-

plexes in SLE, whereas the alternative and lectin-based

complement pathways seem to play a greater role in

COVID-19 pathogenesis.13,14

There have been substantial scientific efforts around

the world to elucidate COVID-19 pathogenesis, risk fac-

tors, optimal management, and prevention strategies.

Similarly, data on the impact of the pandemic in patients

with SLE has grown significantly in recent months.

Accordingly, we provide an overview of the susceptibil-

ity factors to viral infections in patients with SLE and
potential immunologic and pathologic overlaps between

COVID-19 and SLE, as well as data regarding the epi-

demiology, clinical features, outcomes, and psychoso-

cial impact of COVID-19 in SLE patients.
RELATIONSHIP BETWEEN SLE AND RISK OF VIRAL
INFECTIONS

SARS-CoV-2, a single-stranded RNA virus and the

causal agent of COVID-19, has infected millions of peo-

ple worldwide. The virus enters the cells by binding to

the angiotensin-converting enzyme 2 (ACE2) receptor,

which determines viral tropism. The type 2 transmem-

brane serine protease is also required to complete the

fusion process by cleaving the ACE2 molecules and acti-

vating the SARS-CoV-2 S protein.15 The clinical spec-

trum of COVID-19 is broad, ranging from asymptomatic

infection to life-threatening cytokine storm, acute respira-

tory distress syndrome, and multiorgan dysfunction.16

SLE is a chronic multisystem autoimmune disease

characterized by dysregulated type I IFN responses and

defective immune tolerance mechanisms.17 Patients

with SLE have an increased risk of mortality that is

2�5 times the rate of the general population.18 Bacte-

rial, viral, and opportunistic infections are common in

SLE and account for the second leading cause of death

in this group in developed countries, ranging from 25%

to 50% of mortality cases.19-21 Infections in patients

with SLE tend to be more frequent during the initial 5

years after diagnosis, which could reflect underlying

disease pathogenesis or aggressive immunosuppressive

therapy at the outset of disease.18,22

Functional abnormalities in the immune system due

to intrinsic factors and the use of immunosuppressive

therapies both contribute to infection risk in patients

with SLE.20,23,24-27 Immune cells are affected in SLE

in both number and function. Lymphopenia and neutro-

penia can occur either due to active inflammation in

SLE with increased apoptosis of immune cells or as a

side effect of immunosuppressants.28 CD8 T cell

responses are impaired in SLE patients, including

defects in phagocytosis and chemotaxis.20,29,30 Inter-

estingly, Katsuyama et al recently reported the pres-

ence of CD8+T cells highly expressing CD38 in a

subset of patients with SLE and high incidence of

infections, independent of disease activity, organ dam-

age and disease flares. These CD8CD38high T cells

exhibited decreased cytotoxic capacity, degranulation,

and expression of perforin and granzymes, providing a

mechanism by which abnormalities in cellular immu-

nity may lead to an increased susceptibility to infec-

tions in patients with SLE.29 Complement

dysregulation is common in SLE and worsens with
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disease activity. Hypocomplementemia has been iden-

tified as an independent predictor of infection in SLE

patients.24 Interestingly, genetic deficiencies in com-

plement components can predispose to SLE, as well as

other primary immunodeficiency disorders.31 Further-

more, low immunoglobulin (Ig) levels, particularly

IgG subclasses and IgM, have been identified in

patients with SLE, which may also contribute to the

increased susceptibility to infections.28,32,33

Herpes zoster is frequent in SLE, occurring in up to

40% of patients.19 Certain SLE-specific factors have

been associated with herpes zoster, including lympho-

penia and anti-Ro antibodies. As expected, the use of

sGC and immunosuppressants such as cyclophospha-

mide (CYC) are also associated with a greater risk of

herpes zoster and other viral infections.24,34,35 Cyto-

megalovirus and upper respiratory tract viral infections

are common in the SLE population, and may present

with severe and atypical manifestations that mimic

SLE flares.28, 36

Respiratory infections are one of the most common

causes of hospitalization and early mortality in patients

with SLE.22 Elderly individuals (�65 years of age)

with rheumatic conditions are at greater risk of influ-

enza and influenza-related complications.37 Influenza

pneumonia often precedes bacterial infections, which

may lead to prolonged hospitalizations and overall

worse outcomes.38,39 In patients with SLE, viral infec-

tions can also trigger SLE flares after the virus is

cleared.39,40 In comparison, Influenza A infection in

lupus-prone Faslpr mice is cleared effectively and is not

associated with worsening autoimmune features in the

acute setting, although these mice can subsequently

develop severe pulmonary inflammation weeks after

viral clearance.41 Notably, annual vaccination against

influenza is associated with decreased hospitalization

and intensive care unit (ICU) admissions in patients

with SLE; hence this practice is highly encouraged.42

In addition to the increased susceptibility to certain

viral infections in SLE, the role of exogenous viruses

in triggering autoimmunity has also been proposed.

Epstein-Barr virus (EBV) is a potential environmental

factor involved in SLE pathogenesis.43 Although most

acute EBV infections occur during childhood, EBV

remains latent in B cells and can subsequently reacti-

vate. EBV stimulates the proliferation of autoreactive

B cells, acts as a superantigen in T cells, and stimulates

IFN-a production by plasmacytoid dendritic cells

(pDCs).44 Additionally, studies have demonstrated evi-

dence of molecular mimicry between EBV proteins

and nuclear antigens, and the EBV nuclear antigen 2

protein can bind to several SLE risk alleles, suggesting

important mechanisms by which EBV can trigger
autoimmunity.44-46 The role of other viruses such as

cytomegalovirus in the pathogenesis of SLE is less

clear.
CONVERGENT IMMUNOPATHOGENIC MECHANISMS
OF COVID-19 AND SLE

Type I interferons.Various lines of evidence have sug-

gested a crucial role of type I IFNs in the course of dis-

ease and outcomes of COVID-19. The antiviral

properties of type I IFNs are well known and many

viruses have developed strategies to escape their inhib-

itory effects.47,48 Furthermore, most patients with SLE

have evidence of elevated circulating type I IFN or

show overexpression of type I IFN genes in circulating

immune cells49-51; therefore, it is conceivable that

IFNs are a critical point of convergence between SLE

and COVID-19.

Previous murine studies on SARS-CoV had demon-

strated that exuberant viral replication coupled with

delayed type I IFN responses are associated with

decreased survival.52 In vivo and in vitro models of

SARS-CoV-2 infection have shown evidence of inap-

propriate antiviral and dysregulated inflammatory

responses, characterized by low levels of type I and

type III IFNs, high levels of multiple chemokines and

IL-6.53 Consistent with these observations, a more

recent study found that patients with severe and critical

COVID-19 displayed significant impairment in the

type I IFN response, with lack of IFN-b, low IFN-ɑ
activity and plasma levels, as well as a higher SARS-

Co-2 viral load, and increased tumor necrosis factor

(TNF)-a and IL-6.54 As certain conditions such as obe-

sity, cancer and aging may be associated with

decreased type I IFN signaling, it is also possible that

these conditions contribute to a dysfunctional IFN

response in COVID-19.55-57 In addition, pDC depletion

and functional impairment have also been identified in

patients with COVID-19, with decreased production of

IFN-a by these cells in vitro.58,59 A single-cell gene

expression study of peripheral immune cells showed

upregulation of several IFN-stimulated genes (ISGs) in

CD14+ monocytes, although the IFN signature was het-

erogeneous among COVID-19 patients and cell

types.58 Another study evaluating cells obtained from

the respiratory tract of patients with COVID-19 via

bronchoalveolar lavage showed marked expression of

“proinflammatory” ISGs compared to cells from

patients with community-acquired pneumonia and

SARS-CoV infection. The ISG expression presumably

decreased over time in COVID-19 patients who sur-

vived when comparing cells collected from different

https://doi.org/10.1016/j.trsl.2020.12.007


Fig 1. Convergent type I interferon and proinflammatory cytokine pathways shared between SLE and COVID-

19. Binding of viral RNA to toll-like receptor (TLR)3 and TLR7 induces activation of interferon regulatory fac-

tor (IRF)3 and IRF7, respectively, which is mediated by several adaptor proteins. Once active, IRF3 and IRF7

translocate to the nucleus and induce transcription of interferon (IFN)-a or IFN-b. TLR7 (and TLR8) activation

also leads to nuclear translocation of NF-kB and induction of proinflammatory cytokines such as interleukin-1

(IL-1), IL-6, and tumor necrosis factor-a (TNF-a). Binding of IL-17, secreted by Th17 cells, to its receptor (IL-

17R) activates the adaptor protein NF-k activator (Act1) and TRAF6, inducing the nuclear translocation of NF-

kB. IL-6 binding to its receptor (IL-6R) activates the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, in turn

activating the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 mediates phosphorylation of

S6K (not shown), which promotes the formation of the TLR-MyD88 complex and IRF7-mediated production of

type I IFN. Activated mTORC1 also stimulates transcription of IRF7 mRNA by a 4E-BP phosphorylation-

dependent mechanism (dashed arrow), and induces NF-kB activity. Type I IFNs, secreted in an autocrine and

paracrine matter, bind to the IFN-a/-b receptor (IFNAR), leading to assembly and translocation to the nucleus

of the interferon-stimulated gene factor 3 (ISGF3), which is composed of STAT1, STAT2 and IRF9. Once in

the nucleus, ISGF3 binds to promoters of IFN-stimulated genes (ISG), stimulating their transcription. IRF1 is

also induced in response to type I IFN, which activates the transcription of proinflammatory cytokines. A red X

mark is located next to each component of the pathway that is impaired by loss-of-function genetic variants

(1�7), autoantibodies against type I IFN (8), or SARS-CoV-2 proteins. Act1, adaptor protein NF-k activator;

IFN, interferon; IFNAR, IFN-a/-b receptor; IRF, interferon regulatory factor; ISG, IFN-stimulated genes;

ISGF3, interferon-stimulated gene factor 3; mTORC1, mechanistic target of rapamycin complex 1; MyD88,

myeloid differentiation primary response 88; PI3K, phosphatidylinositol 3-kinase; SARS-CoV-2, severe acute

respiratory syndrome coronavirus 2; STAT, signal transducer and activator of transcription; TBK1, TANK-

binding kinase 1; TLR, toll-like receptor; TNF-a, tumor necrosis factor-a; TRAF, tumor necrosis factor recep-

tor-associated factor; TRIF, TIR-domain-containing adapter-inducing interferon-b. (For interpretation of the

references to color in this figure legend, the reader is referred to the Web version of this article.)
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patients ranging from days 4 to 15 from the onset of

symptoms. In contrast, cells from the deceased patient

showed robust ISG expression, despite being obtained

at day 12 after symptom onset.48 Although the small

sample size and lack of longitudinal data for each

patient are potential limitations of this study, these

findings could suggest that a persistent and/or delayed

type I IFN response may be associated with worse out-

comes. Results from a recent study also suggest a tem-

poral shift in the cytokine response in patients with

COVID-19, ranging from an early type I IFN-predomi-

nant response to a proinflammatory response in later

stages of the disease.59 Interestingly, this study also

found an impaired type I IFN response and marked
reduction in proinflammatory cytokine production by

circulating monocytes and myeloid dendritic cells,

despite elevated levels of these cytokines in plasma,

suggesting the source is likely to be the lungs rather

than peripheral blood cells.59

Several inborn errors that directly or indirectly

involve type I and type III IFN pathways are also associ-

ated with life-threatening viral infections secondary to

the influenza virus, live-attenuated vaccines, and other

viruses. These include genetic defects in the IFN-a/b

receptor-1 and -2 (IFNAR-1 and IFNAR-2), IRF3,

IRF7, IRF9, IFIH1, TLR3, TBK1, TICAM1/TRIF,

STAT1 and STAT2.60-62 TLR3 and IFIH1 (also known

as MDA5) are pattern recognition receptors that bind

https://doi.org/10.1016/j.trsl.2020.12.007
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viral RNA. TLR3 and TLR7 induce type I IFN produc-

tion via activation of IRF-3 (mediated by TBK1 and

TICAM1/TRIM) and IRF7, respectively. IRF9, STAT1

and STAT2 are components of the IFN-stimulated factor

gene 3 (ISFG3) complex, which is part of the intracellu-

lar downstream pathway activated by type I IFN

(Fig 1).63 Interestingly, the structural SARS-CoV-2 N

protein has also been shown to antagonize IFN signaling

by suppressing phosphorylation and translocation of

STAT1 and STAT2, representing a potential viral mech-

anism to evade the innate immune response.64 GATA2

deficiency, a pleiotropic syndromic disorder, is also

associated with increased susceptibility to viral infec-

tions, at least partially due to the absence of pDCs in

this disorder, a major cell type in producing type I

IFN.65

In agreement with the antiviral role of type I IFN, a

case series identified rare missense and nonsense putative

loss-of-function (LOF) variants involving TLR7 in 4

young previously healthy males with critical COVID-19;

these variants were associated with impaired type I and

type II IFN response in these patients.66 A recent study

showed that rare LOF variants involving TLR3- and

IRF7-mediated type I IFN response were enriched in

patients with life-threatening COVID-19 when compared

to subjects with mild or asymptomatic SARS-CoV-2

infection. Genetic defects at 8 loci (TLR3, UNC93B1,

TICAM1/TRIF, TBK1, IRF3, IRF7, IFNAR 1, and

IFNAR2) involved in type I IFN signaling were identified

in 3.5% of patients. Interestingly, prior to COVID-19,

these patients had not had any life-threatening viral infec-

tions, which may relate to the increased virulence of

SARS-CoV-2 compared to influenza and other common

respiratory viruses (Fig 1). Some of the autosomal domi-

nant genetic disorders were newly identified, including

UNC93B1 (a chaperone that regulates endosomal TLR

stability), IRF7, IFNAR1, and IFNAR2 deficiencies.67

Conversely, several risk genes linked to type I IFN have

been associated with SLE, many of which are gain-of-

function variants.68 One of such examples is the IFIH1

rs1990760 gene variant, which is associated with the

presence of anti-double-stranded DNA antibodies and

increased sensitivity to IFN-a in SLE.69 Interestingly,

other IFIH1 polymorphisms have been associated with

increased risk or protection for the development of type 1

diabetes mellitus,70,71 suggesting a spectrum of immuno-

modulatory roles of type I IFN-related molecules that

span from the development of autoimmunity to suscepti-

bility to life-threatening viral infections.

The presence of neutralizing autoantibodies to cer-

tain type I IFNs, mainly IFN-a2 and IFN-v, was

recently demonstrated in 101 out of 987 (10%) patients

with severe outcomes of COVID-19, including death,

who were predominantly male (94%).72 Interestingly,
in 5 of these patients, the authors were able to demon-

strate that the autoantibodies preceded the development

of COVID-19, suggesting their development is a cause

rather than a consequence of the viral infection. Fur-

thermore, none of the patients with asymptomatic or

mild COVID-19, and only 4 of 1227 healthy individu-

als had detectable type I IFN autoantibodies.72 In addi-

tion, none of the patients with LOF mutations affecting

IFN pathways had neutralizing antibodies against type

I IFN, strongly suggesting there seem to be at least 2

independent mechanisms by which dysfunctional IFN

signaling leads to an increased susceptibility to life-

threatening COVID-19.67 Previous studies have found

that approximately 25% of patients with SLE have

anti-IFN antibodies.73-77 The most common type I IFN

autoantibodies in SLE are against IFN-a2 and IFN-v,

as seen in severe COVID-19.77 In addition, some of

these anti-IFN antibodies were shown to be effective at

neutralizing type I IFN activity in vitro, and patients

with neutralizing antibodies tended to have lower SLE

disease activity.76 Whether patients with SLE and anti-

IFN antibodies are more susceptible to contracting

COVID-19 or experience worse outcomes remains to

be elucidated.

Given the evidence that the lack of an appropriate

type I IFN response is associated with worse outcomes

and retrospective data suggesting improved inflamma-

tory markers and a shorter duration of detectable virus

in COVID-19 patients treated with IFN-a2b,78 various

clinical trials assessing the efficacy of type I IFN ther-

apy in COVID-19 are ongoing. A recent phase 2 trial

of nebulized IFN-b1a met its primary outcome of clini-

cal improvement in COVID-19.79 In contrast, interim

results of the World Health Organization Solidarity

trial suggest IFN-b-1a was not effective at improving

COVID-19 overall mortality, initiation of mechanical

ventilation, or duration of hospital stay.80 However, it

is possible that the timing of administration is crucial

to ensure the benefit of exogenous type I IFN adminis-

tration in COVID-19, as an early IFN surge may be

needed to achieve optimal antiviral effects, whereas a

delayed response could contribute to the deleterious

hyperinflammatory response.81-83 This hypothesis may

help explain some of the contradictory findings with

respect to type I IFN in COVID-19, and inconsistent

definitions of severe COVID-19 likely also contributes

to the dissimilar observations.84 It may be that type I or

type III IFN pathway-enhancing agents are beneficial

in the early stages of SARS-CoV-2 infection, while

immunosuppressive drugs, such as Janus kinase (JAK)

inhibitors, anti-IL1 drugs, or sGC would provide the

most benefit at treating the excessive and deleterious

inflammatory response (ie, cytokine storm) that ensues

in later phases of COVID-19 course.85-91

https://doi.org/10.1016/j.trsl.2020.12.007
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SARS-CoV-2 enters the host cells by binding to

ACE2 in the cell membrane, hence the viral tropism

depends on the level of ACE2 expression in each cell

type. For instance, ACE2 expression is abundant in

type II pneumocytes, enterocytes, and nasal goblet

secretory cells. Interestingly, ACE2 has been postu-

lated as an ISG, as IFN-a drives ACE2 expression in

human upper airway basal cells, which would suggest

potential deleterious effects of type I IFN by eliciting

an increased risk of SARS-CoV-2 infection and viral

dissemination.92 However, this issue is not settled as a

recent study suggested that the ACE2 isoform that is

induced by IFN-a, designated by the investigators as

dACE2, corresponds to a novel truncated version that

does not confer tropism for SARS-CoV-2.93 Although

not yet corroborated, it has also been proposed that as a

consequence of the epigenetic dysregulation present in

patients with SLE, demethylation of ACE2 can lead to

overexpression and increased susceptibility to SARS-

CoV-2, while demethylation of IFN-regulated genes

and other genes related to cytokine expression may

lead to the development of a cytokine storm in the set-

ting of COVID-19.94

Finally, most studies evaluating the risk of viral infec-

tions in patients with SLE are observational and con-

founded by long-term sGC and immunosuppressant

use.28 However, it is possible that the baseline increased

IFN activity in SLE exerts a protective role against con-

tracting or developing worse outcomes of COVID-19;

hence, this concept should be investigated further.

Neutrophil extracellular traps.Neutrophil extracellular

traps (NETs) are web-like chromatin fibers with micro-

bicidal proteins and granule enzymes released by neu-

trophils as a host defense mechanism against microbes.

NETs are of high relevance in SLE, as they can

enhance inflammation and type I IFN responses.95

NETs are also thought to potentiate thrombosis in anti-

phospholipid syndrome.96,97 Recent studies have sug-

gested a key role of dysregulated NETs in COVID-19.

Zuo et al identified that circulating NET-specific markers

were significantly elevated in COVID-19 patients com-

pared to healthy controls and in patients with critical

COVID-19 on mechanical ventilation compared to those

with milder disease; in addition, sera from patients with

COVID-19 can trigger NET formation when exposed to

control neutrophils in vitro.98 Similarly, Middleton et al

demonstrated a correlation between plasma NETs and

severity of respiratory manifestations of COVID-19.99

NETs are also abundant in respiratory secretions and lung

tissue from patients with COVID-19, a process that may

be driven by SARS-CoV-2-induced neutrophil activation

and NET release. This inflammatory reaction could con-

tribute to microthrombi formation in the lungs in

COVID-19.99-101 Therapeutic interventions to dissolve
NETs or prevent their release may be beneficial in man-

aging severe COVID-19. A clinical trial evaluating dipyr-

idamole, an antiplatelet agent and adenosine A2A receptor

agonist with NET-suppressing properties,102 is ongoing

(NCT04391179).

Antiphospholipid antibodies and thrombosis. Various

observational studies have identified a high prevalence

of antiphospholipid antibodies in hospitalized patients

with COVID-19. Lupus anticoagulant positivity has

been commonly found in patients with COVID-19, rang-

ing from 42% to 83% in severe and critical COVID-19,

although the prevalence may be lower when patients

with milder forms are included.103-106 The presence of

IgG or IgM anti-cardiolipin and anti-beta2-glycoprotein

I antibodies in patients with COVID-19 seems to be less

prevalent and more variable across different studies,

ranging from 0% to 13%.104,105,107,108

Interestingly, there has been conflicting evidence

on how well the presence of antiphospholipid

antibodies correlate with clinically significant thrombotic

episodes, with various initial studies suggesting that these

represent innocent bystanders instead of pathogenic anti-

bodies.103-105,107-111 However, a recent study has demon-

strated a potential pathogenic role of antiphospholipid

antibodies in severe COVID-19. This cross-sectional

study showed that 50% of hospitalized patients with

COVID-19 had antiphospholipid antibodies, and higher

titers were associated with elevated circulating NET

markers and a more severe COVID-19 course.112 In addi-

tion, IgG fractions of antiphospholipid antibodies pro-

moted NET release in vitro and induced accelerated

venous thrombosis in mice.112 Nonetheless, there is still a

lack of longitudinal studies assessing the persistence of

antiphospholipid antibodies several weeks after COVID-

19 diagnosis,108 and it is possible that this represents a

transient event as it has been demonstrated in the setting

of other infections.113-115

Dysregulation of the complement system.Complement

dysregulation is a classic feature of SLE, and hypocom-

plementemia is a marker of disease activity.14 Comple-

ment activation has been associated with the excessive

inflammatory response seen in patients with severe

COVID-19, and the presence of a complement-mediated

microvascular injury syndrome has been proposed based

on the observed pattern of tissue damage.11-13

SARS-CoV-2 is thought to predominantly trigger the

lectin and alternative complement pathways, although

the classical complement pathway could also be acti-

vated in this setting by immune complexes.116 The C3a

and C5a anaphylatoxins are potent inflammatory media-

tors and chemoattractants. C5a plasma levels were

shown to rise proportionally to COVID-19 severity, sug-

gesting sustained complement activation, likely trig-

gered by SARS-CoV-2 antibodies and high levels of
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C-reactive protein.117 Additionally, COVID-19 patients

have a large number of monocytes and neutrophils in

bronchoalveolar lavage expressing the C5a receptor

(C5aR1), suggesting a role of C5a in cell recruitment to

the inflamed tissues.117 C5a may help generate thrombo-

genic NETs, promoting a complement and/or NET-

driven cycle that leads to immunothrombosis.116

Disorders of the complement system can be genetic

or acquired. Age-related macular degeneration, in

which the complement system is overactive, is associ-

ated with worse COVID-19 outcomes. In addition,

genetic variants previously reported in association with

age-related macular degeneration were found to also

predispose to hospitalization for COVID-19. Variants

affecting the C3 gene were protective, whereas com-

plement decay-accelerating factor (CD55) variants

were associated with adverse outcomes of COVID-

19.118 Conversely, patients with complement defi-

ciency disorders may have a milder disease course.118

Together, these findings suggest a detrimental role of

hyperactive complement. Therefore, a role of comple-

ment inhibitors to target thromboinflammation in

COVID-19 has been suggested, and clinical trials assess-

ing various agents are ongoing.119-121 Results from a

small single-arm study of narsoplimab, a mannan-binding

lectin associated serine protease-2 (MASP-2) blocker, are

encouraging.122 Similarly, although data remain limited,

eculizumab therapy also seems to improve clinical out-

comes and biomarkers of inflammation and coagulation

in patients with severe COVID-19.123,124

The mechanistic (mammalian) target of rapamycin

pathway. Mechanistic (mammalian) target of rapamy-

cin (mTOR) is a ubiquitous kinase and nutrient sensor

that modulates cell differentiation, growth, prolifera-

tion, and survival. The mTOR pathway has been shown

to regulate T‑cell and macrophage differentiation, and

is thought to play a critical role in the pathogenesis of

autoimmune and inflammatory diseases such as

SLE.125 Accordingly, phase 1/2 trials of agents block-

ing the mTOR pathway, including N-Acetylcysteine

(NAC) and rapamycin, have demonstrated potential

benefits in SLE.126,127 Interestingly, a role of mTOR in

the dysregulated inflammatory response in COVID-19

has been postulated.59,128 For instance, mTOR signal-

ing has been shown to be decreased in pDCs from

COVID-19 patients, on the basis of reduced ribosomal

protein S6 (pS6) expression, translating into impaired

IFN-a production by these cells which may negatively

impact the host antiviral response (Fig 1).59

Conversely, it has been hypothesized that mTOR

pathway hyperactivation in certain conditions such as

obesity may enhance SARS-CoV-2 replication, provid-

ing at least a partial explanation for worse COVID-19

outcomes in obese patients.129 Therefore, targeting the
mTOR pathway may reduce SARS-CoV-2 replication

and inhibit the deleterious immune hyperactivation by

reducing hyper-reactive T cells, while maintaining reg-

ulatory T (Treg) cell number and function in COVID-

19.130 In agreement with this hypothesis, hospitalized

patients with critical COVID-19 treated with NAC

showed significant clinical improvement and reduction

of inflammation markers, suggesting a beneficial effect

of NAC in COVID-19, possibly mediated by mTOR

inhibition.131 Limited observational studies of patients

with tuberous sclerosis complex and/or lymphangio-

leiomyomatosis on long-term mTOR inhibitors (siroli-

mus or everolimus) have not identified an increased

risk of COVID-19 or poor outcomes of the infec-

tion132,133 and clinical trials of mTOR inhibitors in

COVID-19 are ongoing. However, whether activation

of the mTOR pathway plays a role in SARS-CoV-2-

infected patients with SLE remains to be elucidated.

Dysregulated adaptive immune responses. Lymphope-

nia is a common feature of SLE, thought to be due to

complement-mediated or antibody-dependent cytotoxic-

ity, excess apoptosis, and decreased lymphopoiesis.134

In addition, T cell function is also impaired in SLE,

which may predispose these patients to infections (see

the previous section on Relationship between SLE and

risk of viral infections). Reversible lymphopenia has

been observed in patients with COVID-19, especially

those with severe disease.135 Although transient lym-

phopenia is common in the setting of viral infections,

COVID-19-associated peripheral lymphopenia may per-

sist for longer and be more severe than in other viral ill-

nesses.136 Among the potential mechanisms that

contribute to lymphocyte depletion in COVID-19 are

infection of lymphocytes by SARS-CoV-2, exhaustion,

and induction of apoptosis by cell hyperactivation and/

or an increase in proinflammatory cytokines and pro-

apoptotic signals.135-137 Although more pronounced in

CD8+ T cells, lymphopenia has also been shown to

affect CD4+ T cells.136,137

Various studies have also identified functional

impairment or alterations in the differentiation status

of T cells, with marked heterogeneity in immune cell

responses. T cells in COVID-19 may range from an

exhausted to an overactive phenotype.59,136-138 It has

been proposed that a more severe disease course could

be associated with a reduced CD8+ T cell pool and less

activated T cells, with increased expression of co-

inhibitory signals including PD1, TIM3, CTLA4, and

CD38.136,139 However, differentiating between an

exhausted phenotype and hyperactive T cells represents

a challenge as they both demonstrate increased expres-

sion of inhibitory receptors. A recent multi-omics study

identified that certain CD8+ subpopulations correlated

with COVID-19 severity, with an increase of naı̈ve
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clusters and lower activated effector T cells identified

in severe cases when compared to patients with moder-

ate disease.140 Another study using high-dimensional

flow cytometry identified distinct immunotypes related

to disease severity in hospitalized patients with

COVID-19. Interestingly, the immunotype character-

ized by robust CD4+ T cell activation, a paucity of cir-

culating T follicular helper cells, and highly activated

or exhausted CD8+ T cells was associated with more

severe disease.137

A potential role for T helper 17 (Th17) cells in

COVID-19 has also been suggested, and significant

skewing towards a Th17 functional phenotype with

decreased Treg levels have been described.136,138,141,142

Similarly, patients with SLE have impaired Treg cells,

greater numbers of Th17 cells and increased production

of IL-17, which seems to correlate with disease

activity.143,144

A central immunopathogenic role of dysregulated B

cell responses in COVID-19 is also likely. A stronger

B-cell immune response in patients with severe

COVID-19 compared to milder disease has been

described.145 Poor COVID-19 outcomes are associated

with suppression of germinal centers, extrafollicular B

cell activation, and a large expansion of the antibody-

secreting cell compartment, similar to what is seen in

SLE.59,137,140,146,147 However, whether infection-

induced autoreactive B cell responses persist after the

acute phase of COVID-19 or if they contribute to long-

lasting symptoms experienced by some patients with

COVID-19, the so-called “long-haulers”, remain to be

determined. Moreover, the effect of B-cell depleting

therapy on COVID-19 outcomes needs to be addressed,

although very limited data to date have suggested the

potential for detrimental effects.148-150

Overall, the findings of pathogenic adaptive immune

responses in COVID-19 further support the notion that

the timely implementation of immunomodulatory ther-

apy in selected patients may be beneficial.
COMMONLY USED DRUGS IN SLE AND
PREDISPOSITION TO VIRAL INFECTIONS

SLE management involves the use of multiple thera-

peutic strategies to treat the specific manifestations,

lower disease activity, and prevent irreversible organ

dysfunction.151 General standard treatment strategies

involve the use of antimalarials, non-biologic and bio-

logic immunosuppressive agents, and sGC, if neces-

sary. sGC are generally considered a first-line

treatment in the management of organ- and life-threat-

ening manifestations of SLE. Although sGC are effec-

tive in decreasing disease activity, their undesirable
side effect profile has led to widely accepted recom-

mendations to limit the dose and duration of treatment

as much as possible.2,152-154 Multiple studies to date

have reported significantly increased risk of serious

infections in patients on sGC, with doses as low as

10 mg prednisone-equivalent, although this mostly cor-

responds to bacterial infections.28,155-160

Hydroxychloroquine (HCQ) use is recommended in

most patients with SLE, owing to multiple health bene-

fits in patients with SLE and overall safety.161-164 Vari-

ous observational studies have indicated a protective

effect of HCQ against serious infections in SLE.165-168

In vitro studies have also suggested potential anti-viral

effects of HCQ by means of increasing lysosomal pH

and preventing post-translational modification of syn-

thesized proteins that are crucial for replication and

dissemination of viruses.165,167,169 However, human

studies have failed to identify any benefit of HCQ in

preventing or managing viral infections, including den-

gue, chikungunya, and SARS-CoV-2.170,171

Azathioprine (AZA), mycophenolate mofetil

(MMF), and CYC are commonly used in SLE to man-

age moderate to severe manifestations. In a retrospec-

tive study from France, exposure to CYC led to an

increased incidence of herpes zoster in patients with

SLE during the first year after initiating therapy.172 A

systematic review and meta-analysis identified a higher

incidence of infections in the CYC compared to the

MMF group.173 However, a large propensity-score

matched study showed no significant differences in

rates of infection or mortality between Medicaid

patients with SLE using CYC vs MMF after 6 months

of initiation of therapy.174 A study from the Hopkins

Lupus Cohort that followed 214 patients after MMF

initiation reported an increased risk of developing bac-

terial infections but no change in the risk of viral infec-

tion.175 Furthermore, a recent review did not find

sufficient evidence to conclude that AZA, MMF, or

CYC increased the risk of acute respiratory viral

adverse events in patients with SLE or other rheumatic

diseases.156 Tacrolimus, a calcineurin inhibitor used as

a single agent or in combination with MMF in SLE,

has been associated with a relatively low incidence of

severe infections in various reports, although data are

scarce.156,176,177 A comparison between SLE patients

on sGC and tacrolimus vs those on sGC and CYC

showed a similar incidence rate of herpes zoster and

varicella between the 2 groups.178

Belimumab, a B lymphocyte stimulator inhibitor, is

currently the only biologic approved for use in SLE.179

Based on data from randomized controlled trials and

open-label extensions, there is no suggestion of a sig-

nificantly increased risk of severe respiratory viral

infections with Belimumab use.156 Rituximab (RTX), a
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B-cell depleting agent, has been associated with pro-

gressive multifocal leukoencephalopathy arising from

John Cunningham virus reactivation.159,180 Addition-

ally, hepatitis B (HB) reactivation is a potentially life-

threatening complication from RTX therapy in patients

with positive HB surface antigen or HB anticore anti-

body.181 Although data on other viral infections with

RTX use are scarce, the frequency of upper respiratory

tract infections is variable among trials but generally

similar to the placebo arms.156,182,183 Recently, 2 small

studies reported high rates of severe COVID-19 and

mortality in patients on RTX for various indica-

tions.148,149 However, larger studies and longer follow-

up are needed to confirm these observations.

Anifrolumab, a type I IFN blocking agent, is awaiting

FDA approval for use in SLE.184 Overall, in the random-

ized controlled trials, there were increased rates of her-

pes zoster, upper respiratory tract infections,

nasopharyngitis, bronchitis, and influenza in the anifro-

lumab group, although the differences were not statisti-

cally significant.156,185,186 Further longitudinal studies

are needed to assess the risk of viral infection in anifro-

lumab-receiving patients with SLE; however, consider-

ing its mechanism of action, an increased risk of viral

infections with the use of anifrolumab is biologically

plausible.
EPIDEMIOLOGY AND OUTCOMES OF COVID-19 IN
PATIENTS WITH SLE

As COVID-19 was increasingly recognized as a rap-

idly spreading global threat, the urgent need to describe

the characteristics and outcomes of patients with rheu-

matic diseases became evident. Early reports suggesting

a potential beneficial role of chloroquine and HCQ,

which are commonly used in patients with rheumatic

diseases, also drove the need to evaluate this population

closely. The first studies on patients with SLE and

COVID-19 emerged from the heaviest hit regions in the

early phases of the pandemic and consisted of mostly

case reports or small case series (Table Ⅰ).
Mathian et al described 17 patients with SLE who

were diagnosed with COVID-19 in France between

March 29 and April 6, most of whom were on long-term

HCQ and had therapeutic levels of the drug.187 Seven

(41%) patients required admission to an intensive care

unit, and 2 out of 14 hospitalized patients died of

COVID-19; notably, comorbidities were highly preva-

lent in these SLE patients, as was use of sGC (71%) and

immunosuppressants (41%), and most patients had clini-

cally quiescent SLE. This study represented one of the

first to note that patients with SLE on HCQ were not

protected against COVID-19.187 Several other groups
have now also suggested the lack of benefit of HCQ

against contracting or developing severe COVID-19 in

patients with SLE and other rheumatic diseases.188-194

A retrospective study from Spain included 62

patients with several different rheumatic or autoim-

mune diseases, nine of which had SLE. They found no

statistically significant between-group differences for

rheumatologic diagnosis or baseline use of immuno-

suppressive therapy except for sGC use, which was

more frequent in hospitalized patients. SLE was not a

risk factor for severe COVID-19 requiring hospitaliza-

tion, but male sex, previous lung disease, and sGC use

(> 5 mg/day of prednisone) were significantly associ-

ated with hospital admission.195 Similarly, a study

from Belgium which included 18 patients with con-

firmed or suspected COVID-19 did not find differences

in the proportion of patients who developed COVID-

19 between patients on immunosuppressants and those

not on these medications. However, sGC dose was

found to be positively associated with a positive

reverse transcription polymerase chain reaction (RT-

PCR) test for COVID-19, hospitalization, and various

COVID-19 symptoms.193 Several other studies from

Spain, Italy, France, and Brazil have also suggested

that the main risk factors for poor COVID-19 outcomes

are similar to those previously reported in the general

population, including age and the presence of comor-

bidities.189,196-198 Additional potential risk factors sug-

gested by studies of SLE and other autoimmune

diagnoses included the presence of interstitial lung dis-

ease, moderate or high rheumatic disease activity (or

flare preceding the COVID-19 diagnosis), history of

neuropsychiatric lupus, and known exposure to a con-

firmed COVID-19 case.199-201 However, the small

sample size, lack of confirmatory testing for many of

the included patients, selection biases, insufficient

identification and adjustments for confounders, and

several other limitations from these observational data

preclude from making definitive statements about these

observations.

In response to the scarcity of data on the impact of

COVID-19 in patients with immune-mediated diseases,

a number of registries were established to better charac-

terize these patients and assess their outcomes. The larg-

est of these registries addressing rheumatic diseases is

the COVID-19 Global Rheumatology Alliance (C-19-

GRA). The C-19-GRA was formed over the course of a

few days in response to an urgent need for information,

as the rheumatology community gathered in social

media.202 The largest C-19-GRA publication to date

reported on the first 600 patients entered to the registry,

including 85 patients with SLE, of whom 55% were hos-

pitalized.203 This study found that a prednisone dose

�10 mg/day was associated with higher odds of
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Table Ⅰ. Main published studies by October 31, 2020 including patients with SLE and presumptive or confirmed COVID-19

Reference and
country/region

Study timeline* Number of SLE
patients included and
COVID-19 status

Age (years) and
gender (% female
patients)

% Medication use Hospitalizations and
deaths due to
COVID-19

Main findings

Chen et al230

Wuhan, China
Feb 29 N = 101 (LN only)

Confirmed: 2
Median age: 42
Gender:
F: 89 (88%)

HCQ: 52 (51%)
ISx: aggregate data
NA

sGC: 95 (94%)

Hospitalization: 2/2
(100%)

Death: 0

Low prevalence of confirmed
COVID-19 in lupus nephritis
patients during the Wuhan
peak

Singer et al191

USA
Jan 20 to Jul 13 N = 35Confirmed: NA

Presumptive: NA
NA for SLE subgroup NA for SLE subgroup NA for SLE subgroup HCQ did not prevent COVID-

19 in patients with SLE
Huang et al251

Wuhan, China
Jan 29 to Mar 8 N = 3

Confirmed: 3
NA for SLE subgroup NA for SLE subgroup Hospitalization: 3/3

(100%)
Death: 1/3 (67%)

Age, male gender and comor-
bidities are risk factors for
severe COVID-19

Holubar et al189

Montpellier,
France

Feb 1 to Apr 24 N = 120
Confirmed: 0
Presumptive: 30

Age:
On HCQ:
42 § 12
Not on HCQ:
52 § 12
Gender:
F: 110 (92%)

HCQ: 72 (60%)
sGC: 50 (42%)

Hospitalization: 0
Death: 0

No severe forms of COVID-19
were identified

Gendebien
et al193Li�ege,
Belgium

Feb 4 to Jun 6y N= 225
Confirmed: 5
Presumptive: 13

Mean age § SD:
52 years § 14.9
Gender:
F: 209 (93%)

HCQ: 151 (68%)
ISx: 28 (31%)
sGC: 23 (25%)

Hospitalization: 2/18
(11%)

Death: 0

sGC dose was associated with
COVID-19 diagnosis and
hospitalization

Bozzalla Cassione
et al194

Northern Italy

Feb 15 to Apr 29y N= 165
Confirmed: 4
Presumptive: 8

Mean age, range:
53, 25�81
Gender:
F: 112 (84%)

HCQ use: 127 (77%)
ISx: 53 (32%)
sGC: 93 (56%)

Hospitalization: NAz

Death: 0
No protective effect of HCQ
against COVID-19 in SLE
patients

Fredi et al196

Brescia, Italy
Feb 24 to May 1 N = 12 (10% of 117

patients with
rheumatic diseases)

Confirmed: 5
Presumptive: 7

NA for SLE subgroup NA for SLE subgroup NA for SLE subgroup Poor outcomes of COVID-19
were associated with older
age and the presence of
comorbidities

Favalli et al210

Lombardy, Italy
Feb 25 to Apr 10 N = 62

Confirmed: 0
Presumptive: 8

Mean age: 44
Gender:
F: 56 (91%)

HCQ: 30 (48%)
ISx: 52 (84%)
sGC 46 (75%)

Hospitalization: 0
Death: 0

Very low impact of COVID-19
in SLE patients

D’Silva et al206

Massachusetts,
USA

Mar 1 to Apr 8 N = 10
Confirmed: 10

NA for SLE subgroup NA for SLE subgroup NA for SLE subgroup COVID-19 outcomes similar
between patients with and
without rheumatic diseases,
except for ICU/MV

Wallace et al205

Michigan, USA
Mar 1 to Apr 20 N = 5

Confirmed: 5
Mean age, range:
54, 26�67
Gender:
F: 5 (100%)

HCQ: 4 (80%)
ISx: 3 (60%)
sGC: 4 (80%)

Hospitalization: 4/5
(80%)

Death: 1/5 (20%)

Patients with quiescent SLE
may develop severe
COVID-19

(continued on next page)
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Table Ⅰ. (Continued)

Reference and
country/region

Study timeline* Number of SLE
patients included and
COVID-19 status

Age (years) and
gender (% female
patients)

% Medication use Hospitalizations and
deaths due to
COVID-19

Main findings

Santos et al200

Le�on, Spain
Mar 1 to Jun 1 N = 5 (13% of 38

patients with rheu-
matic diseases).

Confirmed: 5

NA for SLE subgroup NA for SLE subgroup Hospitalization: 5
(100%)

Death: 1 (20%)

Comorbidities, rheumatic dis-
ease activity and laboratory
abnormalities were associ-
ated with mortality

Gentry et al190

USA
Mar 1 to Jun 30 N = 7117 (22% of

32,109 patients with
rheumatic diseases)

Confirmed: 23

NA for SLE subgroup HCQ: 2642 (37%)
ISx and sGC:
NA for SLE subgroup

NA for SLE subgroup HCQwas not associated with
COVID-19 prevention or
improvement in outcomes of
the infection

Montero et al195

Madrid, Spain
Mar 4 to Apr 24 N = 9 (15% of 62

patients with vari-
ous autoimmune/
inflammatory dis-
eases)

Confirmed: 9

NA for SLE subgroup NA for SLE subgroup Hospitalized:
6/9 (67%)
Death: 2 (22%)

Factors associated with
COVID-19 hospitalization:

Baseline sGC use, male sex,
preexisting lung disease

Emmi et al252

Tuscany, Italy
Apr 1 to Apr 14 N = 117

Confirmed: 0
Presumptive: 4

NA for SLE subgroup NA for SLE subgroup Hospitalized: 0
Death: 0

No clear evidence of
increased risk of COVID-19 in
patients with SLE

Konig et al188

Worldwide
(C-19-GRA)

Apr 17 N = 80
Confirmed/ presump-
tive status: NA

Age �65:
69 (86%)
Gender
F: 72 (90%)

HCQ/CQ: 51 (64%)
ISx and sGC:
NA for SLE subgroup

Hospitalization: 45/80
(56%)

Death: 0

No difference in the frequency
of COVID-19 hospitalizations
based on HCQ use

Gianfrancesco
et al203

Worldwide
(C-19-GRA)

Mar 24 to Apr 20 N = 85 (14% of 600
patients with
rheumatic diseases)

Confirmed: 80
Presumptive: 5

NA for SLE subgroup NA for SLE subgroup Hospitalized: 48/85
(56%)

Death: NA for SLE
subgroup

Age, comorbidities and sGC
use are associated with
increased odds of
hospitalization

Mathian et al187

France
Mar 29 to Apr 6 N = 17x

Confirmed:17
Mean age, range:
54 (27�69)
Gender:
F: 13 (76%)

HCQ: 17 (100%)
ISx: 7 (41%)
sGC: 12 (71%)

Hospitalization: 14/17
(82%)

Death: 2/14 (14%)

No role of HCQ preventing
severe COVID-19 in patients
with SLE

Gartshteyn et al204

New York, USA
Apr 26 N = 18

Confirmed: 10
Presumptive:: 8

Mean age § SD:
41 § 11
Gender:
F: 16 (89%)

HCQ: 13 (72%)
ISx: 15 (83%)
sGC: 7 (39%)

Hospitalization: 7/18
(39%)

Death: 0

COVID-19 severity was not
affected by SLE medication
use.

Zen et al253

Padua, Italy
Apr 9 to Apr 25 N = 397

Confirmed: 1
Presumptive:14

Mean age § SD:
48 § 13
Gender:
F: 340 (86%)

HCQ: NA
ISx: aggregate data
NA

sGC: 42 (11%)

Hospitalization: 1/1
(100%)

Death: 0

COVID-19 incidence was
comparable to the general
population

(continued on next page)
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Table Ⅰ. (Continued)

Reference and
country/region

Study timeline* Number of SLE
patients included and
COVID-19 status

Age (years) and
gender (% female
patients)

% Medication use Hospitalizations and
deaths due to
COVID-19

Main findings

Fernandez-Ruiz
et al192

New York, USA

Apr 13 to Jun 1 N = 226
Confirmed: 41
Presumptive: 42

Confirmed:
Mean age § SD:
47 § 17
Gender:
F: 38 (93%)
Presumptive:
Mean age § SD:
41 § 13
Gender:
F: 39 (93%)

Confirmed:
HCQ: 32 (78%)
ISx: 24 (59%)
sGC: 18 (44%)
Presumptive:
HCQ: 33 (79%)
ISx: 24 (57%)
sGC: 5 (12%)

Confirmed only:
Hospitalization: 24/41
(59%)

Death: 4/41 (10%)

Predictors of hospitalization in
confirmed COVID-19
patients: non-white race, the
presence of �1 comorbidities
and BMI per increase in
kg/m2

Marques et al197

Brazil
May 19 to Jun 16 N =NA for SLE

subgroup
NA for SLE subgroup NA for SLE subgroup Hospitalized: NA for

SLE subgroup
Death: 4

No rheumatic
disease-specific factors were
associated with death from
COVID-19. High frequency of
comorbidities in deceased
patients.

Cho et al199

Asia Pacific
Region

Jun 3║ N= 3375
Confirmed: 3

Confirmed:
Mean age:
40 § 16
Gender:
F: 3 (100%)

Confirmed:
HCQ: 2 (67%)
ISx: 2 (67%)
sGC: 3 (100%)

Hospitalized: 3/3
(100%)

Death: 1/3 (33%)

Only 3 COVID-19 cases were
identified in a cohort of 3375
SLE patients. All patients
required escalation of SLE
therapy around the time of
COVID-19 diagnosis

Pablos et al208

Spain
NA N =2253

Confirmed: 17
Confirmed:
Mean age, IQR:
51 (42�66)
Gender:
F: 77%

NA for SLE subgroup NA for SLE subgroup Low prevalence of confirmed
COVID-19 in SLE patients
compared to most systemic
autoimmune diseases

Abbreviations: BMI, body mass index; COVID-19, coronavirus disease 2019; F, female; HCQ, hydroxychloroquine; ICU, intensive care unit; IQR, interquartile range; ISx, immunosuppressants; LN,
lupus nephritis;MV, mechanical ventilation; NA, not available; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; sGC, systemic glucocorticoids; SLE, systemic lupus erythematosus.
Confirmed: patients who had positive diagnostic testing for SARS-CoV-2.
Presumptive: patients with symptoms suggestive of COVID-19 (at the authors’ discretion) who did not undergo diagnostic testing for SARS-CoV-2.
*Unless otherwise specified, if the start date of the observation period is not reported in the article, the end of observation date is presented in the table.
yLatest date the article was received by the journal.
zOne patient was admitted to the intensive care unit. Other patients had a milder course but it is unclear if they were hospitalized.
xSixteen patients met the classification criteria for systemic lupus erythematosus (SLE) and one patient had antiphospholipid syndrome with additional features of SLE.
║Date survey was sent.
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hospitalization in patients across all rheumatic diseases.

Immunosuppressant use was not found to be associated

with hospital admission for COVID-19, with the excep-

tion of tumor necrosis factor inhibitor users, in whom

the odds of hospitalization were lower.203

As New York City (NYC) was the initial epicenter

of the pandemic in the United States, many patients liv-

ing with rheumatic diseases were affected by COVID-

19. Gartshteyn et al published the first case series

describing patients with SLE and COVID-19 in NYC.

The study included 10 patients with real-time RT-PCR

confirmed COVID-19 and 8 with suspected infection;

7 of these patients were hospitalized. Most patients

(83%) in this case series were taking immunosuppres-

sants, 39% were on sGC, and 61% had lupus nephritis.

Although limited by the small number of cases, the

study did not find significant differences in immuno-

suppressant use in patients with mild vs severe

COVID-19.204 As COVID-19 rapidly extended to other

regions of the United States, other groups published on

the outcomes of patients with rheumatic diseases and

COVID-19. Wallace et al described their COVID-19

experience at a tertiary care academic center in Michi-

gan, reporting 5 patients with SLE, of whom 4 were

hospitalized, 3 required invasive ventilation, and 1

died of COVID-19. Overall, when compared to 31

patients with various rheumatic diseases, patients with

SLE and COVID-19 seemed to have worse outcomes

in this study; however, SLE patients were noted to

have a high prevalence of comorbidities, sGC use, and

more likely to be African-American, which are all

known risk factors for hospitalization and mortality in

COVID-19.205

To further close the information gaps concerning the

impact of COVID-19 in patients with immune-medi-

ated diseases in one of the heaviest hit regions in the

world by the initial phases of the pandemic, our NYC-

based institution established a prospective cohort of

patients with immune-mediated diseases, the

Web�based Assessment of Autoimmune, Immu-

ne�Mediated, and Rheumatic Patients during the

COVID�19 Pandemic (WARCOV). An initial report

on patients with various immune-mediated diseases

from the WARCOV cohort, which did not include any

patients with SLE, identified sGC use as one of the

main factors associated with higher odds of hospitaliza-

tion.157 We later reported the characteristics and

COVID-19 outcomes of patients with SLE, including

41 confirmed and 42 suspected cases of COVID-19, as

well as 19 patients who were tested for COVID-19 and

were negative, and 124 patients with SLE from our

lupus registry who did not develop COVID-19 symp-

toms on prospective follow-up.192 Out of the 41

patients with RT-PCR confirmed COVID-19, 24
patients with SLE required hospitalization. Notably, no

SLE-specific factors, such as immunosuppressant use,

were noted to increase the odds of hospitalization.

However, there was a higher proportion of patients on

sGC in the hospitalized (54.2%) compared to the

ambulatory group (29.4%), although the difference

was not statistically significant. Non-white race, having

1 or more comorbidities, and body mass index were

identified as independent predictors of hospitalization

in our patients with SLE and COVID-19, similar to the

general population.192 These findings were in agree-

ment with smaller studies assessing outcomes of

COVID-19 in patients with SLE, as previously dis-

cussed.

Several studies have compared patients with and

without rheumatic/autoimmune diseases to investigate

differences in risk of contracting SARS-CoV-2 and

experiencing poor outcomes of the disease. In a

matched study of 52 patients with various rheumatic

diseases, including 10 patients with SLE, compared to

104 without rheumatic diseases, D’Silva et al found

that the proportion of patients who were hospitalized

for COVID-19 and mortality from the disease were

similar between the 2 groups; however, patients with

rheumatic diseases had significantly higher odds of

requiring mechanical ventilation or admission to the

intensive care unit ventilation compared to patients

without rheumatic diseases.206

Various studies have addressed the question of

whether patients with autoimmune diseases, including

SLE, increase the risk of contracting COVID-19. A

recent large study from Milan, Italy, comparing 20,364

SARS-CoV-2 test-positive and 34,697 test-negative

subjects, did not find an association between having an

autoimmune disease (in aggregate), including SLE,

and having a positive test for COVID-19.207 A study

from 7 hospitals in Spain also suggested patients with

SLE were not at a higher risk of testing positive for

COVID-19 in the hospital setting compared to a refer-

ence population of 2.9 million people.208 In contrast

with these observations, a meta-analysis of 7 case-con-

trol studies of patients with autoimmune diseases and

COVID-19 showed 2-fold higher odds of contracting

COVID-19 in this population compared to controls.209

On meta-regression analysis, sGC use was significantly

associated with the risk of COVID-19. Furthermore,

patients with SLE, Sjogren’s syndrome, and systemic

sclerosis, in aggregate, had a higher prevalence of hos-

pitalization when compared with the other disease

groups. Notably, sGC was highly prevalent in this

group (60%).209

Overall, studies seem to suggest that most patients

with SLE may not be at an increased risk of contracting

COVID-19. However, patients with SLE have likely
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implemented more strict protective behaviors to avoid

exposure to SARS-CoV-2 out of fear of having worse

outcomes, so this element should be factored in when

considering risk for developing COVID-19 in patients

with SLE.201,210 Other than sGC use, there is no clear

evidence to suggest that the SLE population is at risk of

worse COVID-19 outcomes due to specific factors

related to their underlying autoimmune disease.

Although studies to date have significantly improved

our understanding of the associations and outcomes of

COVID-19 in the SLE population, it is important to note

that there are several limitations to these observational

data and the results should be interpreted with caution.
ASSOCIATION OF COVID-19 WITH SLE FLARES AND
DE NOVO SLE

There have been reports in the literature of COVID-

19 shortly preceding a de novo diagnosis of SLE, pre-

senting concomitantly or mimicking SLE, raising the

possibility of SARS-CoV-2 being a trigger of autoim-

munity, as it has been postulated for other

viruses.19,111,211 However, we need to use caution when

making a diagnosis of SLE in patients with COVID-19

for various reasons. Certain clinical diagnostic criteria

of SLE overlap with COVID-19 symptoms. Also, auto-

antibodies can occur in response to infections, and these

are usually transient and of unclear significance in this

setting.113,114,212 Hence, longitudinal evaluation of these

patients is required to offer insights into the association

between COVID-19 and de novo SLE.

Similarly, various reports have indicated that COVID-

19 may worsen SLE manifestations.213-215 However,

attributing SLE flares to a biologic mechanism is chal-

lenging because many of these patients have had greater

difficulty accessing health care during the pandemic and

may suffer worsened disease control due to lack of med-

ical care or difficulty continuing their SLE medications,

in addition to the psychosocial stressors of the pan-

demic. Therefore, it is currently unclear whether

COVID-19 could predispose to SLE or cause a flare of

disease in SLE patients. Long-term longitudinal studies

are needed to ascertain these associations.
ANCESTRAL BACKGROUND, SOCIOECONOMIC
FACTORS AND INDIRECT CONSEQUENCES OF THE
COVID-19 PANDEMIC IN PATIENTS WITH SLE:
CHALLENGES IN ACCESS TO HEALTH CARE,
MEDICATION SHORTAGES, AND PSYCHOSOCIAL
FACTORS

It is well established that SLE is more prevalent and

severe in ancestrally African and Hispanic patients.3 In
addition, patients with SLE from minority racial and eth-

nic groups are known to experience substantial inequities

in care and are much less likely to enroll in clinical trials

when compared to white patients, owing to structural rac-

ism, implicit bias, previous experiences of discrimination

and injustices.2,216 The COVID-19 pandemic has magni-

fied the impact of health disparities and barriers to health

care experienced by marginalized populations around the

world. Consequently, COVID-19 has disproportionately

affected Indigenous communities, Black and Hispanic

populations4,6,217-219, comparable to what has been identi-

fied in patients with SLE and COVID-19.192,220 Interest-

ingly, a recent study suggested African ancestry

populations showed a genetic predisposition for lower

expression of both ACE2 and type 2 transmembrane ser-

ine protease, suggesting decreased susceptibility to con-

tracting SARS-CoV-2 in this population221. Although

these findings suggest genetic determinants of COVID-19

transmissibility and severity across populations exist,

SDH are more likely responsible for the different out-

comes in racial and ethnic minorities, as it has been sug-

gested by a recent retrospective cohort study from New

York.222 Therefore, assessing the impact of SDH on

severity and mortality related to COVID-19 in patients

with rheumatic diseases is essential.223-226

Although telemedicine has played a significant role

in securing continuity of care for patients with SLE

and other rheumatic diseases during the pandemic-

related lockdowns194,227,228, concerns have been raised

about specific situations where a virtual consultation

may be insufficient.229 For instance, patients with SLE

require routine monitoring of laboratory parameters.

New patients or those with urgent concerns may

require a more thorough evaluation than what is feasi-

ble by telemedicine. Furthermore, special consider-

ation should be given to those patients who lack

reliable internet connection or access to smartphones

or other devices suitable for telemedicine.

Even when imperfect, telemedicine has allowed

patients with SLE to be evaluated by health care pro-

fessionals, preventing major gaps in medical attention

during the pandemic, which may lead to discontinua-

tion of SLE therapies and subsequent flares. This con-

cept was exemplified in a study from Wuhan, China,

where 60% of 101 respondents with lupus nephritis

had been unable to attend their rheumatology appoint-

ments. In addition, 25% of patients discontinued their

medications, mostly due to limited access to health

care, and 5% experienced a disease flare. Interestingly,

only 2 patients in this study contracted SARS-CoV-2

and both had a mild COVID-19 course.230 Similarly, in

a study of 1040 patients with SLE in India, over 50%

of patients had missed their follow-up appointments,

37% were unable to perform routine laboratory exams,
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40% needed to change their medications due to lack of

availability, and 25% presented financial difficulties

during the lockdown period,231 suggesting additional

sources of stressors experienced by these patients.

HCQ is a mainstay of treatment in SLE, as it is asso-

ciated with multiple health benefits in this population,

including reducing the risk of flares and organ dam-

age.163,232 In the early phases of the COVID-19 pan-

demic, limited data including in vitro and small

observational studies suggested a potential benefit of

HCQ in COVID-19.233,234 Multiple recent studies,

including observational data from patients with

immune-mediated diseases on long-term HCQ as well

as large randomized clinical trials, have consistently

demonstrated the lack of efficacy of HCQ in preventing

the viral infection or improving any COVID-19-related

outcomes.171,190,235-238 However, for several weeks

after the preclinical studies and limited observational

data came to light, HCQ shortages ensued in many

countries as its use was redirected toward prophylaxis

or management of COVID-19, leading to inadequate

supplies of the drug for many patients with SLE

worldwide.239,240

An electronic survey distributed to the SLE Interna-

tional Collaborating Clinics members with SLE-affili-

ated centers aimed to evaluate physicians’ experiences

with HCQ shortages during the pandemic.241 Out of 31

responses, 55% reported HCQ shortages among

patients with SLE. Most respondents (65%) in this

study had been contacted by patients and pharmacies

regarding difficulties accessing HCQ.241 Similarly, a

national survey to Canadian rheumatologists in April,

2020 found that 50-94% of respondents, depending on

the region, had been contacted by pharmacies or

patients regarding difficulties accessing HCQ.242 In a

patient-centered study in Germany, 70% of 369

respondents expressed concerns about being unable to

receive HCQ prescriptions, and 9% had already

reduced their HCQ dose in an attempt to overcome

potential drug supply issues.243

One of the main concerns that HCQ shortages

prompted was the risk of SLE flares, which are known

to occur as soon as 2 weeks after drug discontinuation

for most patients with SLE, especially in the younger

SLE population.163,244 In addition, due to fears of con-

tracting SARS-CoV-2, many patients fail to seek prompt

medical attention in emergent and urgent situa-

tions.245,246 A report from Malaysia found a 65.4%

decline in hospitalizations in patients with SLE during

the lockdown period compared to 2019 rates. However,

the patients with SLE who presented to the hospital in

2020 were significantly sicker when compared to those

admitted in 2019 with respect to SLE Disease Activity

Index, intensive care unit requirement, and mortality.
Strikingly, only 1 death was attributed to COVID-19.247

These findings are likely multifactorial; while patients

with SLE may have avoided presenting to the hospital

due to fear of contracting COVID-19 until it was inevi-

table, it is also possible that different factors such as

lack of close monitoring of clinical or laboratory param-

eters, issues with access or self-adjustments of the doses

of SLE medications, have also contributed to higher

severity and mortality rates in this population.

Finally, it is evident that the COVID-19 pandemic

has had a profound psychosocial impact in patients

with SLE. Multiple factors inherent to the pandemic

have acted as stressors in the general population,

potentially increasing the risk of mental health disor-

ders; these include disinformation, uncertainty, col-

lective fear, in addition to the declared states of

emergency and lockdowns, resulting in financial con-

cerns and social isolation.248 Patients with SLE have

faced numerous additional challenges during the pan-

demic. The fears of worse outcomes if contracting

COVID-19, as well as the aforementioned concerns

about access to health care and medication availabil-

ity in this population, may affect the emotional and

mental health of patients with SLE even further.

Accordingly, a study from Poland showed a higher

risk of anxiety, depression, and sleep disorders in SLE

patients when compared to non-SLE patients during

the COVID-19 pandemic.249 In addition, in a cohort

of patients with rheumatoid arthritis and SLE in the

Philippines, a considerable proportion of patients

were experiencing moderate to severe stress (12%),

moderate to extremely severe anxiety (39%), and

depression (28%).250
CONCLUSION

Many of the immune system pathways important to

COVID-19 infection are active in SLE, providing a

valuable comparison and lessons to be learned in instan-

ces when the two conditions co-exist. It seems that

besides sGC use, most risk factors for worse outcomes

of COVID-19 in patients with SLE are similar to those

identified in the general population. However, the

impact of additional factors, including those related to

SDH, requires further study. It is possible that some of

the factors in SLE offset one another, such as any poten-

tial protective effect from type I IFN being offset by

immunosuppressive agents, for example. These com-

plexities hold promise for a greater understanding of

COVID-19 immunopathogenesis in the broader popula-

tion, and lessons learned through years of human SLE

research seem highly relevant to challenges presented

by this new viral pathogen.
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