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Introduction
Despite considerable progress in acute stroke 
treatment, that is, tissue–plasminogen activator-
induced thrombolysis and mechanical thrombec-
tomy, where randomized controlled trials (e.g. 
DAWN, DEFUSE-3, HERMES, WAKE-UP) 
recently revealed benefits of recanalization treat-
ment that considerably expanded therapeutic 
windows in acute ischemic stroke,1,2 it remains a 
leading cause of death and long-term disability. 
It is well documented that the efficiency and time 
of vascular recanalization has a strong impact on 
the severity of ischemic brain injury.1,2 Hence, 
strategies to reduce the symptom onset-to-reca-
nalization time profoundly affect the stroke out-
come.3 In contrast, approaches aiming at 
promoting neuronal survival in the first hours by 

neuroprotectants have lost priority in the stroke 
field, given that neuroprotectants repeatedly 
failed in clinical trials.4 Ischemic stroke is fol-
lowed by a plethora of secondary events that 
exacerbate brain injury and promote neurode-
generation over several days to weeks poststroke.5 
Considering the fact that, despite optimized 
recanalization therapy, most stroke patients still 
exhibit neurological deficits in the postacute 
stroke phase, there is still an urgent need for 
restorative treatments that promote brain remod-
eling, plasticity and repair.

Postischemic neuroinflammation comprises the 
early (within minutes to hours poststroke) infil-
tration of the injured brain by polymorphonu-
clear neutrophils (PMNs) and monocytes/
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macrophages.5–7 This is accompanied by the 
activation of microglia and expression of proin-
flammatory cytokines, adhesion molecules and 
integrins, which are supposed to contribute to 
ischemic reperfusion injury.5,8,9 Massive infiltra-
tion of PMNs into ischemic brain tissue has 
recently been documented in human stroke 
patients.10 In peripheral blood, high PMN-to-
lymphocyte ratios (>4.8) before initiation of 
thrombolysis predicted poor outcome 3 months 
poststroke,11 supporting a detrimental role of 
PMNs in reperfusion injury and brain remode-
ling. Considering their early brain accumulation 
and central role in coordinating subsequent 
immune responses, PMNs might represent piv-
otal targets which profoundly modify recovery 
processes. In this study, we aim to summarize 
existing evidence regarding the roles of PMNs in 
the ischemic brain, defining how cell-type-spe-
cific immunodepletion and fluorescence micros-
copy studies have recently contributed to 
understanding how PMNs influence brain injury 
and neurological recovery.

Role of polymorphonuclear neutrophils for 
ischemic reperfusion damage
PMNs have been shown to be part of the early 
inflammatory response after focal cerebral 
ischemia several years ago.12,13 The prevention of 
PMN brain entry via blockade of adhesion mole-
cules such as intercellular adhesion molecule-1 
(ICAM-1) was found to confer neuroprotection 
in animal models of ischemic stroke,14,15 suggest-
ing a causative role of PMNs in the development 
of reperfusion injury. Detection of PMNs has 
been suggested to be confounded by the cross-
reaction of antibodies with epitopes of mono-
cytes/macrophages. As such, a frequently used 
antibody targeting the Gr-1 antigen recognizes 
both PMN Ly6G and monocytic Ly6C, and 
hence lacks PMN specificity. This is also true for 
myeloperoxidase staining, which detects PMNs, 
monocytes and microglial cells.16 Furthermore, 
inhibitors of PMN brain entry in these early times 
were not specific for PMNs, but also inhibited 
other cells, such as monocytes or macrophages.17 
Perhaps, as a consequence of lacking immune-
cell specificity or wrong timing of immune-cell 
inhibitor delivery that may have been initiated too 
late, early clinical trials preventing PMN brain 
entry (e.g. Enlimomab, ASTIN18) did not find 
improvements of neurological recovery in human 
stroke patients.18,19

Aiming to define the role of PMNs in the devel-
opment of ischemic reperfusion injury, Enzmann 
and colleagues exposed mice to focal cerebral 
ischemia using the transient intraluminal middle 
cerebral artery occlusion (MCAO) technique, 
distinguishing infiltrating PMNs from mono-
cytes/macrophages by cell-type-specific antibod-
ies (Ly6G and Ly6C, respectively).20 In their 
study, the authors did not find any significant 
numbers of PMNs in infarcted brain paren-
chyma, but only trapped in perivascular spaces or 
the luminal side of cerebral blood vessels.20 
Following similar observations in infarcted brain 
tissue of human stroke patients at different time-
points poststroke, the authors concluded that 
PMNs do not invade ischemic brain to any sig-
nificant extent. However, this view has been 
challenged by a number of other studies5,6,10,21 
and later, also, a partly revised view of the origi-
nal authors appeared.7

Important roles in ischemic reperfusion injury 
have been demonstrated for peripheral T cells, 
although the exact mechanisms remain unclear, 
and the main influx of T cells occurs much later 
than that of PMNs.6,22 In a combination of stud-
ies using lymphocyte-deficient Rag2−/− mice and 
wildtype mice, in which CD4+ and CD8+ T 
cells had been depleted by anti-CD4 and anti-
CD8 antibody, respectively, Liesz and colleagues 
had shown that invading T cells contribute to 
ischemic injury both via humoral secretion (e.g. 
release of interferon-γ) and cytotoxic (i.e. expres-
sion of perforin) mechanisms. Since depletion of 
mononuclear/myeloid cells by anti-Gr-1 antibody 
did not have any major effect on reperfusion dam-
age, these experiments were interpreted in favor 
of T cells but not PMNs as contributors to reper-
fusion damage.6

Using intravital two-photon microscopy com-
bined with conventional immunohistochemistry, 
we have subsequently shown after permanent dis-
tal or transient intraluminal MCAO in mice that 
PMNs rapidly attach to inflamed cerebral 
endothelium followed by transmigration of cells 
into the brain parenchyma.5 Invading PMNs rap-
idly interacted with local microglia and were 
phagocytosed by them,5,23 a behavior previously 
observed in tissue-based ischemia models in vitro.8 
Unlike in earlier studies, PMNs were unequivo-
cally found to contribute to ischemic brain injury: 
PMN depletion using an antibody directed spe-
cifically against the surface protein Ly6G potently 
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reduced ischemic injury in mice, in which CD3+ 
T cells had been depleted, as did blockade of 
PMN brain entry by an anti-very-late-antigen-4 
(VLA-4; i.e. α4-integrin) antibody.5

Importantly, there was a clear synergistic effect 
of CD3 and VLA-4 blockade in protecting mice 
from the behavioral deficits associated with 
experimental stroke, while such a synergism 
was lacking in the combination of anti-Gr-1 or 
anti-Ly6G antibodies with anti-VLA-4. Hence, 
VLA-4-mediated PMN entry into brain was a 
critical inducing factor of early behavioral defi-
cits, while T-cell entry was not.5 VLA-4-
mediated PMN brain entry was unexpected, 
since VLA-4 had previously been shown to 
mediate T-cell brain entry.24 Meanwhile VLA-
4-mediated PMN brain entry has been con-
firmed by other groups,7 and brain-invading 
PMNs have been shown to form extracellular 
DNA traps10 that are supposed to damage cen-
tral nervous system neurons directly25 or via 
induction of coagulation processes.7,10 PMNs 
closely interact with platelets in the ischemic 
microvasculature,13 mutually activating each 
other, resulting in impaired reperfusion as a 
consequence of platelet-induced microthrom-
bosis and brain hemorrhage as a consequence 
of PMN-induced extracellular matrix break-
down.26 PMN infiltration to the brain was 
found to be platelet dependent, and was 
reversed by blockade of the platelet receptor 
glycoprotein Ibα.27 The role of PMNs for stroke 
outcome has recently also been confirmed in an 
elegant transgenic animal model. Here, it was 
shown that PMN-expressed CD39 (a cell-sur-
face adenosine triphosphatase) inhibits PMN 
invasion into the brain and hence leads to sig-
nificantly reduced behavioral deficits in experi-
mental stroke.28

PMN depletion by anti-Ly6G antibody and 
blockade of PMN brain entry by anti-VLA-4 anti-
body consistently improved motor coordination 
deficits in mice exposed to transient intraluminal 
MCAO, as evaluated by a battery of motor coor-
dination tests.5 In contrast, T-cell depletion did 
not induce such motor coordination changes in 
the same study, despite reduction of brain infarct 
volume.5 These latter data suggest that PMNs 
might have particularly pronounced deleterious 
effects on brain remodeling and plasticity, in 
addition to the exacerbation of ischemic brain 
damage.

The Effect of Natalizumab on Infarct Volume 
in Acute Ischemic Stroke (ACTION) trial
Based on these and other findings, a randomized, 
double blind phase II multicenter study, ACTION, 
was conducted and recently reported functional 
benefits of human stroke patients in 161 patients 
aged 18–85 years assigned to the VLA-4 inhibitor 
natalizumab (300 mg, intravenously) or placebo 
within 9 h after ischemic stroke onset.29,30 
Natalizumab, which is clinically used in multiple 
sclerosis patients because of its specificity of VLA-4 
actions that profoundly impede leukocyte entry 
into the inflamed brain, did not influence the pri-
mary endpoint of the study, that is, infarct volume 
growth from baseline to day 5 compared with pla-
cebo [median absolute growth 28 ml (range −8 to 
303 ml) versus 22 ml (−11 to 328 ml); relative 
growth ratio 1.09 (90% CI 0.91–1.30), p = 0.78] 
and did not change the National Institutes of 
Health Stroke Scale (NIHSS) score at various time 
points. Yet, more patients in the natalizumab 
group than in the placebo group had a modified 
Rankin scale (mRS) score of 0 or 1 (indicative of 
little or no functional neurological deficits) at day 
30 [13 (18%) versus 7 (9%); odds ratio 2.88 (90% 
CI 1.20–6.93), p = 0.024] and day 90 [18 (25%) 
versus 16 (21%); 1.48 (0.74–2.98), p = 0.18], or a 
Barthel index score ⩾ 95 (indicative of functional 
independence) at day 90 [34 (44%) versus 26 
(33%); 1.91 (1.07–3.41), p = 0.033], which were 
secondary endpoints of this study. Natalizumab 
and placebo groups had similar incidence rates of 
adverse events, serious adverse events and deaths.30

The ACTION trial concluded that a phase III mul-
ticenter trial should be conducted in view of func-
tional benefits induced by VLA-4 blockade. 
However, another very recent phase II study, 
ACTION-2, failed to show beneficial effects of 
natalizumab in approximately 270 acute stroke 
patients (http://media.biogen.com/news-releases/
news-release-details/biogen-reports-top-line-
results-phase-2b-study-natalizumab-acute). This 
has stopped the manufacturer of the drug from 
pursuing further phase II trial activities using natal-
izumab for stroke treatment. However, as long as 
more detailed data on this second trial are not avail-
able, it is difficult to ponder potential reasons for 
the lack of clinical efficacy. As a matter of fact, the 
lack of clinical efficacy may be a simple conse-
quence of the lack of statistical power in both rather 
small phase II trials. Apparently, the ability of 
natalizumab in preventing PMN brain entry could 
not be determined in both ACTION trials. 
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Importantly, only a subset of human PMNs express 
VLA-431 and even simple brain-affecting measures 
such as sleep deprivation have been shown to 
reduce the expression level and number of VLA-4-
expressing PMNs in humans.32 Hence, it might be 
premature to surmise on these negative findings.

Role of polymorphonuclear neutrophils 
in ischemic injury associated with 
hyperlipidemia and hyperglycemia
Compared with normolipidemic wildtype mice, 
hyperlipidemic apolipoprotein-E−/− (ApoE−/−) 
mice develop particularly severe brain injury in 
response to focal cerebral ischemia, which is asso-
ciated with elevated granulocyte counts in spleen 
and blood.33 Importantly, studies in ApoE−/− mice 
revealed that Ly6G antibody-induced PMN 
depletion or inhibition of PMN brain entry by 
pharmacological CXC motif receptor-2 (CXCR2) 
blockade or delivery of a neutralizing CXCR2 
antibody abolished the augmentation of ischemic 
brain injury induced by hyperlipidemia, indicat-
ing that PMNs are responsible for the exacer-
bated brain injury attributed to this stroke risk 
factor.21 In hyperglycemia, similar observations, 
that is, exacerbated brain PMN inflammation 
associated with increased brain injury, were 
made.26 So far, the molecular mechanisms by 
which invading PMNs compromise brain remod-
eling are unknown. It has previously been shown 
that PMNs are not harmful to neurons in healthy 
hippocampal brain slices but adopt a deleterious 
phenotype that destroys neurons when invading 
ischemic brain slices.8 Thus, ischemic microenvi-
ronments appear to trigger mechanisms in PMNs 
which augment brain damage and prevent restor-
ative processes.

Transgenic Ly6GtdTomato mouse allows 
evaluating role of polymorphonuclear 
neutrophils in ischemic brain
Until recently, the investigation of PMN function in 
mice was hampered by the lack of animal models 
that would allow the cell-type-specific visualization 
and manipulation. Previously available models such 
as the LysEGFP mouse34 that we used in our intravital 
studies were helpful for imaging but suffered from 
the fact that not all enhanced green fluorescent pro-
tein (EGFP)-expressing cells were PMNs.5 The 
same is true for mice expressing Cre-recombinase 
from the LysM locus.35 Also here, deletion of genes 
is not specific for PMNs. A recent study has tested 

all mouse lines available at the time for their speci-
ficity regarding PMN action and found none to be 
totally convincing.36

In light of this fact, a novel mouse model has been 
generated, in which the highly PMN-specific locus 
for the gene Ly6G was genetically manipulated to 
drive the expression of both, Cre-recombinase 
and the red fluorescent protein tdTomato. This 
novel mouse line has been termed ‘Catchup’ and 
is superior in PMN specificity to any other animal 
model available so far.37 Next to the PMN-specific 
deletion of conditional alleles in vivo, it also allows 
the intravital imaging of red fluorescent 
PMNs.23,37–42 Importantly, PMNs in this mouse 
are functionally entirely normal and also present 
in physiological numbers. This Catchup mouse 
line can successfully be crossed to mice with a 
floxed allele of alpha-4 integrin43 which leads to a 
PMN-specific deletion of VLA-4 without affect-
ing T cells. Otherwise, the mice are phenotypi-
cally normal. In the future, this mouse line will 
allow testing the impact of VLA-4 as entry recep-
tor for PMN to ischemic brains but also any other 
molecule found associated with brain infiltration 
of PMN in a cell-selective manner.

A prerequisite for studying the molecular func-
tion of PMNs in inflamed tissues is the ability to 
quickly isolate the cells at high purity. Any sorting 
approach using direct cell labeling (e.g. by anti-
bodies) is problematic, as antibody binding 
severely influences PMN function.44 The Catchup 
mouse offers the unique possibility of isolating 
highly pure PMNs in a simple one-step sorting 
procedure based on their endogenous red fluores-
cence without additional labeling (i.e. the PMN 
remain ‘untouched’). Using this approach is suc-
cessful if we have managed to perform isolations 
of pure PMNs from bone marrow and solid tis-
sues in a fast one-step sorting approach that can 
be used for studying dynamic responses of PMNs 
to ischemic brain injury.

In order to measure and quantify the interaction of 
PMNs with other mononuclear cells in vivo, it is 
essential to visualize two cell types simultaneously 
and in different colors. By crossing Catchup mice 
to mice with microglia-specific EGFP expression 
(CX3CR1EGFP mice),45 it has become possible to 
generate mice that allow studying interactions of 
PMNs and microglia [Figure 1(a)]. Importantly, 
these mice do not exhibit any overlap of EGFP and 
tdTomato expression.46 Instead, analysis 

https://journals.sagepub.com/home/tan


DM Hermann, C Kleinschnitz et al.

journals.sagepub.com/home/tan 5

of circulating leukocytes by flow cytometry shows 
perfectly separated EGFP and tdTomato-express-
ing cells [Figure 1(b)]. Hence, green and red cells 
are clearly separated, thereby allowing the simulta-
neous observation of both PMNs and microglial 
cells [Figure 1(c), (d)]. Furthermore, in the brains 
of CX3CR1EGFP mice reconstituted with bone 
marrow from CatchupIVM mice, we detected clearly 
separated PMN and microglia signals, including 
their physical contacts after stroke (unpublished).

Next to visualizing the dynamics of cellular inter-
actions by intravital microscopy, it will be cen-
trally important to reliably study restorative 
processes of the ischemic brain, where microves-
sels and parenchymal cells (specifically, neurons) 
exhibit profound remodeling.47–49 Since the 

inhibition of PMN brain entry reduces ischemic 
injury, at the same time enhancing neurological 
recovery,5 the enhanced recovery should go along 
with better preservation of microvessels, reduced 
vascular remodeling, reduced neurodegeneration 
and improved neuronal plasticity.

In an initial attempt to understand the pathophysi-
ological role of PMN in stroke, we investigated the 
production of neutrophil extracellular traps 
(NETs), which are DNA strands decorated with 
citrullinated histone-H3 (H3-Cit) that are released 
by PMNs under pathophysiological conditions.50 
NETs have previously been reported in brains of 
patients and animal models of Alzheimer’s dis-
ease51 and stroke,10 and NET-associated proteins 
are known to be neurotoxic.25 Indeed, we found 

Figure 1. CX3CR1EGFP mice with microglia-specific EGFP expression crossed with Catchup mice show selective 
expression of tdTomato in polymorphonuclear neutrophils and EGFP staining in macrophages, dendritic cells 
and microglia.
(a) Breeding scheme for generating mice with red fluorescent PMNs and green fluorescent macrophages/microglia; (b) two-
photon microscopy analysis of a section through the bone marrow; and (c) enlarged section in the yellow square. Note, there 
is no overlap of red (tdTomato) and green (EGFP) staining. The morphology of some green cells is dendritic like, while others 
are circular. Red cells are uniformly circular. Orange areas are nonspecific autofluorescent structures (not cells). Sections 
were counterstained with DAPI. Scale bars: 100 µm (b) and 20 µm (c).
DAPI, 4′,6-diamidino-2-phenylindole; F1, first filial generation; EGFP, enhanced green fluorescent protein; P, parental generation; 
PMN, polymorphonuclear neutrophil; SHG, second harmonic generation signal; tdTomato, red fluorescent reporter protein.
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ample NET production in stroke-affected brain 
areas with infiltrated PMNs (Figure 2). We 
hypothesize that NET production contributes to 
PMN-induced ischemic brain damage. These 
experimental systems and working hypotheses will 
form the basis of future work on clarifying the role 
of PMNs for the exacerbation of stroke.

Conclusion
From a large number of experimental studies, 
there is ample evidence for a fundamental, 
mostly detrimental role of PMNs in the ischemic 
brain. Unfortunately, so far this observation 
could not be translated into novel treatment 

options for human stroke patients. Future 
research should more thoroughly characterize 
this important inflammatory cell type to deter-
mine the Achilles heel of their function that can 
be successfully targeted in the clinical setting. 
Such interventions should, however, be evalu-
ated with caution, since physiological function-
ing of peripheral PMNs is essential for immune 
defense in stroke patients.
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Figure 2. Neutrophil extracellular trap production in stroke-affected murine brains.
Mice were subjected to 30 min transient intraluminal MCAO. After 7 days, mice were sacrificed, brains were harvested 
and sectioned. Sections were stained with DAPI (in blue, labeling cell nuclei), Sytox orange (in yellow, labeling DNA) and 
anticitrullinated histone H3 antibodies (in red, labeling H3-Cit). Numerous cell profiles exhibiting H3-Cit, which are found 
in NETs, were detected in ischemic brain tissue. By automated image analysis, these profiles were scored for the intensity 
and area of the H3-Cit signal in defined regions of interest in ischemic and contralesional nonischemic (control) striatum. 
NETs were identified as structures in which the Sytox signal was no longer completely overlapping with the DAPI and H3-Cit 
signal. In these structures, the H3-Cit signal was more dispersed than in intact nuclei. The left graph shows the area of H3-
Cit signal that was determined for 268 ischemic nuclei and 388 nonischemic nuclei. The right graph shows the correlation 
of the H3-Cit area with the overall H3-Cit signal intensity per nucleus. The ischemic brain tissue contains nuclei with much 
brighter and larger H3-Cit areas suggesting ample NET production in response to focal cerebral ischemia. ****P<0.001. 
DAPI, 4′,6-diamidino-2-phenylindole; DNA, deoxyribonucleic acid; H3-Cit, citrullinated histone-H3; MCAO, middle cerebral 
artery occlusion; NET, neutrophil extracellular trap. 
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