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Abstract

Substantial evidence supports the view that inflammatory processes contribute to brain

alterations in HIV infection. Mechanisms recently proposed to underlie neuropathology in

Alcohol Use Disorder (AUD) include elevations in peripheral cytokines that sensitize the

brain to the damaging effects of alcohol. This study included 4 groups: healthy controls, indi-

viduals with AUD (abstinent from alcohol at examination), those infected with HIV, and

those comorbid for HIV and AUD. The aim was to determine whether inflammatory cyto-

kines are elevated in AUD as they are in HIV infection. Cytokines showing group differences

included interferon gamma-induced protein 10 (IP-10) and tumor necrosis factor α (TNFα).

Follow-up t-tests revealed that TNFα and IP-10 were higher in AUD than controls but only in

AUD patients who were seropositive for Hepatitis C virus (HCV). Specificity of TNFα and IP-

10 elevations to HCV infection status was provided by correlations between cytokine levels

and HCV viral load and indices of liver integrity including albumin/globulin ratio, fibrosis

scores, and AST/platelet count ratio. Because TNFα levels were mediated by HCV infection,

this study provides no evidence for elevations in peripheral cytokines in "uncomplicated",

abstinent alcoholics, independent of liver disease or HCV infection. Nonetheless, these

results corroborate evidence for elevations in IP-10 and TNFα in HIV and for IP-10 levels in

HIV+HCV co-infection.

Introduction

Patients with chronic HIV infection typically show elevations in plasma cytokine levels [1–4].

HIV infection of the central nervous system (CNS) appears to begin with the transmigration

of peripheral HIV-infected cells (e.g., monocytes or macrophages) across the blood brain bar-

rier [5–12] and consequent infection of microglia [13–18]. Activation of macrophages and

microglia and the release of chemokines, cytokines, and neurotoxins [19] promote further

HIV replication [20], trafficking of macrophages into the CNS [21], glial activation [22],

altered neuronal signaling and repair processes [23–26], and ultimately, compromised neuro-

nal integrity [27–31]. Select studies in HIV patients have reported correlations between
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elevated plasma cytokine concentrations and cognitive deficits [32–35]. Elevations in plasma

Tumor Necrosis Factor α (TNFα) [32, 36, 37] and Interferon γ-induced Protein 10 (IP-10)

[33, 38–40] are frequently reported in the HIV literature and are considered biomarkers of

HIV viral load (Table 1 provides an acronym key).

Mechanisms of neuroimmune signaling in the pathogenesis of Alcohol Use Disorder

(AUD) and associated brain atrophy have been proposed based primarily on animal studies

[41–46]. In mice and rats, ethanol (EtOH) has been shown to activate Toll-like receptor 4

(TLR-4)[47–49], but see [50], which activates signaling molecules (e.g., members of the P38

mitogen-activated protein kinase (MAPK) family) and downstream transcription factors such

as nuclear factor kappa beta (NFκβ) [51–55], to increase production of proinflammatory cyto-

kines [56] and oxidative stress [57]. EtOH exposure in rodents has been shown to activate

microglia [56, 58, 59] and upregulate proinflammatory cytokine mRNA and protein levels

(e.g., monocyte chemotactic protein-1 [MCP-1]/chemokine ligand-2 [CCL2], TNFα, and

Table 1. Acronym key.

AIC Akaike Information Criterion

AGR Albumin / Globulin Ratio

AUD Alcohol Use Disorder

APRI AST/Platelet count Ratio Index

CSF Cerebrospinal Fluid

EGF Epidermal Growth Factor

EtOH Ethanol

FGF Fibroblast Growth Factor

Fib-4 Fibrosis score

Flt3 Fms-related tyrosine kinase 3 ligand

GCSF Granulocyte Colony-Stimulating Factor

GMCSF Granulocyte Macrophage Colony-Stimulating Factor

GRO Growth Regulated Oncogene

HCV Hepatitis C Virus

HIV Human Immunodeficiency Virus

IP-10 IFN-γ-induced protein 10

IFN Interferon

IL Interleukin

MIP Macrophage Inflammatory Protein

MDC Macrophage-Derived Chemokine

MFI Mean Fluorescence Intensity

MAPK Mitogen-Activated Protein Kinase

MCP Monocyte Chemoattractant Protein

NFκβ Nuclear Factor kappa beta

PDGF Platelet-Derived Growth Factor

RANTES Regulated on Activation, Normal T cell Expressed and Secreted

SES Socio-economic Status

CD40L soluble CD40 ligand

SCID Structured Clinical Interview for DSM-IV

TLR-4 Toll-like Receptor 4

TGF Transforming Growth Factor

TNF Tumor Necrosis Factor

VEGF Vascular Endothelial Growth Factor

VACS Veterans Aging Cohort Study Index

https://doi.org/10.1371/journal.pone.0191586.t001
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interleukin (IL)-1β [IL-1β]) in several brain regions [60, 61], including frontal cortex [62, 63],

cortical mantle [64, 65], hippocampus [66–69], cerebellum [49], and amygdala [70–72]. Addi-

tional support for the involvement of neuroimmune signaling in the pathogenesis AUD

includes evidence for a proinflammatory environment underlying myelin disruption in EtOH-

exposed mice [47]; alcohol-preferring P rats exhibiting innately elevated MCP-1 levels in the

amygdala [73]; and reductions in MCP-1 in the amygdala (via silencing RNA) associated with

reduced binge drinking in the P rat [74–79].

In humans, gene expression studies evaluating postmortem brain tissue from AUD relative

to healthy controls showed a strong representation of immune- and inflammation- related

genes in the AUD brain [80, 81]. A number of studies have evaluated whether polymorphisms

in innate immune genes (e.g., NFκβ, TNFβ) contribute to the genetic risk for alcoholism, with

equivocal results [82–85] but see [86–90]. These findings were elaborated by an influential

paper showing in AUD relative to control human brain tissue higher MCP-1 protein levels in

the ventral tegmental area (VTA), substantia nigra, hippocampus, and amygdala, and altered

microglial morphology in the cingulate cortex, VTA, and midbrain [48, 91, 92]]. In vivo, with-

drawal from alcohol has been associated with higher cerebrospinal fluid (CSF) levels of MCP-1

in alcoholics relative to healthy controls [93]. Stimulation of macrophages and mononuclear

cells isolated from human subjects with AUD results in augmented proinflammatory cytokine

production compared to cells from healthy controls [94, 95]. Peripheral (plasma/serum) cyto-

kines reported as elevated in AUD include IL-1β [96], IL6 [97, 98], IP-10, and MCP-1 [99–

106]]. Higher than control levels of TNFα have frequently been reported [107, 108] but see

[109] and associated with AUD severity [97, 110, 111] and alcohol craving at early abstinence

[98].

The considerable comorbidity of HIV infection and alcoholism [112–118] negatively

impacts multiple biological systems, but particularly affects the progression of liver disease

[119–122], which has emerged as a major cause of morbidity and mortality among HIV-

infected patients [123]. In rodent models, EtOH exposure to HIV-infected animals resulted in

greater elevations in MIP-2 [124] or MCP-1 [125] than HIV infection alone. In macaque mod-

els, muscle TNFα mRNA expression was markedly increased above baseline levels at 10

months post-infection in simian immunodeficiency (SIV) + EtOH-exposed animals [126];

IFNα levels were higher in the spleen of EtOH-exposed relative to vehicle exposed SIV-

infected monkeys [127]. In humans, peripheral IL-6 levels were high in HIV-infected patients

with alcohol problems [128, 129].

To evaluate whether peripheral cytokines are elevated in AUD relative to the HIV pheno-

type, this study compared 4 groups of human participants: those with AUD or HIV, those with

HIV+AUD, and those without either condition (i.e., healthy controls). Based on the extant lit-

erature, we hypothesized that 1) HIV infection would be associated with elevated levels of IP-

10 and TNFα; 2) an AUD diagnosis would be associated with elevated levels of TNFα; and 3)

comorbidity for HIV+AUD would be associated with synergistic effects on elevating TNFα
levels. Secondary analyses considered contributions to observed differences from disease-

related factors, such as hematological indices of liver function.

Methods

Participants

This study was conducted in accordance with protocols approved by the Institutional Review

Boards of Stanford University and SRI International. Written informed consent was obtained

from all participants in accordance with the Declaration of Helsinki by the signing of consent

documents in the presence of staff after staff ensured that each participant understood the
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information provided and appreciated the reasonably foreseeable consequences of a participat-

ing in the study. Study participants were healthy controls (26 women/28 men, 50.7±10.9

years), individuals with AUD (27 women/54 men, 51.1±8.8 years; currently sober as demon-

strated by a negative Breathalyzer test given immediately following consent), those infected

with HIV (16 women/28 men, 55.8±7.3 years), and those comorbid for HIV and AUD (16

women/28 men, 55.4±6.3 years).

AUD participants were recruited from local substance abuse treatment programs. HIV

patients were referred from local outpatient or treatment centers, or recruited during presenta-

tions by project staff and by distribution of flyers at community events. Comparison partici-

pants were recruited from the local community by referrals and flyers. All participants were

then screened using the Structured Clinical Interview for DSM-IV (SCID) [130], structured

health questionnaires, and a semi-structured timeline follow-back interview to quantify life-

time alcohol consumption [131, 132]. Upon initial assessment, subjects were excluded if they

had a significant history of medical (e.g., epilepsy, stroke, multiple sclerosis, uncontrolled dia-

betes, or loss of consciousness > 30 minutes), psychiatric (i.e., schizophrenia or bipolar I disor-

der), or neurological disorders (e.g., neurodegenerative disease) other than alcohol abuse or

dependence in the AUD group. Other exclusionary criteria were recent (i.e., past 3 months)

substance dependence other than alcohol in the AUD group or any DSM-IV Axis I disorder in

the control group. Severity of depressive symptoms was assessed with the Beck Depression

Inventory-II [133] in all groups.

Table 2 presents demographic data for each of the 4 groups. The control and AUD groups

were younger than the HIV and HIV+AUD groups (p = .0019). The 3 patient groups relative

to the control group were less educated, had poorer socio-economic status (SES) [134] and

global functioning (i.e., GAF) [135], scored lower on the Wechsler Test of Adult Reading

(WTAR) [136] and the Dementia Rating Scale (DRS) [137], and had more depressive symp-

toms (as determined by the BDI-II) (all p�.0001). The Veterans Aging Cohort Study (VACS)

index, which predicts all-cause mortality, cause-specific mortality, and other outcomes in

those living with HIV infection [138] was higher in the 2 HIV groups (HIV and HIV+AUD)

than the control and AUD groups; the Karnofsky score, a standard to measure patients ability

to perform ordinary tasks [139] was low in the HIV+AUD group relative to the 3 comparison

groups.

Sample collection and processing

Whole blood samples (n = 294), collected in lavender EDTA tubes between March 2013 and

October 2016, were centrifuged (500 rcf at room temperature for 10min). Plasma was trans-

ferred to 1.5mL conical tubes, centrifuged at 13,000 rcf at room temperature for another

10min, and the resulting supernatant was transferred to 1.5mL conical tubes for storage at

−80˚ C until analysis by the Human Immune Monitoring Center. Additional blood samples

were collected and analyzed by Quest Diagnostics for complete blood count with differential,

comprehensive metabolic panel, HIV and hepatitis C (HCV) screening, and RNA quantifica-

tion when relevant (i.e., for HIV or HCV seropositive results). Quest laboratory results were

missing for 11 control, 3 AUD, 1 HIV, and 3 HIV+AUD participants.

Immunological assays

The Human Immune Monitoring Center (http://iti.stanford.edu/himc/), which continually

benchmarks processes to minimize technical variability (Maecker et al., 2005), performed

immunological assays. Human 41-plex kits (HCYTOMAG-60K, 7 kits, each able to run 42

samples) were purchased from EMD Millipore and used according to the manufacturer’s
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recommendations with modifications as described. Briefly, samples were mixed with anti-

body-linked magnetic beads on a 96-well plate and incubated overnight incubation at 4˚C

with shaking. Cold and room temperature incubation steps were performed on an orbital

shaker at 500–600 rpm. Plates were washed twice with wash buffer in a Biotek ELx405 washer.

Following one hour incubation at room temperature with biotinylated detection antibody,

streptavidin fluorochrome (i.e., streptavidin-PE) was added for 30 minutes with shaking.

Plates were washed as above and PBS added to wells for reading in the Luminex 200

Table 2. Demographic characteristics of the 4 study groups: Mean ± SD / frequency count.

Control (n = 54) AUD (n = 81) HIV (n = 44) HIV + AUD (n = 44) p-value�

N (men/women) 28/26 54/27 28/16 28/16 0.4684

Age (years) 50.7±10.9 51.1±8.8 55.8±7.3 55.4±6.3 0.0019

Education (years) 16.1±2.4 12.9±2.4 13.8±2.3 13.1±2.1 < .0001

Handedness (Right/Left/Ambidexterous) 48/3/3 70/9/2 40/3/1 39/5/0 0.4885

Body Mass Index 26.9±5.0 28.2±5.0 26.2±4.8 27.1±4.5 0.2075

Socioeconomic Statusa 25.8±11.7 45.5±15.0 38.6±14.7 44.0±12.9 < .0001

WTAR IQ 110.6±14.6 94.0±18.6 94.9±17.8 87.0±17.5 < .0001

Dementia Rating Scale 139.5±3.2 134.8±5.6 137.4±4.3 134.5±4.4 < .0001

Global Assessment of Functioning 84.9±7.0 70.6±11.2 73.9±10.6 68.7±10.5 < .0001

AUD onset age - 24.9±9.1 - 23.9±10.4 0.5640

Lifetime Alcohol Consumption 32.6±40.1 1424.2±1079.8 72.3±73.9 1147.6±1023.5 < .0001

Days since last Drink 44.1±117.1 96.1±96.3 78.6±141.2 75.3±161.3 0.2229

AUDIT scoresb 2.4±2.5 16.4±11.2 2.2±2.5 9.9±10.3 < .0001

History of ER Detoxificationsc - 13/68 - 4/40 0.225

Withdrawal Scoresd - 3.4±2.6 - 1.9±2.4 0.0015

Beck Depression Inventory-II 1.5±2.1 9.5±8.6 8.7±7.3 10.9±8.5 < .0001

Karnofsky score 100.0±0 99.7±2.4 99.8±1.5 98.5±4.2 0.0366

VACS Index 14.56±10.84 17.67±12.53 33.44±17.49 29.24±14.40 < .0001

HIV onset age (years) - - 35.9±10.0 33.6±7.3 0.2256

HIV duration (days) - - 7336.3±2785.1 8034.8±2421.0 0.2211

CD4 cell count (100/mm3) - - 669.9±265.3 675.7±335.4 0.2235

CD4 cell count nadir (100/mm3) - - 240.2±194.8 199.9±184.1 0.3867

Viral Load (log copies/mL) - - 1.7±0.9 1.9±1.1 0.3254

AIDS-defining event (yes/no)e - - 16/28 26/18 < .0001

HAART (yes/no) - - 40/4 40/4 0.9449

Efavirinz, including Atripla (yes/no) - - 9/35 10/34 0.7956

Hepatitis C Virus (positive/negative) - 16/65 13/31 21/23 < .0001

Treatment for HCV infectionf - 4/16 4/13 5/21 0.8984

Smoker (never/past/current) 51/1/2 16/23/42 25/7/12 13/10/21 < .0001

Self-Defined Ethnicity (Caucasian/AA)g 44/10 40/41 26/18 14/30 < .0001

�4-group comparisons: ANOVA used on continuous variables (e.g., age); χ2 used on nominal variables (e.g., handedness)
alower score = higher status
bAUDIT = Alcohol Use Disorders Identification Test
cSelf report of visit to emergency room for alcohol-related problems.
dSum of 8 possible withdrawal signs (autonomic signs, tremor, insomnia, nausea, agitation, anxiety, seizures, hallucinations)
eincluding AIDS-defining illness or CD4 prior nadir <200cells/μl
fSelf report of HCV treatment
gAA = African American

https://doi.org/10.1371/journal.pone.0191586.t002

Plasma cytokines in HIV + AUD

PLOS ONE | https://doi.org/10.1371/journal.pone.0191586 February 6, 2018 5 / 24

https://doi.org/10.1371/journal.pone.0191586.t002
https://doi.org/10.1371/journal.pone.0191586


Instrument with a lower bound of 50–100 beads per sample per cytokine. Each sample was

measured in duplicate. Custom assay control beads by Radix Biosolutions were added to all

wells.

The 41 cytokines included in each kit belong to 4 families: hematopoietin (interleukin (IL)-

1α, IL-1β, IL-1RA, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL12-p40, IL12-p70, IL13, IL15, IL17,

soluble CD40 ligand (CD40L), Fms-related tyrosine kinase 3 ligand (Flt3 ligand), granulocyte

colony-stimulating factor (GCSF), granulocyte macrophage CSF (GMCSF)), chemokines (epi-

dermal growth factor (EGF), eotaxin (CCL11), fibroblast growth factor (FGF)-2, fractalkine,

RANTES (regulated on activation, normal T cell expressed and secreted/CCL5), growth regu-

lated oncogene (GRO/CXCl1), IL8, Interferon-γ-induced protein 10 (IP-10/CXCL10), mono-

cyte chemoattractant protein 1 (MCP-1/CCL2), MCP-3 (CCL7), macrophage-derived

chemokine (MDC/CCL22), macrophage inflammatory protein (MIP)-1α, MIP-1β, transform-

ing growth factor (TGF)-α, vascular endothelial growth factor (VEGF)), growth factors (plate-

let-derived growth factor (PDGF)-AA, PDGF-BB, Tumor Necrosis Factor α (TNF-α), TNF-β),

and interferons (IFN-α2, IFN-γ).

Liver status Assessments

We used standard laboratory results from Quest blood assays to calculate 2 noninvasive indices

of liver fibrosis. The Fibrosis index (FIB-4: based on age, aspartate aminotransferase (AST),

alanine aminotransferase (ALT), and platelet count) [140] and the AST/platelet count ratio

(APRI) score both have high predictive accuracy for diagnoses of HCV e.g., [141, 142].

Fib� 4 ¼
age

ðyearsÞ � AST
ðU=LÞ

platlet count
ð109=LÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ALTðU LÞ=

p

APRI score ¼
AST

ðIU=LÞ
=AST

upper limit of normal¼40ðIU=LÞ

platelet count
ð109=LÞ

� 100

Statistical analysis

Of 294 samples, 6 individuals (1 AUD man, 2 HIV men, 1 HIV women, 1 HIV+AUD man,

1 HIV+AUD women) were excluded (e.g., low IQ, abnormal brain scan, diseases such as

epilepsy or Progressive Multifocal Leukoencephalopathy). Longitudinal follow-up samples

from individual subjects were also removed, yielding a total of 223 unique, single-visit

samples (control n = 54, AUD n = 81, HIV n = 44, HIV+AUD n = 44). Based on a previous

publication evaluating cytokine levels in AUD patients [98], and G�Power 3.1, we calcu-

lated an effect size of 3.8. Using this effect size with an alpha error probability of 0.5 and

our control (n = 54) + AUD (n = 81) sample sizes, the current study was found to have a

power of 1.

Based on the recommendation of the HIMC, the average of 2 readings for mean fluores-

cence intensity (MFI) for each analyte was used because these values have less variance than

pg/mL measures (presented in S1 Table). In addition, corrected (studentized-residual) MFI

values, based on results of an Akaike information criterion (AIC) model including kit number

(nominal: 1–7), age (continuous), sex (nominal: M/F), socio-economic status (SES, continu-

ous), and ethnicity (nominal: White/Black) were considered (S2 Table).

Diagnoses effects were evaluated using analysis of variance (ANOVA). Two-group compar-

isons used t-tests. Correlations were evaluated using Spearman’s ρ. Multiple regressions were

used when relevant.
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Results

4-group differences in cytokine levels

Results of separate 4-group ANOVAs for each of the 41 analytes are presented in Table 3.

Post-hoc tests indicated that the most common results were lower levels of cytokines (i.e., IL-

1α, IL-1β, IL2, IL3, IL9, IL12P40, and IL13) in the HIV and HIV+AUD groups relative to the

control group. Cytokines that were higher in the 2 HIV groups (i.e., HIV and HIV+AUD) rela-

tive to the control group included IP-10 and MCP-1. TNFα was high in the 3 patient groups

relative to the control group (Fig 1). IP-10 and TNFα results were similar when studentized-

residual values were considered (S2 Table).

2-group differences in cytokine levels

For direct evaluation of single diagnoses effects on peripheral cytokine levels, additional statis-

tics used t-tests to compare control and individual patient groups (Table 4). Table 4 also

includes remaining comparisons (e.g., AUD vs. HIV; AUD vs. HIV+AUD; HIV vs. HIV

+AUD). An AUD diagnosis, relative to healthy controls, was associated with higher levels of

CD40L, GRO, PDGFAA, PDFGBB, IP-10, and TNFα and lower levels of IFN-γ and MIP-1α.

This pattern of cytokines associated with an AUD diagnosis was significantly different from

that presenting in HIV infection. In HIV relative to healthy controls, EGF, MCP-1, IP-10, and

TNFα levels were high and GCSF, GMCSF, IL-1α, IL-1β, IL2, IL3, IL4, IL9, IL12p40, IL13,

MCP-3, and TNFβ were low. The results relative to controls in the comorbid HIV+AUD

group were very similar to those in the HIV only group: MCP-1, IP-10, and TNFα levels were

high and EGF, FGFB, IFN-y, IL-1α, IL-1β, IL2, IL3, IL4, IL6, IL9, IL10, IL12p40, IL13, IL17,

and TNFβ were low. In comparing HIV relative to HIV+AUD, only IP-10 was significantly

different between groups, and was higher in HIV+AUD relative to HIV only. The only cyto-

kines that were affected in all 3 (individual) patient groups relative to controls were IP-10 and

TNFα. Results of 2-group comparisons were circumscribed when studentized-residual values

were evaluated: relative to healthy controls, only TNFα levels were high in AUD and only IP-

10 and TNFα levels were high in HIV or HIV+AUD (S3 Table).

Cytokine correlations

The functional significance of changes to peripheral cytokine levels was evaluated by exploring

relationships with other blood markers; AUD-related variables (e.g., AUD onset age, lifetime

alcohol consumption, days since last drink, scores on the AUD Identification Test [AUDIT],

history of emergency room detoxifications/treatments, withdrawal scores); HIV-related vari-

ables (e.g., Karnofsky score, VACs Index, HIV onset age, HIV duration, CD4 cell count, CD4

cell count nadir, viral, AIDS-defining events); and general demographic variables such as body

mass index (BMI) and smoking status.

In the AUD group only, IP-10 (p = .0004) and TNFα (p = .003) levels were higher in AUD

HCV-seropositive relative to AUD HCV-seronegative participants (Fig 2A). In addition, IP-

10 levels correlated with depressive symptoms (i.e., total BDI-II score: ρ = .26, p = .03), alkaline

phosphatase (AP: ρ = .28, p = .01), AST (ρ = .54, p< .0001), ALT (ρ = .42, p = .0002), and

gamma-glutamyltransferase (GGT: ρ = .45, p< .0001). Similarly, TNFα levels in the AUD

group only correlated with AP (ρ = .23, p = .04), AST (ρ = .31, p = .0006), ALT (ρ = .32, p =

.005), and GGT (ρ = .35, p = .002). Of all the relationships evaluated between remaining cyto-

kines affected by an AUD diagnosis and other blood markers, AUD-related variables, or gen-

eral demographic variables, the only other significant correlation was between higher

withdrawal scores and lower levels of MIP-1α (ρ = -.28, p = .01).
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In the HIV group only, IP-10 (p = .03) levels were also higher in HIV+HCV co-infected rel-

ative to mono-infected HIV seropositive individuals; MCP-1 (ρ = .46, p = .003), IP-10 (ρ = .42,

Table 3. Cytokine levels� in the 4 study groups: Mean ± SD and ANOVA results.

cytokine Control (n = 54) AUD (n = 81) HIV (n = 44) HIV + AUD (n = 44) ANOVA

F Ratio p value

CD40L 68.85±51.01 139.95±267.02 204.74±923.29 62.30±44.57 1.09 0.35

EGF 28.56±30.31 25.64±23.01 76.67±320.78 17.09±8.44 1.61 0.19

EOTAXIN 81.38±55.35 92.74±79.23 127.24±101.47 103.28±81.39 2.93 0.03

FGFB 23.87±24.36 21.61±11.25 19.11±15.45 18.18±19.99 1.04 0.38

FLT3L 32.34±47.42 29.66±16.39 47.22±105.38 26.79±13.04 1.34 0.26

Fractaline 17.73±10.84 21.06±16.90 18.37±13.37 15.44±5.68 1.87 0.14

GCSF 32.36±21.34 26.46±10.43 24.62±10.85 28.58±22.05 2.15 0.09

GMCSF 26.44±10.65 37.19±100.92 22.31±5.71 23.81±9.84 0.79 0.50

GRO 336.12±464.17 664.88±873.39 423.09±708.46 415.28±530.30 2.89 0.04

IFNA2 20.17±12.31 26.06±36.94 18.66±8.02 18.69±6.45 1.48 0.22

IFNG 79.88±75.19 42.45±37.29 49.30±78.31 45.07±51.70 4.75 0.003

IL10 36.72±38.59 30.58±17.56 28.84±25.20 25.60±7.89 1.78 0.15

IL12P40 30.46±26.63 27.12±15.56 21.90±7.35 20.24±6.36 3.98 0.009

IL12P70 22.63±19.55 21.65±14.96 16.90±7.65 17.98±18.19 1.58 0.20

IL13 29.54±47.57 21.34±25.20 15.82±9.78 14.42±5.22 2.92 0.04

IL15 32.78±24.27 32.06±16.33 27.15±7.48 27.48±13.31 1.60 0.19

IL17 61.01±88.69 39.74±39.58 42.72±69.16 30.39±27.26 2.37 0.07

IL1A 32.25±25.17 28.14±13.64 24.22±6.97 23.10±5.71 3.62 0.01

IL1B 24.13±22.38 22.29±13.74 16.20±5.52 15.22±4.50 4.96 0.002

IL1RA 27.25±18.66 27.10±26.55 31.43±48.26 25.05±15.42 0.38 0.77

IL2 25.08±23.45 21.77±14.57 17.02±7.05 16.68±7.58 3.51 0.02

IL3 24.25±15.13 22.02±11.52 19.05±4.46 19.43±3.79 2.66 0.05

IL4 37.12±33.04 29.38±15.09 26.43±12.61 26.24±14.71 3.13 0.03

IL5 20.78±34.52 16.04±12.18 18.74±35.47 13.25±6.94 0.89 0.45

IL6 36.29±36.56 26.90±18.42 30.22±40.19 22.64±21.15 1.98 0.12

IL7 23.69±14.89 23.03±11.32 20.03±7.59 20.86±11.64 1.11 0.34

IL8 150.14±146.85 124.39±100.51 146.60±141.51 147.70±137.15 0.60 0.62

IL9 28.88±26.92 26.03±21.88 18.52±5.90 17.75±5.32 4.25 0.006

IP10 386.13±486.47 665.69±719.76 1250.73±1478.36 2057.29±2224.48 16.46 < .0001

MCP1 774.71±545.61 909.48±468.12 1112.89±876.39 1153.47±747.67 1.00 0.01

MCP3 37.76±65.63 25.46±45.38 17.65±13.32 19.57±23.56 2.12 0.10

MDC 776.05±414.41 861.33±452.91 835.62±467.82 900.73±471.60 0.69 0.56

MIP1A 61.01±47.40 53.42±112.77 47.52±29.03 259.68±1243.43 1.61 0.19

MIP1B 52.44±62.30 41.26±16.26 41.08±33.53 90.75±346.86 1.07 0.36

PDGFAA 2727.60±1991.09 3826.70±3065.67 3029.29±3467.43 2861.59±1902.72 2.24 0.08

PDGFBB 414.39±533.71 636.60±637.51 594.13±1598.30 447.69±414.45 0.93 0.42

RANTES 8942.89±4267.98 8775.41±4176.13 9362.59±3455.16 9652.91±3444.59 0.57 0.64

TGFA 22.27±19.39 26.54±23.24 41.36±137.76 25.21±42.41 0.77 0.51

TNFA 55.66±15.13 63.78±20.58 81.68±31.27 75.26±28.28 12.03 < .0001

TNFB 32.90±46.55 26.25±33.23 29.02±76.68 17.93±11.88 0.90 0.44

VEGF 29.74±32.42 26.19±16.79 32.13±78.11 22.09±28.51 0.51 0.67

�average of 2 mean fluorescence intensity (MFI) values per analyte

https://doi.org/10.1371/journal.pone.0191586.t003
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p = .008), and TNFα (ρ = .42, p = .008) levels positively correlated with the VACS index; and

GCSF levels were lower with longer HIV duration (ρ = -.31, p = .04). No other relationships

emerged in the HIV group between affected cytokines and relevant variables.

In the HIV+AUD group, IP-10 (p = .002) and TNFα (p = .04) levels were higher in the HIV

+AUD group with HCV relative to the group without HCV. Furthermore, in the HIV+AUD

group alone, lower Karnofsky scores were associated with lower levels of IFN- γ and higher

levels of IP-10 and TNFα. No other relationships emerged in the HIV+AUD group between

affected cytokines and relevant variables.

An AIC to predict IP-10 levels across the 3 patient groups including all associated variables

(i.e., HCV status, BDI score, AP, AST, ALT, GGT, VACS index, and Karnofsky score)

highlighted GGT levels, Karnofsky score, VACS index, and HCV status. A multiple regression

including these 4 variables was significant (F(143) = 19.52, p< .0001), explained 36% of the

variance in IP-10 levels, and was driven by the HCV status (p< .0001). Indeed, HCV status

alone explained 26% of the variance in IP-10 levels. For TNFα, a similar AIC (excluding BDI

scores) highlighted AST levels, VACS index, and HCV status. A multiple regression including

these 3 variables was significant (F(148) = 18.10, p< .0001), explained 27% of the variance in

TNFα levels, and was driven by the VACS index (p< .0001).

Relevance of HCV infection

To pursue the potential effect of HCV on group differences, the initial 4 groups were subdi-

vided by HCV status into 7 groups (control, and each of the 3 patient groups (AUD, HIV, HIV

+AUD) with and without HCV). The patient subgroups infected with HCV had elevated IP-10

(F(222) = 21.02, p< .0001) and TNFα (F(222) = 10.28, p =< .0001) levels (Fig 2B). Thus,

Fig 1. Scatter plots of the a) the chemokine Interferon γ-induced Protein 10 (IP-10) and the b) cytokine Tumor Necrosis Factor α (TNFα) in the 4 groups (Control:

black closed circles; AUD: black open circles; HIV: gray closed circles; HIV+AUD: gray open circles). � indicates significance at p = .001.

https://doi.org/10.1371/journal.pone.0191586.g001
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HCV-related measures were also evaluated for their effects on IP-10 and TNFα. Fig 3A dem-

onstrates the presence of HCV viral load (International Units/mL) in patient subgroups with

Table 4. Two-group t-test� comparisons of cytokine levels.

cytokine Con. vs. AUD Con. vs. HIV Con. vs. HIV+AUD AUD vs. HIV AUD vs. HIV+AUD HIV vs. HIV+AUD
t Ratio p value t Ratio p value t Ratio p value t Ratio p value t Ratio p value t Ratio p value

CD40L 2.33 0.02 n.s. n.s. n.s. -2.55 0.01 n.s.

EGF n.s. 2.69 0.009 -2.66 0.01 n.s. -2.99 0.003 n.s.

EOTAXIN n.s. n.s. n.s. n.s. n.s. n.s.

FGFB n.s. n.s. -2.25 0.03 n.s. n.s. n.s.

FLT3L n.s. n.s. n.s n.s. n.s. n.s.

Fractaline n.s. n.s. n.s. n.s. n.s. n.s.

GCSF n.s. -2.32 0.02 n.s. n.s. n.s. n.s.

GMCSF n.s. -2.45 0.02 n.s. n.s. n.s. n.s.

GRO 2.84 0.005 n.s. n.s. n.s. -1.99 0.05 n.s.

IFNA2 n.s. n.s. n.s. n.s. n.s. n.s.

IFNG -3.39 0.001 n.s. -2.71 0.008 n.s. n.s. n.s.

IL1A n.s. -2.24 0.03 -2.59 0.01 -2.13 0.04 -2.89 0.005 n.s.

IL1B n.s. -2.51 0.01 -2.86 0.006 -3.50 0.0007 -4.23 < .0001 n.s.

IL1RA n.s. n.s. n.s. n.s. n.s. n.s.

IL2 n.s. -2.40 0.02 -2.48 0.02 -2.45 0.02 -2.57 0.01 n.s.

IL3 n.s. -2.40 0.02 -2.25 0.03 -2.06 0.04 n.s. n.s.

IL4 n.s. -2.19 0.03 -2.17 0.03 n.s. n.s. n.s.

IL5 n.s. n.s. n.s. n.s. n.s. n.s.

IL6 n.s. n.s. -2.31 0.02 n.s. n.s. n.s.

IL7 n.s. n.s. n.s. n.s. n.s. n.s.

IL8 n.s. n.s. n.s. n.s. n.s. n.s.

IL9 n.s. -2.75 0.008 -2.97 0.004 -2.90 0.005 -3.23 0.002 n.s.

IL10 n.s. n.s. -2.07 0.04 n.s -2.18 0.03 n.s.

IL12P40 n.s. -2.26 0.03 -2.73 0.008 -2.54 0.01 -3.48 0.0007 n.s.

IL12P70 n.s. n.s. n.s -2.35 0.02 n.s. n.s.

IL13 n.s. -2.07 0.04 -2.32 0.02 n.s -2.38 0.02 n.s.

IL15 n.s. n.s. n.s -2.23 0.02 n.s. n.s.

IL17 n.s. n.s. -2.40 0.02 n.s n.s. n.s.

IP10 2.69 0.008 3.72 0.0005 4.89 < .0001 2.47 0.02 4.04 0.0002 2.00 0.05

MCP1 n.s. 2.23 0.03 2.81 0.006 n.s. n.s. n.s.

MCP3 n.s. -2.20 0.03 n.s. n.s. n.s. n.s.

MDC n.s. n.s. n.s. n.s. n.s. n.s.

MIP1A -2.90 0.005 n.s. n.s. n.s. n.s. n.s.

MIP1B n.s. n.s. n.s. n.s. n.s. n.s.

PDGFAA 2.53 0.01 n.s. n.s. n.s. -2.17 0.03 n.s.

PDGFBB 2.19 0.03 n.s. n.s. n.s. -2.00 0.05 n.s.

RANTES n.s. n.s. n.s. n.s. n.s. n.s.

TGFA n.s. n.s. n.s. n.s. n.s. n.s.

TNFA 2.64 0.009 5.06 < .0001 4.14 < .0001 3.42 0.0006 2.37 0.02 n.s.

TNFB n.s. -2.40 0.02 -2.27 0.03 n.s. -2.03 0.05 n.s.

VEGF n.s. n.s. n.s. n.s. n.s. n.s.

�directionality of change goes with second group listed in each comparison (e.g., CD40L is elevated in the AUD relative to the Control group)

https://doi.org/10.1371/journal.pone.0191586.t004
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HCV. Additional 7-group ANOVAs demonstrated that the albumin/globulin ratio (AGR: F

(204) = 11.45, p< .0001; Fig 3B) was low and FIB-4 (F(204) = 11.78, p< .0001; Fig 3C) and

APRI (F(204) = 8.56, p< .0001; Fig 3D) scores were high in the HCV-infected subgroups.

These indices of liver compromise (HCV viral load ρ = .34, p = .01; AGR ρ = -.40, p = .005;

FIB-4 ρ = .26, p = .08; APRI ρ = .30, p = .04) correlated with TNFα levels in the HCV-seroposi-

tive patient subgroups (Fig 4). Correlations were similar for IP-10 (HCV viral load ρ = .43, p =

.002; AGR ρ = -.26, p = .08; FIB-4 ρ = .21, p = .16; APRI ρ = .26, p = .08). Levels of IP-10 and

TNFα were not related to self-report of treatment for HCV.

Discussion

The hypothesized role of the innate and adaptive immune systems in mood, psychiatric, and

neurodegenerative disorders has gained significant support in the literature e.g., [143–145].

The aim of the current study was to determine whether uncomplicated alcoholism, that is,

Fig 2. Scatter plots of Interferon γ-induced Protein 10 (IP-10) and Tumor Necrosis Factor α (TNFα) in a) the AUD group by HCV status (i.e., AUD without HCV:

open black circles; AUD+HCV: blue squares) and b) all 4 study groups by HCV status (Control: black closed circles; AUD (-): AUD without HCV, black open circles;

AUD (+): AUD +HCV, blue squares; HIV (-): HIV without HCV, gray closed circles; HIV (+): HIV+HCV: dark blue squares; HIV+AUD (-): HIV+AUD without HCV,

gray open circles; HIV+AUD (+): HIV+AUD+HCV, midnight squares).

https://doi.org/10.1371/journal.pone.0191586.g002
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AUD in the absence of diagnosable medical concomitants, is associated with peripheral cyto-

kine levels, in the context of similarly measured analytes in HIV, a disorder with a clearly dem-

onstrated inflammatory component. Our results show that elevations in peripheral cytokines

are associated not with an AUD diagnosis, but were associated with co-occurring HCV infec-

tion in abstinent drinkers.

A number of additional findings support the necessity of HCV infection to increase proin-

flammatory cytokine levels in AUD and HAART-controlled HIV subjects. When the HIV

groups were similarly sub-categorized based on HCV status, the subgroups co-infected with

HCV showed marked elevations in IP-10 and TNFα. Furthermore, across the HCV-infected

individuals from the 3 patient groups, HCV viral load correlated with IP-10 and TNFα levels.

To provide further evidence that liver status affects cytokine levels in this population, we

found that the albumin/globulin ratio (AGR) discriminated individuals with HCV relative to

those without HCV. This comports with the literature demonstrating that low serum albumin

levels can be used to predict HCV infection [146] and that albumin levels may be an important

mortality risk factor for those co-infected with HIV and HCV [147]. In the HCV-infected

Fig 3. Scatter plots of a) HCV viral load, b) albumin/globulin ratio (AGR), c) fibrosis score (FIB-4), and d) AST/platelet count ratio index (APRI) in the 4

study groups by HCV status (see legend to Fig 2 for details).

https://doi.org/10.1371/journal.pone.0191586.g003

Plasma cytokines in HIV + AUD

PLOS ONE | https://doi.org/10.1371/journal.pone.0191586 February 6, 2018 12 / 24

https://doi.org/10.1371/journal.pone.0191586.g003
https://doi.org/10.1371/journal.pone.0191586


patient subgroups included in this study, lower AGR correlated with higher IP-10 and TNFα
levels.

We additionally calculated two descriptive, noninvasive indices of liver fibrosis [140]. FIB-4

scores (<1.45 absent; 1.45–3.25 intermediate fibrosis; >3.25 advanced fibrosis) have been used

to predict and stage liver fibrosis in HCV and other forms of liver disease [128, 141, 142]. Our

HCV patient subgroups had FIB-4 scores ranging from 2.00–2.27, indicating the presence of

intermediate stage liver fibrosis. FIB-4 scores correlated weakly with IP-10 and TNFα levels in

the subgroups with HCV infection.

In a meta-analysis of 40 studies, investigators concluded that an AST/platelet count ratio

index (APRI) score greater than 1.0 had a sensitivity of 76% and specificity of 72% for predict-

ing cirrhosis [148]: low APRI scores (<0.5) have negative predictive value to rule out cirrhosis;

Fig 4. Correlations in the HCV-seropositive patient subgroups between TNFα levels and a) HCV viral load, b) albumin/globulin ratio (AGR), c) fibrosis score (FIB-4),

and d) AST/platelet count ratio index (APRI).

https://doi.org/10.1371/journal.pone.0191586.g004
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high APRI scores (> 1.5) have positive predictive value to diagnose cirrhosis. The APRI esti-

mate has been used as alternative to frequent liver biopsies in HCV to detect and stage fibrosis

e.g., [149–152]. The HCV subgroups included in this study had midrange APRI scores (0.56–

0.67) and thus, cirrhosis cannot be ruled out. APRI scores also correlated with IP-10 and

TNFα levels in subgroups with HCV infection.

The current finding of elevated TNFα in AUD + HCV is consistent with reports of hospital-

ized alcoholics showing correlations between high TNFα levels and liver dysfunction [89, 101,

107]. Alcoholic hepatitis is known to be associated with upregulation of serum cytokines [153,

154] and alcohol-related liver cirrhosis has been specifically associated with high TNFα levels

[155], which have been used to predict mortality in alcoholic liver disease [156]. Our study

contrasts with those reporting effects of “uncomplicated” AUD on increasing proinflamma-

tory cytokine levels in notable ways: in the previously published studies, AUD subjects were

currently actively drinking or hospitalized for drinking at the time of blood draw; and liver

integrity, including presence of HCV, was not described e.g., [96–99, 108].

Our findings also comport with the HIV+HCV literature that has demonstrated a particular

sensitivity of IP-10 levels to co-infection [157–159] and relationships between IP-10 levels and

biomarkers of liver disease [160–162]. As has previously been suggested, however, alcoholism

does not appear to have an effect on cytokine responses in HIV+HCV comorbidity [163].

A limitation of the current study was the absence of a non-AUD, HCV seropositive control

group. It is our intention to include this comparison group in future studies. Further absent is

a comparison group of recently detoxified alcoholics, who might be more likely to exhibit

abnormal levels of cytokines cf., [96–99, 108].

In conclusion, this study reports elevations in TNFα in AUD individuals abstinent at exam-

ination that occurred only in the presence of HCV infection and suggests that changes in

TNFα levels in AUD are dependent on derangement of liver function and not on alcohol-

related variables. This finding encourages a careful characterization of alcoholics in human

studies, including documentation of comorbid infections that can affect peripherally circulat-

ing levels of cytokines and chemokines.
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