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Abstract

Multivariate neural data provide the basis for assessing interactions in brain networks. Among myriad connectivity
measures, Granger causality (GC) has proven to be statistically intuitive, easy to implement, and generate meaningful
results. Although its application to functional MRI (fMRI) data is increasing, several factors have been identified that appear
to hinder its neural interpretability: (a) latency differences in hemodynamic response function (HRF) across different brain
regions, (b) low-sampling rates, and (c) noise. Recognizing that in basic and clinical neuroscience, it is often the change of a
dependent variable (e.g., GC) between experimental conditions and between normal and pathology that is of interest, we
address the question of whether there exist systematic relationships between GC at the fMRI level and that at the neural
level. Simulated neural signals were convolved with a canonical HRF, down-sampled, and noise-added to generate
simulated fMRI data. As the coupling parameters in the model were varied, fMRI GC and neural GC were calculated, and
their relationship examined. Three main results were found: (1) GC following HRF convolution is a monotonically increasing
function of neural GC; (2) this monotonicity can be reliably detected as a positive correlation when realistic fMRI temporal
resolution and noise level were used; and (3) although the detectability of monotonicity declined due to the presence of
HRF latency differences, substantial recovery of detectability occurred after correcting for latency differences. These results
suggest that Granger causality is a viable technique for analyzing fMRI data when the questions are appropriately
formulated.
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Introduction

Granger causality [1] is a statistical method for assessing

directional influences between simultaneously recorded time series

[2–5]. Recent work demonstrates that, when applied to electro-

physiological data, the directions and magnitudes of Granger

causality are interpretable in terms of the directions and

magnitudes of synaptic transmissions between different neurons

and brain areas [6,7]. To what extent Granger causality can be

applied to functional magnetic resonance imaging (fMRI) data is

debated. There are two separate issues. First, is Granger causality

applicable to fMRI data? From a statistical standpoint, the realm

of applicability of Granger causality is the same as any other time-

series based connectivity measures such as coherence [8] and total

interdependence [9,10]. The reason is that these measures make

the same assumptions about the time series under investigation

(e.g., stationarity). As time-series based connectivity measures are

increasingly applied to fMRI data, Granger causality, in conjunc-

tion with other methods, can provide additional empirical

characteristics and biomarkers. Second, how to interpret Granger

causality effects at the hemodynamic level in neural terms? Much

has been written on this topic [11–20]. Factors underlying the

current concerns include: (a) latency variability of hemodynamic

response function (HRF) across different brain regions

[13,15,21,22], (b) low sampling rates (e.g., TR = 2 s) [14,15],

and (c) measurement noise [23,24]. It has been shown that these

factors, individually or in combination, can adversely affect fMRI

Granger causality. Despite these concerns, however, highly

interpretable applications of Granger causality to fMRI data

continue to appear [20]. An urgent problem is how to reconcile

these divergent findings and opinions. Schippers et al. via a

simulation study [25], show that at the group level there is a strong

correlation between significant causal directions at the fMRI level

and that at the neuronal level. The issue, however, remains far

from settled. The goal of this work is to further consider this

problem.

Neuronal mechanisms of cognitive operations are inferred by

comparing dependent variables across experimental conditions.

For example, in attention research, neuronal responses under

attend versus non-attend conditions are compared, whereas in

working memory research, neuronal responses under different

levels of working memory load are compared. It has been

suggested that rather than focusing on the magnitude of Granger

causality under a single experimental condition, it is more

informative to focus on how it is modulated by experimental

conditions [11,26,27]. In this context, a natural question is: Are
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changes in Granger causality at the fMRI level and that at the

neuronal level related? More specifically, is the strength of

Granger causality estimated at the fMRI level a monotonic

function of the strength of Granger causality estimated at the

underlying neuronal level, when a parameter is varied? If such

monotonicity holds, increase or decrease of fMRI-level Granger

causality as the experimental condition is varied, can then be

interpreted in terms of the corresponding increase or decrease of

neuronal-level Granger causality. We addressed this question by

carrying out mathematical analysis and numerical simulations. For

the latter, autoregressive (AR) models were used to generate

neuronal level time series data. By convolution with the HRF

function, downsampling, and addition of measurement noise, such

time series data were then transformed into simulated fMRI

signals that mimic real fMRI recordings. Strengths of Granger

causal influences at the neuronal level were systematically

manipulated by changing the parameters in the AR model to

simulate different experimental conditions. Functional MRI-level

Granger causality is plotted against the neuronal-level Granger

causality to assess their relationship.

Methods

Simulated Neuronal Data
We generated simulated neuronal data using a bivariate

autoregressive (AR) model with model order = 1:

Xt

Yt

� �
~

a b

c d

� �
Xt{1

Yt{1

� �
z

et

gt

� �
ð1Þ

The noise covariance matrix S2 of et and gt was set to be [1, 0;

0, 1], namely, et and gt are independent and both have unit

variance, and a = d = 0.8. In this model, the strength of YRX is

determined by b and the strength of XRY by c. Two cases were

studied: unidirectional coupling and bidirectional coupling. For

the case of unidirectional coupling, b = 0. There were 100

experiments. For each experiment, c was chosen with equal

probability between 0 and 0.8 (10 values were assigned to c in each

experiment), with larger values of c corresponding to stronger

XRY. The simulated time series is 3000 s in duration and the

sampling interval is assumed to be 50 ms. For the case of

bidirectional coupling, there were again 100 experiments, and for

each experiment, b and c were generated randomly and

independently between 0 and 0.2 (10 values for b and 10 values

for c in each experiment). The length of simulated time series and

sampling rate were the same as in the unidirectional case. Here,

the range of coupling strength variation in both cases was chosen

in such a way that the resultant AR models were stationary, and

different coupling strengths in the neural model simulated different

experimental conditions.

Simulated fMRI Data
The neural time series were convolved with a canonical HRF

[11,28,29] to yield simulated HRF-convolved neural time series.

After down-sampling to commonly used temporal resolution (TR)

and with addition of Gaussian noise, simulated fMRI time series

were obtained. This procedure is illustrated in Figure 1A.

Figure 1B shows an example of simulated original neural time

series, HRF-convolved neural time series, and fMRI time series,

where the level of noise for the fMRI time series is 20% (SNR = 5)

and TR = 2 s.

Theory and Estimation of Granger Causality
Consider two simultaneously recorded stationary time series

Xtand Yt. If the past of one time series can be used to facilitate the

prediction of the future of the other time series, then we say there

is a Granger causal influence from the former to the latter [1]. To

estimate Granger causality we employ autoregressive models

[2,5,25,30–34]. Individually,

Xt~
X?
j~1

a1jXt{jze1t,var e1tð Þ~S1 ð2Þ

Yt~
X?
j~1

d1jYt{jzg1t,var g1tð Þ~C1 ð3Þ

They can also be jointly represented as an unrestricted bivariate

AR model:

Xt~
X?
j~1

a2jXt{jz
X?
j~1

b2jYt{jze2t

Yt~
X?
j~1

c2jXt{jz
X?
j~1

d2jYt{jzg2t

ð4Þ

In Eq. (4), e2t and g2t are independent over time, and their

contemporaneous covariance matrix is

S2~
S2 c2

c2 C2

� �
ð5Þ

Then FY?X ~ ln (S1=S2) is the Granger causality from Yt to

Xtand FX?Y ~ ln (C1=C2) the Granger causality from Xt to Yt

[2,11,30].

For practical data analysis the above infinite sums need to be

truncated to sums with finite orders. For simulated neural data, the

AR model order was determined to be 1 according to the Bayesian

Information Criterion (BIC) [11,35–37], in agreement with the

order of the model in Eq. (1) used to generate the data. For the

HRF-convolved neural time series before down-sampling and

noise addition, the model order used was between 15 and 17. For

the fMRI time series, the model order was determined to be 1 for

realistic TRs between 0.5 s and 3 s, and 5 for TR = 50 ms.

Linking Neural GC and fMRI GC
In each experiment, fMRI Granger causality (GC) was plotted

against the corresponding neural GC, and the relation was

assessed by Spearman rank correlation. If the correlation between

fMRI GC and neural GC along the same direction (e.g., XRY) is

significantly positive then it was taken as evidence for monotonic-

ity. In contrast, if fMRI GC in one direction (e.g., YRX) was

significantly correlated with the neural GC in the opposite

direction (XRY), the monotonicity was considered false, caused

by HRF convolution, downsampling, and noise addition. Previous

work has shown that in unidirectional coupling, if XRY is

nonzero but YRX is zero at the neuronal level, HRF convolution,

downsampling, and noise can lead to nonzero YRX at the fMRI

level, which is spurious [11,18,31]. By plotting fMRI GC against

neural GC in opposite directions we examined whether such

Granger Causality Analysis of fMRI Data
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spurious effects also created false monotonicity relationships

between fMRI GC and neural GC.

To quantify the simulation results, true positive rate (TPR) and

false positive rate (FPR) of monotonicity detection were estimated,

depending on whether fMRI GC and neural GC along the same

direction and along opposite directions were significantly positively

correlated. Specifically, in the unidirectional case, we defined

TPR~NX?Y.X?Y=100, where NX?Y.X?Y was the number of

experiments in which neural XRY and fMRI XRY were

significantly positively correlated, and FPR~NX?Y.Y?X=100,

where NX?Y.Y?X was the number of experiments in which

neural XRY and fMRI YRX were significantly correlated. In the

bidirectional case, TPR~(NX?Y.X?Y zNY?X.Y?X )=200,

where NX?Y.X?Y and NY?X.Y?X
were the number of experiments

in which neural GC and fMRI GC along the same directions were

significantly positively correlated, and

FPR~(NX?Y.Y?X zNY?X.X?Y )=200, where NX?Y.Y?X and

NY?X.X?Y were the number of experiments in which neural GC

and fMRI GC along opposite directions were significantly

correlated. The detection rate (DR) of monotonicity was

calculated as TPR+FPR and the true detecting rate (TDR) as

TPR/DR. TPR, FPR, and TDR were examined as functions of

the correlation significance threshold.

Effects of Downsampling and Noise
TPR, FPR, and TDR were plotted as functions of different

fMRI TRs, varying from 50 ms to 4 s, to study the impact of

sampling rates on detecting the monotonicity relationship. Similar

analysis was carried out by varying the noise level between 5%

(SNR = 20) and 160% (SNR = 0.625).

Effects of HRF Latency Variability and a Mitigation
Strategy

In addition to low sampling rates and noise, another factor

impacting fMRI GC analysis is HRF latency variability. We

considered this issue in the case of bidirectional coupling. Across

100 experiments the HRF latency difference between X and Y

followed a normal distribution with zero mean and standard

deviation (SD). Varying SD from 0.2 s to 1 s, we plotted TPR,

FPR, and TDR as functions of SD under slow sampling (TR = 2 s)

and fast sampling (TR = 50 ms), respectively. To mitigate the

adverse effects of HRF latency variability, we followed a procedure

given by Chang et al. [38], based on the assumption that the HRF

latency can be measured experimentally [38–42]: (1) up-sample

the fMRI series (TR = 2 s) using the spline interpolation method to

a TR of 50 ms, (2) shift the time series in such a way that the HRF

latency difference is reduced to zero, (3) down-sample the latency-

corrected fMRI time series to TR = 2 s, and (4) perform analysis

on the latency-corrected fMRI time series as above.

Results

Unidirectional Coupling
In the bivariate AR(1) model in Eq. (1), the coupling strength for

XRY was between c = 0 and c = 0.8, and the coupling strength for

YRX was set at zero (b = 0). Convolving neural data with HRF

yielded HRF-convolved neural signal which, after downsampling

to realistic TRs (e.g., TR = 2 s) and addition of white noise (e.g.,

20%, SNR = 5), became fMRI time series. This process is

illustrated in Figure 1A. Subjecting the neural data and the

corresponding HRF-convolved neural signal to Granger causality

analysis, we found that HRF-convolved neural signal GC of XRY

(HRF-conv. XRY for abbreviation) and neural GC of XRY,

influences along the same direction, has a linear monotonic

relationship with a slope close to 1 (Figure 1C). In contrast, HRF-

conv. YRX and neural XRY, influences along opposite

directions, exhibited no systematic relationship (Figure 1D). These

results suggest that the operation of HRF convolution preserves

monotonicity between HRF-convolved GC and neural GC.

For TR = 2 s and 20% noise (SNR = 5), a positive correlation

between fMRI XRY GC and neural XRY GC was clearly seen

(Figure 2A), indicating that the monotonicity between the variables

can be reliably detected. No systematic relationship was found

between fMRI YRX GC and neural XRY GC (Figure 2B). Over

100 experiments the histograms for the Fisher-transformed

correlation coefficient between neural XRY GC and fMRI

XRY GC (red) and that between neural XRY GC and fMRI

YRX GC (blue) are shown in Figure 2C. The two distributions

are well separated. TPR, FPR and TDR were plotted as functions

of the correlation significance threshold (Figure 2D). If p = 0.01 is

the correlation significance threshold, then in 95% of the

experiments, fMRI XRY GC was significantly and positively

correlated with neural XRY GC, whereas only in 1% of the

experiments, fMRI YRX GC was significantly correlated with

neural XRY GC. Thus, TPR = 95%, FPR = 1%, and

TDR = 99%. These results indicate that even with realistic TR

and noise, the monotonicity condition holds if p = 0.01 is chosen as

the significance level, and we can still interpret increases in fMRI

GC in terms of increases in the underlying neural GC. As

significance threshold becomes more stringent, TPR gradually

decreased to around 34%, but FPR became zero, leading to 100%

TDR.

Bidirectional Coupling
Figures 3A and 3B show the results for one experiment. Neural

GC and fMRI GC along the same direction exhibit significant

positive correlation whereas neural GC and fMRI GC along

opposite directions are uncorrelated. Distributions of the correla-

tion coefficient over 100 experiments are shown in Figure 3C. At

the significance level of p = 0.01, TPR = 50%, FPR = 0.5%, and

TDR = 99%, suggesting that the monotonic relationship between

fMRI GC and neural GC can be reliably detected. Figure 3D

shows TPR, FPR and TDR as functions of the significance

threshold for correlation coefficient. It demonstrates that when

more stringent threshold was applied, TPR decreased but

remained nonzero, FPR decreased toward zero quickly, and

TDR increased toward 100%.

To examine the effects of sampling rates, we plotted TPR, FPR

and TDR as functions of different TRs. The noise level was fixed

at 20% (SNR = 5). Although TPR decreased as TR increased,

seen in Figure 4A, from TR = 50 ms to TR = 2 s, TPR remained

at a reasonable level around 70% to 50%. For all the fMRI TR

inspected, FPR was always below 10%, and TDR was always over

90%.

Figure 1. Simulated data and relation between HRF-conv. GC and neural GC. A: Flowchart illustrating the process from neural to HRF-
convolved neural to fMRI data. B: An example of the process in A where the neural time series (blue) was generated using AR(1) model and was
convolved with a canonical HRF to yield the HRF-convolved neural time series (red), which, after down-sampling to TR = 2 s and addition of 20%
white noise (SNR = 5), became the fMRI time series (Green). C: GC for HRF-convolved neural time series as a monotonically increasing function of
neural GC where the slope of fitted linear trend is close to 1. D: HRF-conv. GC in the opposite direction is zero (unidirectional coupling).
doi:10.1371/journal.pone.0067428.g001
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To examine the effects of noise, we plotted TPR, FPR and

TDR as functions of different noise levels, with TR fixed at

TR = 2 s. As seen in Figure 4B, as the noise level became higher,

FPR increased and both TPR and TDR decreased. However, up

to a noise level of 40% (SNR = 2.5), TPR remained at a

reasonably high level between 50% to 70% and TDR over

90%. Meanwhile, FPR was below 5%.

Effects of HRF Latency Variability
Two HRFs with different peak times are shown in Figure 5A.

The HRF latency was varied by changing the parameter in the

canonical HRF model that controls the time-to-peak timing.

Assume that the interaction is bidirectional and latency difference

in an experiment between the two areas follows a normal

distribution with zero mean and a standard deviation of 0.8 s

and the fMRI TR = 2 s, distributions of correlation coefficient

between neural GC and fMRI GC are shown in Figure 5B where

TPR is 27.5%, FPR is 8% and TDR is 77% if we set p = 0.01 as

the significance threshold. TPR, FPR and TDR as functions of

different significance thresholds are shown in Figure 5C. Both

TPR and FPR declined but TDR increased when more stringent

threshold was applied.

By applying the latency correction technique (see Method), we

found that the distributions of correlation coefficient are better

separated as shown in Figure 5D, where for p = 0.01, TPR

improved to 37%, FPR declined to 2%, and TDR became 95%.

TPR, FPR, and TDR as functions of significance threshold are

shown in Figure 5E.

Figure 2. Relation between fMRI GC and neural GC (unidirectional coupling). A: A typical experiment where fMRI GC is a monotonically
increasing function of neural GC. B: fMRI GC and neural GC along opposite directions are uncorrelated. C: Distributions of correlation coefficients
between neural GC and fMRI GC along the same direction (red) and along opposite directions (blue). D: TPR, FPR and TDR as functions of correlation
significance threshold.
doi:10.1371/journal.pone.0067428.g002
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Further, we plotted TPR, FPR, and TDR, before and after

latency correction, as functions of the standard deviation of the

HRF latency difference distribution, under long and short fMRI

TR (Figure 5F for TR = 2 s and Figure 5G for TR = 50 ms). The

results showed that, without latency correction, when standard

deviation of the latency difference increased, for TR = 2 s, TPR

decreased from around 50% to 30%, FPR increased to around

10%, and TDR decreased from 99% to around 75%; for

TR = 50 ms, TPR decreased from around 70% to 35%, FPR

was below 4%, and TDR remained around 95%. However,

following latency correction, for TR = 2 s, TPR became 40%–

50%, FPR was below 2.5%, and TDR was over 95%; for

TR = 50 ms, TPR became around 70%, FPR was below 3.5%,

and TDR was in a range of 95%–99%.

Discussion

Granger causality (GC) has emerged as a useful technique to

evaluate directional influences in multivariate electrophysiological

data. For fMRI data, however, its validity is debated. Previous

simulation work has shown that convolution with HRF, low

sampling rate, and addition of noise can yield spurious Granger

causality [11,18,25,31]. In the meantime, however, highly

interpretable applications of Granger causality to fMRI data

continue to appear [43,44]. How to reconcile these divergent

findings? Motivated by the observation that in cognitive neuro-

science, it is often the change of a neuronal activity across

experimental conditions, rather than the sheer magnitude of that

activity under a single experimental condition, that is important

for inferring mechanisms, we examined whether a monotonic

Figure 3. Relation between fMRI GC and neural GC (bidirectional coupling). A: A typical experiment where fMRI GC is a monotonically
increasing function of neural GC. B: fMRI GC and neural GC along opposite directions are uncorrelated. C: Distributions of correlation coefficients
between neural GC and fMRI GC along the same direction (red) and along the opposite directions (blue). D: TPR, FPR and TDR as functions of
correlation significance threshold.
doi:10.1371/journal.pone.0067428.g003
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relationship exists between GC at the fMRI level and that at the

neuronal level as a parameter is varied. The existence of such a

relationship would allow us to interpret changes in fMRI Granger

causality in terms of corresponding changes in neuronal Granger

causality. Neural time series were obtained by simulating a

bivariate AR model, which after HRF convolution became HRF-

convolved time series, which after down-sampling to realistic TRs

and addition of noise became fMRI time series (see Figure 1A).

Three main results were found. First, GC from the HRF-

convolved time series is a monotonic function of GC from the

corresponding neural time series. Second, even with severe down-

sampling and noise addition, monotonicity between fMRI GC and

neural GC can still be reliably detected as a positive correlation.

Third, HRF latency variability degrades the detectability of

monotonicity, but a latency correction procedure significantly

restores that detectability.

Simulating fMRI Recordings
According to the linear transform model, fMRI signal is closely

related to locally averaged neural activity such as local field

potentials (LFPs) via HRF [28]. The subsequent steps, such as

downsampling and noise addition, are also commonly practiced

steps to convert neural signals to fMRI signals. Because it has been

demonstrated that LFPs can be well described by autoregressive

(AR) models [2,7,15,36], our use of an AR model to generate the

LFP signals is consistent with these findings and previous

simulation studies of fMRI [11,25]. The choice of 50 ms as

temporal resolution in the model is reasonable for delays in large-

scale brain networks which may vary from tens of milliseconds to

hundreds of milliseconds. Single cell recordings in the macaque

monkey [45] revealed a latency of 20 ms between neighboring

regions in the visual hierarchy. Other intracranial recordings

showed that neurons in inferior temporal cortex became activated

90–110 ms [46–48] after the stimulus onset and neural feedback

could reach from hippocampus to inferior temporal visual cortex

with latencies of 60–100 ms [49]. Similar ranges of neural delays

have been consistently reported [50,51]. Given that the human

brain is significantly larger in size and more complex in structure

than the monkey brain, neural delays in the human brain can be

considerably longer. MEG recordings from humans have shown

differences in peak onsets of 100,200 ms between responses in

the occipital cortex, the inferior frontal gyrus, and primary motor

cortex [52]. Similar ranges of neural lags were repeatedly reported

in other MEG- or EEG-studies [53–55].

Linking fMRI GC with Neural GC
The goal of our work is different from some of the recent works

on the applicability of Granger causality to fMRI data. Rather

than focusing on detecting network configuration (e.g., whether

there is a link from X to Y) [11,18,25], we examine whether there

exists a relationship between fMRI GC and neural GC under

variations of certain experimental conditions, with different

experimental conditions being modeled by different coupling

strengths between nodes of a network. This problem is relevant in

that (1) over time scales resolvable by fMRI, the interactions in

large-scale brain networks triggered by cognitive paradigms are

likely to be bidirectional [40] and (2) in cognitive neuroscience,

mechanisms of higher mental functions are inferred by assessing

changes of dependent variables (e.g., GC) under changes of

experimental conditions.

Detecting network configuration relies on statistical significance

testing to ascertain whether a given GC is larger than zero or not.

Past simulations have shown that such testing cannot prevent the

detection of spurious Granger causality at the fMRI level, and that

noise and downsampling can create nonzero GC when there is

none at the neural level [11,18], a fact we also found in our

simulations. Our mathematical analysis in Appendix S1 demon-

strates this rigorously. Thus observing GC change as a function of

experimental parameters may be more meaningful in interpreting

GC effects at the hemodynamic level in neural terms.

For the case of unidirectional coupling (YRX is zero at neural

level), the neural GC and the corresponding HRF-convolved GC

for XRY had nearly identical values, and the monotonicity

relationship was clearly held with a slope close to 1 (Figure 1C). In

addition, no spurious GC was found in this case (Figure 1D).

These results suggest that convolution with HRF per se has no

adverse effect on GC estimation. The two additional steps, down-

sampling and noise addition, both essential for producing realistic

fMRI time series, have the main negative impact on GC

estimation. In agreement with the previous findings [11], along

XRY, the fMRI GC was reduced compared to the underlying

neural GC (Figure 2A), and non-zero fMRI GC appeared along

YRX where the underlying neural GC is zero (Figure 2B). Despite

these effects, the monotonicity between fMRI GC and neural GC

along the same direction can still be reliably detected as a positive

correlation, even in the presence of 20% measurement noise

(SNR = 5) (Figures 2B and 2D), and fMRI YRX and neural XRY

showed no systematic relationship. For bidirectional coupling, a

case that is closer to reality in the brain but has not been

considered in previous simulation studies, similar effects were

found.

Using TPR, FPR and TDR to characterize the results, we found

that although TPR decreased when more stringent correlation

significance threshold was employed, the FPR was always

significantly lower than TPR and approached zero faster

Figure 4. Effects of TR and noise. A: TDR, TPR and FPR as functions
of fMRI TR. B: TDR, TPR and FPR as functions of the noise level.
doi:10.1371/journal.pone.0067428.g004
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(Figure 2D and Figure 3D). This means that even in low TPR

situations, the detected monotonicity between fMRI GC and

neural GC is an indicator of true monotonicity, and a more

stringent significance threshold actually more strongly attenuates

the chance for detecting false monotonicity, as reflected in

enhanced TDR.

The numerical results above are further supported by analytical

and numerical results presented in Appendix S1, where it is shown

that although downsampling attenuates GC magnitude, there is a

strict monotonic relationship between GC from the downsampled

time series and that from the original time series, and HRF

convolution preserves the monotonic relationship.

Effects of Low Sampling Rate
Low sampling rate is a major reason for deteriorated Granger

causality estimation at the fMRI level [56]. As expected, more

severe down-sampling led to longer TR, which in turn led to lower

TPR for detecting the monotonicity relationship. This is

understandable because severe down-sampling makes signal

transmission at faster time scales difficult to detect. However,

even with large TR, the overall TDR remained at a high level of

greater than 90% (Figure 4A), owing partly to the fact that FPR

stayed below 5% for most of the TRs studied. Importantly, for TR

between 1 s and 2 s, common values used in actual experimental

recordings, both TDR and TPR were reasonably high. The reason

that we could still reliably detect fMRI GC-neural GC monoto-

nicity in the face of such downsampling rate may lie in the

smoothing operation of the HRF. Following the HRF convolution,

the model order of the resultant HRF-convolved neural series

determined by BIC was around 15 to 17, which was much larger

than the original model order of 1, indicating that the correlation

structure is stretched in time, transforming faster neural dynamics

to slower BOLD dynamics, which helps to preserve properties

including monotonicity in the process. This effect is further

demonstrated in Appendix S1. With the advent of technology,

however, the adverse effects associated with low sampling rate may

become less of a concern in the near future, because ultrafast

sampling fMRI techniques are becoming increasingly available

[41,57] and our results show that high sampling rates improves

monotonicity detection (Figures 1C and 1D, Figures 5F and 5G).

Effects of Noise
The adverse effects of noise on Granger causality estimation

have been studied in the past [23,24,58]. We tested how different

levels of noise may affect monotonicity detection. When the noise

level was lower than around 40% (SNR = 2.5), TDR and TPR

were reasonably high while FPR were lower than 10% (Figure 3B).

When noise level exceeded 40% (SNR = 2.5), both TDR and TPR

began to decrease, and FPR increased. According to previous

research, measurement noise around 20% (SNR = 5) seems to be a

realistic noise level in actual fMRI recordings [11,25]. In task

experiments, when stronger variations evoked by task events are

included, the proportion of measurement noise in the fMRI signal

may be even lower.

Effects of HRF Latency Variability
Different brain regions may have different hemodynamic

response profiles [59]. If the HRF latency of region X is shorter

than that of region Y, then detection of monotonicity between

Figure 5. Effects of HRF latency difference. A: Two HRFs with
different peak latencies. B: Distributions of correlation coefficients
between neural GC and fMRI GC along the same direction (red) and
along opposite directions (blue) before latency correction. C: TPR, FPR
and TDR as functions of correlation significance threshold before
latency correction. D: Distributions of correlation coefficients between
neural GC and fMRI GC along the same direction (red) and along
opposite directions (blue) after latency correction. E: TPR, FPR and TDR
as functions of correlation significance threshold after latency
correction. F and G: For TR = 2 s and TR = 50 ms, respectively, TPR,

FPR and TDR before and after latency correction as functions of the
standard deviation of the HRF latency difference distribution.
doi:10.1371/journal.pone.0067428.g005
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fMRI XRY and neural XRY is facilitated, while fMRI YRX

causality can become spurious. Based on findings that the HRF

peak latency in cerebral cortex varies unsystematically within an

individual [25,38,40,59], in our simulation, the HRF latency

difference between regions X and Y followed a normal distribution

with zero mean across 100 experiments. By varying the standard

deviation of the normal distribution, we found that although HRF

latency difference degraded the detection of the underlying

monotonicity by increasing FPR (Figures 5B and 5C), TDR

remained in a range of 70%–80% when TR = 2 s (Figure 5F), and

for much faster sampling rate of TR = 50 ms, it improved to over

90% (Figure 5G). The TDR, TPR and FPR curves in Figure 5C

show that it is possible to obtain more reliable monotonicity

detections by applying statistical criteria that more severely

attenuate FPR. These results are in line with the finding that

when HRF latency difference is unlikely to be systematic, the

detected group level fMRI GC can reliably reflect neural

influences [25]. However, when systematic HRF latency difference

cannot be excluded, caution needs to be exercised in evaluating

and interpreting the GC results [22].

A possible remedy for HRF latency induced deterioration of

GC estimation is to estimate HRF latency and correct for it. We

show that if HRF latency can be determined experimentally, then

with latency correction [38], our ability to detect fMRI GC and

neural GC monotonicity can be significantly improved (Figures 5D

and 5E). TDR after latency correction stayed above 90% for the

range of standard deviations of the latency difference tested

(Figures 5F and 5G). There are a number of methods to estimate

the regional HRF, such as selective averaging, window averaging,

least-squares estimation, GLM fitting, Tikhonov regularization,

and Bayesian estimation [39–41,59–65]. These methods have

shown their efficacy in estimating the regional HRF in the context

of investigating the task activation of various brain areas. On the

other hand, when dealing with global fMRI mapping performed

voxel by voxel, previous studies have proposed the use of

cerebrovascular response data to normalize or calibrate BOLD

maps in order to reduce fMRI variability among brain areas in

both within-subject analysis and cross-subject analysis [66].

Methods introduced for this purpose include the CO2 inhalation

method and the breath holding (BH) method [38,66–69]. Using

the BH method Chang et al. [38] applied latency correction to

improve Granger causality estimation.

The ‘‘Third Variable’’ Problem
In the current simulation study we only considered pairwise

GC. In the real brain the causal interactions between two brain

areas may be mediated by a third brain area. Identifying and

accounting for this ‘‘third variable’’ is therefore important in

figuring out how information is routed in brain circuits.

Conditional Granger causality is one way to deal with this

problem [2,3,70,71]. Examining fMRI-GC’s neural interpretabil-

ity when the third variable is taken into account is one of the future

research directions. However, as the below review of two recent

empirical fMRI-GC studies demonstrate [43,44], even pairwise

GC can generate meaningful insights into cortical network

operations.

Empirical Validation
Real world neural time series are far more complex than that

generated by AR (1). The assumed steps in transforming neural

time series to fMRI time series, including HRF convolution, down-

sampling and noise addition, are only an approximation of the

actual physiological cardio-neural coupling [11,28]. Ultimately,

whether or not GC can be effectively applied to fMRI data has to

be settled empirically, and a strong theoretical framework is crucial

in such validation studies. Correlating Granger causality with

various experimental parameters such as reaction time [26,72] and

BOLD level [73] has proven to be a fruitful approach.

In a recent paper we considered the behavioral consequences of

the interaction between the dorsal attention network (DAN) and

the ventral attention network (VAN) [43]. Extensive neural

imaging and lesion evidence suggest that DAN is engaged in

top-down attentional control and enables sensory motor process-

ing whereas VAN mediates bottom-up attention reorienting

[74,75]. This theory led to the hypotheses that stronger causal

influence from DAN to the VAN should be associated with

enhanced behavioral performance, whereas stronger causal

influence in the opposite direction should be associated with

degraded behavioral performance [74]. This hypothesis was

supported by a Granger causality analysis of the fMRI data in

which the systematic relation between GC and performance

parameters plays a critical role [43].

In another recent paper, applying the same approach, we

investigated the interactions between the so-called task control

network (TCN) and the default mode network (DMN). It has been

hypothesized that TCN exerts top-down control by issuing signals

to regulate activities in different brain areas to facilitate task

performance [76]. In contrast, DMN, known to mediate self-

referential processes, can be thought of as a source of internal

noise when performing tasks requiring externally directed atten-

tion. These considerations predict that strong TCNRDMN

should be associated with enhanced behavioral performance,

whereas strong DMNRTCN should be associated with degraded

behavioral performance. This hypothesis was again supported by

correlating fMRI GC and behavioral performance [44].

Supporting Information

Appendix S1 Mathematical analysis of effect of down-
sampling and HRF convolution on Granger causality.
This Appendix has two objectives. First, we provide an analytic

treatment of the effect of downsampling on Granger causality for

an autoregressive (AR) model of order 1 (AR(1)), to further

demonstrate that Granger causality from the downsampled signal

is an monotonic function of Granger causality from the original

signal. Second, we show that HRF convolution preserves and in

fact enhances the monotonic relationship.
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