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Abstract
The genus Ditylenchus has been divided into 2 groups: the D. triformis-group, and the D. dipsaci-group 
based on morphological and biological characters. A total of 18 populations belong to 5 species of Ditylen-
chus was studied: D. africanus, D. destructor, D. myceliophagus and dipsaci, D. weischeri, the first 3 belong 
to the D. triformis-group, the last 2 the D. dipsaci-group. The species of D. triformis-group were cultured 
on fungi, while the species from D. dispaci-group cultured on excised roots of plant hosts in petri dish. 
DNA sequences of regions of the nuclear ribosomal first internal transcribed spacer (ITS1) and the small 
subunit 18S were PCR amplified, sequenced and the phylogenetic analyses also including the sequences of 
the closely related species from the GenBank. The randomly amplified polymorphisms of genomic DNA 
(RAPD) were also generated. Two clusters or clades corresponding to the 2 groups were consistently ob-
served with significant statistical support from the 3 datasets. The phylogenetic analysis also revealed that 
the genus is paraphyletic, separating the 2 groups by species of Anguina and Subanguina.
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Introduction

The genus Ditylenchus Filipjev (1936) consists of 80-90 accepted species (Brzeski 1991) 
of either mycophagous, entomophlic or plant parasitic species. The genus includes 
some of the most destructive nematode pests, e.g. the mushroom spawn nematode D. 
myceliophagus Goodey 1958, the potato rot nematode D. destructor Thorne 1945, and 
the stem and bulb nematode D. dipsaci (Kühn, 1857) Filipjev 1936, the latter two are 
also internationally quarantined. As the climate change intensifies and international 
trade increases, invasive alien species such as nematode species are increasingly becom-
ing serious problems, as demonstrated by the recent outbreak of the stem and bulb 
nematode in central Canada and the neighboring states of USA, (Yu et al. 2010, Qiao 
et al. 2013), and the recent finding of potato rot nematode in Ontario (Yu et al. 2012), 
which was the first finding on the continental Canada for the pest.

Taxonomy of the genus both above and below the rank has been confus-
ing. The genus was first placed in the family Tylenchidae of Tylenchina (Filipjev 
1936), moved to Anguillulina Schneider (1939) and moved again to Anguini-
dae ( Paramonov 1970). The family has been moved between Hexatylina and Ty-
lenchina (Siddiqi 1986, and 2000). Within the genus, species delimitation based 
on  morphology has been rather arbitrary, since many morphometrical characters 
are highly variable and only a few were constant enough to be used for taxonomic 
purposes (Fortuner 1982). The species complex of D. dipsaci (Sturhan & Brzeski, 
1991) makes this situation even more confusing. Recently applications of molecular 
methods have provided new tools for researchers to better understand the biology 
and taxonomy of the genus. For example, D. weischeri Chizhov, Borisov & Subbotin 
(2010) has been separated as a valid species from the D. dipsaci species complex, D. 
gigas Vovlas (2011) from the giant race of D. dipsaci, and D. africanus Wendt (1995) 
from D. destructor. Recent phylogenetic studies of ribosomal DNA indicated that 
the genus may be paraphyletic (Holterman et al. 2009; Giblin-Davis et al. 2010).

Two groups of the genus were recognized: the D. triformis-group and D. dipsaci-
group (Siddiqi 1980). The D. triformis-group includes species with a rounded tail tip, 
lateral fields of six lines, and having mycophagous life cycle such as D. destructor and 
D. myceliophagous, while the D. dipsaci-group includes obligate plant parasites with a 
sharp-pointed tail tip and lateral fields of four lines. Those entomophlic species such 
as D. halictus are also mycophagous; belong to the D. triformis-group (Giblin-Davis 
et al. 2010).

The objective of the study was to use three molecular datasets, namely ITS1 and 18S 
fragment sequences of ribosomal DNA and RAPD polymorphisms of genomic DNA, to 
determine the phylogenetic relationships of the two groups of Ditylenchus species.
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Material and methods

Nematode population

Live nematodes of eight populations of D. destructor, six populations of D. dipsaci, 
one of each D. africanus, D. weischeri and D. myceliophagus from different regions of 
three countries were collected (Table 1). Species identifications were confirmed using 
morphological and molecular methods.

Nematode culturing

Ditylenchus destructor, D. myceliophagus and D. africanus were cultured on Fusarium 
oxysporium on 10% potato dextrose agar (PDA). Ditylenchus dipsaci and D. weischeri 
were cultured on yellow pea and soybean excised roots on White’s medium (White 
1939) respectively but attempts were also made to culture D. dipsaic, and D. weischeri 
on F. oxysporium.

Sample preparation

PDA with fungus media and roots infested with nematodes were cut into small pieces 
and nematodes extracted using the Baermann funnel method (Baermann 1917).

DNA extraction

One or two extracted nematodes were subjected to DNA extraction. The nematodes 
were crushed in microtubes containing 40 μL 10×PCR buffer (100 mM Tris-HCl, pH 
9.0 at 25 °C, 500 mM KCl, 15 mM MgCl2), 10 μL Proteinase K (1 mg/mL), 50 μL 
distilled water. The microtubes were incubated for 1.5 h at 65°C followed by 15 min at 
95 °C and stored at -20 °C. DNA templates were quantified using a NanoDrop ND-
1000 Spectrophotometer (Wilmington, DE, USA).

Sequencing and alignment of ITS1 and 18S regions of nuclear rRNA

A region of the internal transcribed spacer 1 (ITS1) gene was amplified using the 
primers ITS-F (5’-TTGATTACGTCCCTGCCCTTT-3’), ITS-R (5’-ACGAGC-
CGAGTGATCCACCG-3’). The amplification protocol was: initial denaturation 
at 94 °C for 3 min, followed by 40 cycles of denaturation (30 s at 94 °C), annealing 
(45 s at 58 °C), and extension (2 min at 72 °C), with a final extension for 10 min 
at 72 °C. A region of the small subunit (SSU) 18S rRNA gene (18S) was amplified 
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using the primers 18S-F (5’-TTGGATAACTGTGGTTTAACTAG-3’) and 18S-R 
(5’-ATTTCACCTCTCACGCAACA-3’). The amplification condition was: 95  °C 
for 3 min, followed by 40 cycles of 30 s at 95 °C, 45 s at 60 °C and 2 min at 72 °C, 
with final extension of 10 min at 72 °C. All PCR reactions were performed in 25 ul 
volumes including 10 ng DNA, 2.5 μl 10×PCR buffer, 1.5 μl 2.5 mM dNTPs, 0.2 ul 
10 μM primers and 0.25 μl Titanium Taq DNA polymerase (supplier). The ITS and 
18S fragments were sequenced in-house with an ABI Prism 377 sequencer (Perkin 
Elmer) in both directions and unambiguous consensus sequences obtained. The se-
quences were deposited into the genBank database. DNA sequences were aligned by 
Clustal W (http://workbench.sdsc.edu, Bioinformatics and Computational Biology 
group, Dept. Bioengineering, UC San Diego, CA). The sequences were compared 
with those of the other nematode species available at the genBank sequence data-
base using the BLAST homology search program. The model of base substitution 
was evaluated using MODELTEST (Posada and Crandall 1998; Huelsenbeck and 
Ronquist 2001). The Akaike-supported model, the base frequencies, the proportion 
of invariable sites and the gamma distribution shape parameters and substitution 
rates were used in phylogenetic analyses. Bayesian analysis was performed to confirm 
the tree topology for each gene separately using MrBayes 3.1.0 (Huelsenbeck and 
Ronquist 2001) running the chain for 1 × 106 generations and setting the “burnin” 
at 1,000. We used the Markov Chain Monte Carlo (MCMC) method within a 
Bayesian framework to estimate the posterior probabilities of the phylogenetic trees 
(Larget and Simon 1999) using 50% majority rule.

Table 1. Origins, hosts and access numbers of Ditylenchus species and populations used in this study

Code Species Location Host
Accession No.

ITS 18S
CH01 D. destructor Inner Mongolia, China Sweet potato KJ567140 KJ492926
CH02 D. destructor Jilin, China Sweet potato KJ567141 KJ492927
CH03 D. destructor Henan, China Sweet potato KJ567142 KJ492928
CH04 D. destructor Shandong, China Sweet potato KJ567143 KJ492929
CH05 D. destructor Jiangsu, China Sweet potato KJ567144 KJ492930
CH06 D. destructor Hebei, China Sweet potato KJ567145 KJ492931
CA01 D. destructor Ontario, Canada Sweet potato KJ567146 KJ492932
CU01 D. destructor Clemson University, USA Sweet potato KJ567147 KJ492933
CA02 D. dipsaci Ontario, Canada Onion KJ567148 KJ492934
CU02 D. dipsaci Clemson University, USA Garlic KJ567149 KJ492935
CA03 D. dipsaci Ontario, Canada Garlic KJ567150 KJ492936
CA04 D. dipsaci Ontario, Canada Garlic KJ567151 KJ492937
CA05 D. dipsaci Ontario, Canada Garlic KJ567152 KJ492938
CA06 D. dipsaci Ontario, Canada Garlic KJ567153 KJ492939
DA D. africanus South Africa Peanut KJ567154 KJ492940
DW D. weischeri Manitoba, Canada Canada thistle KJ567155 KJ492941
DM D. myceliophagus Ontario, Canada Grass KJ567156 KJ492942

http://workbench.sdsc.edu
http://www.ncbi.nlm.nih.gov/nuccore/KJ567140
http://www.ncbi.nlm.nih.gov/nuccore/KJ492926
http://www.ncbi.nlm.nih.gov/nuccore/KJ567141
http://www.ncbi.nlm.nih.gov/nuccore/KJ492927
http://www.ncbi.nlm.nih.gov/nuccore/KJ567142
http://www.ncbi.nlm.nih.gov/nuccore/KJ492928
http://www.ncbi.nlm.nih.gov/nuccore/KJ567143
http://www.ncbi.nlm.nih.gov/nuccore/KJ492929
http://www.ncbi.nlm.nih.gov/nuccore/KJ567144
http://www.ncbi.nlm.nih.gov/nuccore/KJ492930
http://www.ncbi.nlm.nih.gov/nuccore/KJ567145
http://www.ncbi.nlm.nih.gov/nuccore/KJ492931
http://www.ncbi.nlm.nih.gov/nuccore/KJ567146
http://www.ncbi.nlm.nih.gov/nuccore/KJ492932
http://www.ncbi.nlm.nih.gov/nuccore/KJ567147
http://www.ncbi.nlm.nih.gov/nuccore/KJ492933
http://www.ncbi.nlm.nih.gov/nuccore/KJ567148
http://www.ncbi.nlm.nih.gov/nuccore/KJ492934
http://www.ncbi.nlm.nih.gov/nuccore/KJ567149
http://www.ncbi.nlm.nih.gov/nuccore/KJ492935
http://www.ncbi.nlm.nih.gov/nuccore/KJ567150
http://www.ncbi.nlm.nih.gov/nuccore/KJ492936
http://www.ncbi.nlm.nih.gov/nuccore/KJ567151
http://www.ncbi.nlm.nih.gov/nuccore/KJ492937
http://www.ncbi.nlm.nih.gov/nuccore/KJ567152
http://www.ncbi.nlm.nih.gov/nuccore/KJ492938
http://www.ncbi.nlm.nih.gov/nuccore/KJ567153
http://www.ncbi.nlm.nih.gov/nuccore/KJ492939
http://www.ncbi.nlm.nih.gov/nuccore/KJ567154
http://www.ncbi.nlm.nih.gov/nuccore/KJ492940
http://www.ncbi.nlm.nih.gov/nuccore/KJ567155
http://www.ncbi.nlm.nih.gov/nuccore/KJ492941
http://www.ncbi.nlm.nih.gov/nuccore/KJ567156
http://www.ncbi.nlm.nih.gov/nuccore/KJ492942
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RAPD (randomly amplified polymorphic DNA) and data analysis

Twenty seven random primers were used for RAPD analysis. These primers were pre-
viously shown to be suitable for inter-species comparison of Ditylenchus (Digby and 
Kempton 1987; Zouhar et al. 2007). All PCR reactions were performed in 25 μl vol-
umes consisting of 1 μL of genomic DNA prepared earlier as described above, 2.5 μl 
of 10×PCR buffer, 1.25 μl of 2.5 mM dNTPs, and 0.25 μl of Titanium Taq DNA 
polymerase (Clontech Lab Inc.). Amplification conditions were as follows: an initial 
denaturation at 94 °C for 1 min, followed by 40 cycles of denaturation at 94 °C for 
1min, annealing/extension at 72 °C for 1min and a final extension at 72 °C for 10 min. 
The PCR products were separated by electrophoresis (100V, 1h) in 2.0% agarose gels 
in TAE buffer with 180-200 ng DNA. The gels were stained with ethidium bromide, 
visualized and photographed under UV-light (Bio-rad DX, USA). All reactions were 
repeated twice for clear and stable banding patterns. The presence or absence of DNA 
fragments was scored as one or zero, respectively, in the binary matrix. Simple match-
ing coefficients (SM) (Digby and Kempton 1987) and hierarchical cluster analysis 
were performed with NTSYS2.1 (Exeter Software, Setauket, NY). Cluster analysis, by 
the un-weighted pair method with arithmetic mean (UPGMA), was performed with 
the SAHN (sequential, agglomerative, hierarchical and nested clustering method). The 
robustness of the dendrogram was tested with 1000 bootstrap replicates using PAUP 
software (Swofford 2003).

Results

DNA sequences: Ribosomal DNA fragments of the internal transcribed spacer 1 (404 
bp) and fragments of the 18S ribosomal RNA gene (902 bp) were amplified and se-
quenced and sequences deposited in GenBank (www.ncbi.nlm.nih.gov/genbank). 
GenBank accession numbers are listed in Table 1.

Phylogeny: Phylogenetic trees based on the ITS1 and 18S sequences of rDNA are 
shown in Figures 1 and 2 respectively. The results are consistent for both ITS and 18S 
with species separating into two clusters, one cluster comprising D. destructor, D. afri-
canus and D. myceliophagus, and the second comprising D. dipsaci, D. weischeri and D. 
gigas, with the groupings corresponding well with the tail endings. The 2 clusters were 
separated by species of Anguina.

RAPD analysis: Among the 27 primers (excepting RAPD2, RAPD3, RAPD5, 
RAPD7, OPA17 and OPB16 which amplified no visible bands) 21 random primers 
produced clear and reproducible bands. A total of 212 bands ranging from 100-2000 
bp in size were produced by the 21 primers. 121 and 42 polymorphic bands were 
obtained for D. destructor and D. dipsaci respectively, which suggests higher genetic 
variation among populations of the D. destructor than those of D. dipsaci. Figure 3 
presents the RAPD profiles obtained from primers OPG-05 to exemplify the banding 
patterns observed.

http://www.ncbi.nlm.nih.gov/genbank
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Figure 1. The 10001st Bayesian likelihood tree inferred from ITS sequences under GTR+I+G model 
(lnL = 9697.1895; freqA = 0.2646; freqC = 0.2062; freqG = 0.2602; freqT = 0.269; R(a) = 0.9399; 
R(b) = 3.4936; R(c) = 2.4954; R(d) = 0.5528; R(e) = 5.2698; R(f) = 1; Pinva = 0.4389; Shape = 0.7862). 
Posterior probability values exceeding 50% are given on appropriate clades.

Figure 2. The 10001st Bayesian likelihood tree inferred from 18S sequences under GTR+I+G model 
(lnL = 9697.1895; freqA = 0.2646; freqC = 0.2062; freqG = 0.2602; freqT = 0.269; R(a) = 0.9399; 
R(b) = 3.4936; R(c) = 2.4954; R(d) = 0.5528; R(e) = 5.2698; R(f) = 1; Pinva = 0.4389; Shape = 0.7862). 
Posterior probability values exceeding 50% are given on appropriate clades.
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The RAPD binary data matrix and resulting simple matching coefficient (SM) are 
presented in Table 2. Figure 4 shows the dendrogram indicating the relationships among 
all collections. Species of Ditylenchus separated into two clusters consistent with the phy-
logenetic results based on the ITS1 and 18S sequences. D. destructor, D. africanus, and D. 
myceliophagus comprised one cluster and D. dipsaci and D. weischeri the second cluster. All 
D. destructor populations were in one cluster with similarity of 74.2%, and all six popula-
tions of D. dipsaci in the other cluster with a higher degree of genetic similarity (87%).

Conclusions

All three molecular data supports morphological schemes for this genus to be divided 
into two groups: D. triformis-group and D. dipsaci-group, and that the genus is para-
phyletic dividing along the group line by Anguina and Subanguina.

Discussion

The results of the study provide strong evidence for divide the genus into 2 groups, one 
for D. triformis-group and D. dipsaci-group, and genus is paraphyletic. Paraphyletic 

Figure 3. Random Amplified Polymorphic DNA (RAPD) profiles of all Ditylenchus species using primer 
OPG-05.
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and polyphyletic taxa are nothing new to biosystematics, even in nematoda several taxa 
have been found either paraphyletic or polyphyletic: such as Hoplolaimus is paraphyl-
etic (Bae et al. 2008, Ma et al. 2011) and Aphelenchoididae polyphyletic (Kanzaki et 
al. 2009). It is debateable whether non-monophyletic taxa should be accepted. How-
ever as taxonomy advances from traditional to phylogenetic; however, more and more 
researchers would reject paraphyletic or polyphyletic taxa since they are inconsistent 
with evolution.

When the genus Ditylenchus was established by Filipjev (1936) by synonymizing 
Tylenchus dipasci to D. dipsaci it was placed in the family Tylenchidae (Nematoda: 
Tylenchida) as the sister genus to Tylenchus. Even today differences between species 
of the two genera are primarily morphometric, although now the genus is placed in 
the family of Anguinidae. There is some molecular evidence suggesting that one of the 
evolutionary paths of plant parasitism in nematodes is from algae-feeding nematodes 
Tylenchus to Ditylenchus (Holterman et al. 2009), which may be true for the obligate 
plant parasitic Ditylenchus species since the sharp-pointed tail tip is a feature in com-
mon for the two genera. Morphologically, the D. triformis-group is closely related 
with Safianema, and there is also molecular evidence (Giblin-Davis 2010) that they 
belong to one clade, that the species of D. triformis-group should be synonymized into 
Safinema, and there are also molecular evidences that Safianema and D. triformis-group 
are closely related to Neotylenchidae (suborder Hexatylina) than to Tylenchidae (sub-
order: Tylenchina) (Robin-Davis 2010), and a rounded tail tip (shared characteristic 
for both D. triformis-group and Safianema) and is a shared character in Hexatylina. 
To resolve the synonymization and the eventual high rank placement of the putatively 
synonymized Safinema, more studies are needed.

Figure 4. Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) tree showing estimated 
average genetic distances among all Ditylenchus species based on simple matching coefficient obtained 
from RAPD analysis.
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