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INTRODUCTION 
The single cell organism Saccharomyces cerevisiae is one of 
the best studied eukaryote model organisms [1] with a well 
annotated genome of approximately 5800 genes [2], of 
which 23% are homologous to humans [3]. It has more than 
100 genes encoding regulatory proteins influencing directly 
the expression of other genes [4]. Combined with a short life 
cycle, S. cerevisiae therefore is widely used for biological 
network studies based on microarray data. Resulting net-
works can be based on protein-protein interactions (PPIs), 
signaling or metabolic connections or co-expression rela-
tionships [5-8]. They usually are visualized as nodes for 
genes, connected by edges, representing interactions be-
tween these nodes [9]. In most cases this approach leads to 
the grouping of connected nodes and the formation of co-
regulated cliques or clusters. Often co-regulated genes have 

been found to share also functional properties or even form 
protein complexes directly [10]. 

Several methods and organisms have been used to con-
struct genomic or proteomic networks in recent years [3, 9, 
11-19]. In some cases training sets of selected microarray 
experiments are used to derive connections between nodes 
and to make a network from them. In other cases databases, 
like STRING [20], COXPRESdb [21], modSEEK [22] or SPELL 
[23], are used, which contain information on co-regulation 
properties, but also may contain other types of interactions, 
like PPIs and co-naming in articles or abstracts [20]. After 
network construction, the identification of clusters, cliques 
or modules is the next important step. It is widely recog-
nized that in most cases a change in the transcriptional pro-
gram is not only affecting one or two clusters, but due to the 
connected nature of cellular responses it affects several 
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ABSTRACT  DNA microarrays are highly sensitive tools to evaluate the gene ex-
pression status of organismic samples and standardized array formats exist for 
many different sample types. Differential expression studies usually utilize the 
strongest up- or downregulated genes to generate networks visualizing the re-
lationships among these genes. To include all yeast genes in one analysis and 
to get broader information on all cellular responses, we test a priori input of 
predefined genome-wide expression cliques and subsequent statistical analysis 
of the expression data. To this end, we generate a set of 72 co-regulation 
cliques using the information from 3196 microarray experiments. The obtained 
cliques performed highly significant in gene ontology and transcription factor 
enrichment analyses. We then tested the clique set on individual microarray 
experiments reporting on responses to pheromone, glycerol versus glucose 
based growth and the cellular response to heat. In all cases a highly significant 
determination of affected expression cliques was possible based on their aver-
age expression differences, the positions of their genes within hit rankings (Up-
RegScore) or the enrichment of the Top200 hits in certain cliques. The 72 
cliques were finally used to compare experiments, which reported on the tran-
scriptional response to polyglutamine proteins of different lengths. Using the 
predefined clique set it is possible to identify with high sensitivity and good 
significance sample and condition specific changes to gene expression. We thus 
conclude that an analysis, starting with these 72 preformed expression cliques, 
can complement traditional microarray analyses by visualizing the entire re-
sponse on a static genome-wide gene set. 
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transcriptional modules simultaneously and to variable ex-
tent. These clusters need to be well separated, especially if 
further analyses on isolated gene groups are planned, as in 
general enrichment analyses profits from high quality gene 
sets.  

We previously had used genome-wide co-expression da-
tabases to generate networks with fairly high connection 
density from hits of microarray experiments. This approach 
was applied to the identification of differentially induced 
gene clusters after polyglutamine expression [24] or differ-
entially expressed gene clusters after Hsp90-depletion in 
C. elegans [25]. These networks were constructed from the 
Top100 or Top200 hits per experiment and in all cases sev-
eral co-regulation clusters could be separated from each 
other [24-26]. Nevertheless, in all cases some genes could 
not be connected within these networks even though they 
showed strongly altered expression behavior. Also, when 
trying to separate clusters within these networks, for some 
gene groups no significant gene ontology (GO)-term or 

transcription factor (TF) assignments could be obtained in 
enrichment analyses [24, 26]. This could be caused by the 
limitation to 100 or 200 Top-genes and the resulting exclu-
sion of many important genes from these networks.  

We here aim at analyzing the full genomic expression 
dataset. To do this, all yeast genes were first assigned to a 
number of co-regulated expression cliques by an unbiased 
classification algorithm. Thus, this network will now include 
all genes and even those that did not connect within the 
Top200-hit network in our previous experiments will be in-
tegrated [24, 26]. The resulting cliques then could prove 
useful to analyze microarray data in the context of the ge-
nome-wide response. 

 

RESULTS 
Highly significant yeast expression cliques can be derived 
from platform-specific coregulation data 
To obtain genome-wide co-expression cliques for all yeast 
genes analyzed on GeneChip Yeast Genome 2.0 arrays we 

TABLE 1. Most prominent results from GO-enrichment. 

 

The cliques with p-values <10-20 are ranked according to their p-values. The data for all cliques are compiled in Supplemental Table S2. 
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used publicly available information from previously re-
ported experiments. We generated a co-regulation data-
base based on the correlations within 3196 S. cerevisiae mi-
croarray experiments available for the GPL2529 platform in 
the GEO repository (Supplementary Figure S1). Using this 
database, termed ‘GPL2529full’, we generated a network, 
which contains 151,676 gene-gene connections in the full 
genome (Supplementary Figure S2) and then separated 72 
expression cliques based on an optimized classification al-
gorithm as described in the Material and Methods section 
(Supplementary Figure S3, Supplemental Table S1). The size 
of the cliques varied considerably with the smallest clique 
being six genes (SAN1-SKN7) and the largest clique being 
775 genes (CUP5-TEF1). Most expression cliques were in the 
range of 15-100 genes and every yeast gene analyzed on the 
GPL2529 microarray platform was included exactly once.  

We first tested to what extent the isolated cliques in-
deed contain genes with high rankings in the co-expression 
database ‘GPL2529full’. Calculating the average intra-clique 
ranking and the average inter-clique ranking we find that 
the first value is much higher, showing that indeed the 
cliques accumulate preferentially co-expressed genes (Fig-
ure 1A). To exclude bias from using the same database for 

construction and evaluation of the cliques, we used another 
database, which is also publicly available (COXPRESdb) [21]. 
Here a similar spread is observable. In both cases this spread 
is eliminated, if randomly scrambled gene cliques are used 
(Figure 1A). Finally, we used this test to compare our clique 
set to another publicly available genome-wide clique set ob-
tained with a different approach [29]. For this clique set the 
spread between intra- and inter-clique rankings is much 
smaller, suggesting that the clique set determined from our 
high-density networks could indeed show improved classifi-
cation of the co-regulated genes.  

We next performed analyses on the isolated cliques to 
evaluate functional correlations between the genes in each 
clique. To this end we first determined enriched GO-terms 
for each of the isolated gene groups (Supplemetary Table S2, 
the most prominent results are summarized in Table 1). 
Many of the determined pEnriched-values were in the (-log10)-
range of +7 to +13, some even reaching a (-log10(pEnriched)) 
value of +124 (RPF2-BRX1, “nucleolus”). These values imply 
with very high confidence that the isolated co-expression 
cliques group genes of similar cellular functions. To evaluate 
the employed GO-term selection method, we tested scram-
bled  expression   cliques  with  the  same  enrichment  eva- 

TABLE 2. The most prominent results from TF-enrichment ranked according to their p-value in transcription factor activation. 

 

Only cliques with p-values < 10-20 are included, the rest of the cliques are included in Supplemental Table S2. 
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luation method. For random cliques we observed mostly -
log10(pEnriched) between +1 and +3 and even after 20 such 
scrambled clique-tests, the outstanding functional grouping 
of the genes in most co-expression cliques was obvious. We 
assumed that at pSelection<0.0001 (-log10(pSelection)>4), corre-
sponding to a Z-score larger than 3.72, sufficiently high sig-
nificance is achieved and this Z-score requires a -log10(pEn-

riched)>4.831 (Figure 1B, Supplemental Table S2). Many 
cliques in fact gave highly significant assignments, like the 
cluster RPS24A-RPL20A ((-log10(pEnriched)=+82, “cytoplasmic 
translation”) or the cluster MRP17-MRPL9 ((-log10(pEn-

riched)=+65, “mitochondrion organization”) or MRP1-MRPS9 
((-log10(pEnriched)=+42, “mitochondrion”). Many other cliques 
also were assigned with functions that obviously are correct 
(Supplemental Table S2). Altogether 4623 of the genes are 
included in cliques with very high significance (p<0.0001) 
and these are based on 1457 direct GO-term hits. The as-
signment of the most significant GO-terms to the separated 
gene cliques is available as supplementary table (Supple-
mentary Table S2) with the respective p-values and the sig-
nificance thresholds derived from the control experiments.  

We then performed a similar type of analysis to obtain 
information on potential TFs for the 72 expression cliques. 
We used the information from YEASTRACT to determine the 
three most likely TFs in the categories of “Binding”, “Activat-
ing” and “Inhibiting”. Here for most cliques the strongest en-
riched TF is supported by a (-log10(pEnriched)) in the range of 
+5 to +30 (Supplementary Table S2 most prominent in Ta-
ble2, Figure 1C). When per-forming an analysis on 20 scram-
bled control separations, these values are considerably 
lower, implying that the applied separation method leads to 
gene cliques, whose regulation apparently can be linked to 
specific sets of TFs (Figure 1C). Based on average and stand-
ard deviation of the random sets, a Z-score of 3.72 is re-
quired and thereby our high significance threshold for the 
best TF requires a -log10(pEnriched)>4.103 (Supplemental Table 
S2). Best (-log10(pEnriched))-values in the category “activating 
TF” were obtained for the cluster RPF2-BRX1 (+79 for SWI5; 
+76 for YOX1 and +71 for YHP1) and RPS24A-RPL20A (+64 
for IFH1; +48 for GCR1; +38 for SDS3). Altogether 4474 
genes were included in cliques with at least one highly sig-
nificant TF in the category of “activating TF”, with 1444 di-
rect gene hits in the YEASTRACT database. Further TFs were 
assigned from the two other categories (all data in Supple-
mental Table S2). Thus the ability to assign common func-
tional properties and specific TFs to most of the clustered 
genes suggests that the separation of the cliques correlates 
well with the transcriptional logic encoded in the yeast ge-
nome. 

 
The a priori clusters provide detailed information on ge-
nome-wide transcriptional responses 
We next aimed at testing microarray experiments, even if 
they were performed on other platforms (all information in 
Supplementary Table S3), to see whether the separation 
into these 72 cliques generally reflects the experimental re-
alities in isolated experiments.  

We first analyzed a reported response to α-pheromone 
(GSE7525, [37]). Plotting the expression difference of each 

gene onto the clustered network we find that indeed some 
of the cliques accumulate red and greenish colors (Figure 
2A). We first used the Top200 hits in each direction to see, 
whether these preferentially fall into some of the 72 cliques. 

FIGURE 1: Evaluation of Genome-wide expression cliques. (A) 
Comparison between our clique set, random genes and the clique 
set from Petti et al. The comparison is based either on our own co-
expression database (left side) or on the co-expression database 
from COXPRESdb (right side). (B) GO-term assignments for the 72 
identified cliques or for random cliques. The significance threshold 
for p<0.0001 is indicated as vertical line in the figure. As compari-
son to the calculated cliques (red plot) random gene cliques were 
used (black plot). (C) Assignment of activating TFs for the identified 
72 cliques or for random cliques based on the YEASTRACT data-
base. The significance threshold for p<0.0001 is indicated as verti-
cal line in the figure. 
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This clearly is the case as judged from the enrichment 
factors and p-values derived from this analysis and in partic-
ular the clique GPA1-STE4 ((-log10(p)=+27) performs out-
standingly, followed with a larger distance by the clique 
DCS2-MSC1 ((-log10(p)=+9). The cliques RPF2-BRX1 ((-
log10(p)=+44), YOX1-CLN1 ((-log10(p)=+18) and SER1-ADE12 
((-log10(p)=+4.2) are significantly enriched for downregu-
lated genes (Supplemental Table S4, Table 3 with the most 
prominent results). To confirm the up- or downregulation of 
these cliques relative to the other gene cliques, we calcu-
lated the average expression differences and the UpReg-
Score. Based on random clique analysis we could obtain in-
formation on stochastic variations in these parameters and 
were able to derive significance parameters for them. We 
find the average expression differences in RPF2-BRX1 to be 
-0.30375 (probability for being not downregulated relative 
to random clusters: (-log10(p)=+23)) and upregulation in 
GPA1-STE4 (+1.046, (-log10(p)=+20)). YOX1-CLN1 is signifi-
cantly downregulated (-1.0574, (-log10(p)=+15)). Several 
other cliques were also significantly shifted regarding their 
expression changes at lower, but still highly significant levels 
(-log10(p)>+4). We then compared the first with the second 
replicate. Here, we find that the similarity between these 
two experiments is very high and the correlation of expres-
sion differences (Figure 2B) and UpRegScores (Figure 2C) for 
the 72 cliques is almost linear. We marked the cliques that 
were significant in both experiments with the respective 
color, noting that especially small cliques are punished 
strongly due to their relative higher standard deviations 
(Supplementary Figure S4, S5). The strong correlation be-
tween the replicates shows that these two replicates yield 
very similar results in respect to the cliques induced or sup-
pressed.  

We then performed the same analysis with a data set 
reporting on the differences between glycerol and glucose 
based growth (GSE6302, [38]). Visual inspection of the ex-
pression differences in the 72 cliques show that this 

response is producing much stronger expression changes 
than the response to pheromone and many more cliques 
appear systematically affected (Figure 3A). Here, as before, 
the identification of influenced cliques is possible based on 
their expression differences, the ranks of the genes in up-
regulation lists (UpRegScore) and the enrichment of the 
Top200 genes within the cliques (Supplemental Table S5, 
most prominent results in Table 4). Given that the response 
involves many more genes, the calculation of average ex-
pression differences for each clique appears very rewarding 
in addition to the Top200-enrichment. We find the cliques 
DCS1-MSC1 (+1.79, (-log10(p)=+139)) and QCR7-COX6 
(+1.339, (-log10(p)=+27)) and CAT2-IDP2 (+1.133, 
(-log10(p)=+20)) to give the most significant upregulation 
and the cliques CUP5-TEF1 (-0.289, (-log10(p)=+18)), 
RPS24A-RPL20A (-1.12, (-log10(p)=+18)) and RPB2-FUN12 (-
0.32, (-log10(p)=+16)) to give the most significant downregu-
lation response (Figure 3B). Also the UpRegScore yields 
highly significant p-values for each of those cliques (all 
(-log10(p)>+12)). We then tested, whether these cliques per-
form reproducibly in other biological replicates of this sam-
ple condition. Here, as before, the two replicates, which are 
available from the .pcl files on the SPELL server, strongly cor-
relate in plots where the average expression differences 
(Figure 3B) or the UpRegScores (Figure 3C) of each clique 
are directly compared (Supplemental Table S5, most promi-
nent results in Table 4).  

As a third test, we used the time series of the heat shock 
response as reported by Gasch et al. [39]. These data sets 
also were used previously by us to test our ability to connect 
the Top200 hits of the response [26], using the sample in-
vestigating the response 40 minutes after the heat-shock. In 
a previous analysis, here several hits were left outside of the 
connected network and their assignment to response parts 
was thus impossible from that network [26].  Using the same 
hits  for enrichment  analysis whether these preferentially 
fall   into  some   of   the  72  cliques. The  selection   of  these  

TABLE 3. Most prominent hits from differential expression after pheromone induction within the 72 expression cliques for replicate 1 and 
replicate 2. 

CliqueName CliqueSize GenomSize 
UpSelected 

Replicate 1 
DownSelected 
Replicate 1 

Differ. Exp 
Replicate 1 

Differ. Exp 
Replicate 2 

UpRegScore 
Replicate 1 

UpRegScore 
Replicate 2 

GPA1-STE4 23 3474 0 
 

1.43 1.04 72 42 

AGA2-MFA2 4 3474 2.09E-05 
 

1.08 0.70 60 38 

YLR345W-FBP26 45 3474 1.31E-07 
 

0.25 0.24 42 41 

TPS1-RIM11 62 3474 4.52E-08 
 

0.20 0.10 44 23 

PRE10-RPT1 139 3474 7.49E-07 
 

0.14 0.11 32 26 

RPB2-FUN12 392 3474 
 

0.00082 -0.11 -0.087 -15 -15 

POL1-PDS5 25 3474 
 

0.613 -0.33 -0.28 -45 -42 

RPF2-BRX1 208 3474 
 

0 -0.35 -0.30 -53 -49 

YOX1-CLN1 8 3474 
 

4.51E-151 -1.29 -1.06 -94 -79 

Results significantly above or below baseline (p<10-4) are colored in the categories for Top200-Enrichment of replicate 1, clique differential 
expression in both replicates or UpRegScore in both replicates. 
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FIGURE 2: Analysis of microarray data sets on pheromone response. (A) Response to α-pheromone with data from [37]. Downregulation is 
shaded in four levels of green, upregulation in four levels of red. Genes, which are in the clustered network, but received no values in the 
experiment, were blanked out. Significantly changed cliques in replicate 1 are highlighted with yellow background and labelled with their 
clique name. (B) Comparison between two replicates in respect to average expression changes in the 72 cliques. We marked the cliques that 
are significantly changed in respect to average expression in both experiments (p<0.0001) in the plot with red (upregulation) and green (down-
regulation) and labelled them accordingly. (C) UpRegScore for each cluster in the two replicates. Cliques, where both replicates showed sig-
nificant shifts in the same direction were labelled in red (upregulation) or green (downregulation). We named them accordingly. 
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FIGURE 3. Analysis of microarray data sets on growth conditions. (A) Differences between glycerol-induced growth and glucose supported 
growth as described by [38]. Downregulation is indicated by four levels of green, upregulation by four levels of red. Significantly changed 
cliques of replicate 1 are highlighted with yellow background and labelled. (B) Correlation between two replicates and indication as to which 
values show significant upregulation in both replicates (red dots). The same is applied for downregulation (green labelling). (C) Comparison 
between two replicates regarding the UpRegScore of each clique. The labelling is performed as in Figure 2B. 
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cliques correlates well with the visual inspection of the re-
sponse (Figure 4A, Supplemental Table S6 and Table 5 for 
the most prominent results). The strongest enrichment of 
Top200 hits can be observed in DCS1-MSC1 
(-log10(p)=+78), in TPS1-RIM11 (-log10(p)=+11.7) and in 
YLR345W-FBP26 (-log10(p)=6.5) next to the lower, but still 
significant shift in the cliques SER1-ADE1 (-log10(p)=5.9). 
Downregulation is observed most strikingly in RPF2-BRX1 
(-log10(p)=+112), RPS24A-RPL20A (-log10(p)=+18), PNO1-
TRM2 (-log10(p)=+7) and 1770541_at-CGR1 (-log10(p)=+6.5). 
These also represent the cliques with the most significant 
changes in average expression levels or UpRegScores (Sup-
plemental TableS 6, most prominent results in Table 5). We 
used the average expression differences of interesting 
cliques to visualize the time course of the heat-induced re-
sponse based on the single replicate arrays provided in the 
GEO repository. Here a clear pattern was observable, show-
ing the very early induction of the DSC2-MSC1 and the TPS1-
RIM11 clique that contains many genes of the classical heat-
shock response (Figure 4B). The clique RPF2-BRX1 contain-
ing nucleolus-related genes is already repressed five 
minutes after the heat-incubation, while the expression of 
ribosomal genes from RPL24A-RPL20A and RPL18A-RPL2A is 
reduced only after a short lag time. The significant upregu-
lation of the SER1-ADE12 clique as observed 40 minutes af-
ter the heat-shock is characterized by an even longer lag 
time, implying that the heat-shock response actually is com-
posed of waves of transcriptional changes affecting specific 
cliques with their own kinetics.  

The strong correlation between genes within one clique 
in these three experiments shows that many cliques gener-
ated by our connection and separation method are indeed 

regulated as transcriptional units. This confirms that the 
evaluation of individual microarrays with this type of clus-
tered analysis nicely reflects the transcriptional response. 
Also it confirms that this analysis approach can help to in-
vestigate strong and weak responses alike based on p-val-
ues on all derived parameters.   

 
Full-genome analysis of the response to polyglutamine 
overexpression plasmids 
The 72 cliques present a good way to analyze the genome-
wide responses from expression data and they seem to 
work even in the treatment of single biological experiments. 
We thus felt that this analysis can extract relevant infor-
mation from our own microarray samples. These arrays re-
port on the overexpression of polyglutamine proteins of dif-
ferent length, with one of the constructs (Q56) producing a 
slow growth phenotype, while the other (Q30) does not in-
duce growth defects. Experiments had been performed in-
dependently and maintained on the plates for 2-4 days be-
fore analysis to compensate for the different growth rates 
[24]. Employing the three analysis methods (Top200 Enrich-
ment, Differential Expression, UpRegScore) on Q56/Q0, we 
find cliques with significant up- or downregulations in the 
first experiment (Supplementary Table S7, most prominent 
in Table 6). These also match the visual inspection of the re-
sponse (Figure 5A). In particular, these are CAT2-IDP2 (-1.69, 
-log10(p)=+96), DCS2-MSC1 (-0.72, -log10(p)=+35), QCR7-
COX6 (-0.87, -log10(p)=+21), PNO1-TRM2  (-0.511,   -log10(p) 
= + 19),   YBR225W-RIM101 (-0.299, -log10(p)=+16), VTC1-
VTC3 (-1.04, -log10(p)=+15) and others with weaker signifi-
cance. In general, these cliques represent the large network, 
which had been assigned to the response to the nutritional   

TABLE 4. Most prominent hits from differential expression in glucose versus glycerol based growth within the 72 expression cliques for 
replicate 1 and replicate 2. 

CliqueName CliqueSize GenomSize UpSelected 
Replicate 1 

DownSelected 
Replicate 1 

Differ. Exp 
Replicate 1 

Differ. Exp 
Replicate 2 

UpRegScore 
Replicate 1 

UpRegScore 
Replicate 2 

DCS2-MSC1 93 4591 0 0.18 1.80 0.93 70 50 

QCR7-COX6 33 4591 2.21E-148 
 

1.34 0.82 81 52 

KGD2-KGD1 41 4591 0 
 

1.21 1.21 70 64 

CAT2-IDP2 70 4591 0 0.15 1.13 0.69 67 47 

ARN1-SIT1 19 4591 1.29E-07 
 

0.99 0.98 59 56 

TPS1-RIM11 82 4591 4.50E-10 
 

0.70 0.64 52 46 

YLR345W-FBP26 61 4591 3.40E-17 
 

0.68 0.56 48 42 

YBR225W-RIM101 317 4591 0.48 0.19 0.35 0.27 33 27 

CUP5-TEF1 651 4591 0.16 9.87E-256 -0.29 -0.24 -28 -19 

SSS1-VMA10 185 4591 
 

0.66 -0.30 -0.28 -28 -24 

RPB2-FUN12 476 4591 0.22 3.13E-12 -0.32 -0.29 -30 -27 

RPF2-BRX1 236 4591 
 

0.0045 -0.44 -0.70 -44 -56 

RPS24A-RPL20A 53 4591 
 

0 -1.12 -1.28 -81 -78 

Results significantly above or below baseline (p<10-4) are colored in the categories for Top200-Enrichment of replicate 1, clique differential 
expression in both replicates or UpRegScore in both replicates. 
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FIGURE 4: Analysis of microarray data sets on the heat-shock response. (A) Response to heat-shock after 40 minutes of recovery as reported 
by Gasch et al. [39]. Upregulation is indicated in four shadings of red. Downregulation is indicated in four shadings of green. Significantly 
changed cliques are highlighted with yellow background and labelled. (B) Time-course of the relevant cliques based on the single replicates 
provided on the SPELL webservice.  
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status before [24], but now these genes are forming sepa-
rate cliques. The upregulated genes include two large 
cliques with only mild upregulation: CUP5-TEF1 (0.271, -
log10(p)=+30) and RPB2-FUN12 (0.186, -log10(p)=+20), which 
achieve significance based on their large size (775 genes and 
524 genes) despite the small expression changes. There also 
are several smaller, but strongly affected cliques including 
YGL117W-TMT1 (1.94, -log10(p)=+16), LYS21-LYS12 (0.73, -
log10(p)=+13), ARG2-ORT1 (1.15, -log10(p)=+13), ARN1-SIT1 
(0.814, -log10(p)=+10) and MET10-MET1 (0.73, -
log10(p)=+10). Most genes included in these cliques were 
identified before, but here likewise large parts of the re-
sponse could not be assigned to GO-term or TF groups [24]. 
This is possible now that the hits are embedded into the 
context of their cliques. We compared the two experiments, 
which were incubated on agar plates for different times 
(Supplementary Figure S6A and B). Despite the different in-
cubation, we still find a correlation for Q56, where the aver-
age expression differences of the cliques produce a roughly 
straight line (Figure 5A and B), hinting to consistent differ-
ences at least in the strongly affected cliques. So for the in-
toxicated sample, obviously the recorded response is con-
sistent independently of the incubation time and sample 
condition.  

For Q30, where no toxicity is observed, the expression 
differences are much smaller. This lead to difficulties when 
generating networks from the Top100-differentially ex-
pressed genes [24]. The visual inspection of the two experi-
ments highlights that significant red or green cliques exist 

(Supplementary Figure S7A and B). Interestingly, while 
many cliques yield significant enrichments or expression 
shifts, only few of them show this behavior consistently in 
both experiments (Supplementary Table S8, most promi-
nent cliques in Table 7). Clearly, no obvious correlation be-
tween the two experiments is observable (Figure 6A and B) 
and only few strongly altered cliques show consistent differ-
ential expression in both experiments. Nevertheless, each 
experiment shows its own significant difference between its 
Q30 and its Q0 control sample. We assume that due to the 
small influence of Q30 versus Q0 even small differences in 
growth conditions on the plates (e.g. different colony den-
sity) are masking the specific response. Apparently this ef-
fect can be stronger than the influence of the Q30-construct 
itself. Nevertheless, both experiments – based on the highly 
significant and visually observable shifts in some of their 
cliques - provide accurate information on the differences 
between the Q30 and Q0 samples in each experiment. Com-
bining the analyses of both experiments, only the VTC1-
VTC3 clique, the ZPS1-ZRT1 clique and the PNO1-TRM2 
clique remain as candidates for a consistent influence from 
the overexpression of polyglutamine Q30. Interestingly, the 
PNO1-TRM2 clique is even downregulated in Q56 and Q30 
samples alike. This had not been observed in the older anal-
ysis, possibly due to PNO1-TRM2 not having enough highly 
affected genes to generate a cluster of its own in the previ-
ously used methods [24]. Furthermore the weak upregula-
tion of YGL117W-TMT1 and GDE1-CRG1 may be shared be-
tween Q56 and Q30-induced effects.  

TABLE 5. Most prominent hits from differential expression 40 minutes after heat shock within the 72 expression cliques. 

CliqueName CliqueSize GenomSize UpSelected DownSelected Differ. Exp UpRegScore 

DCS2-MSC1 136 5459 0 
 

1.71 71 

TPS1-RIM11 104 5459 1.08E-73 
 

1.22 64 

YLR345W-FBP26 86 5459 6.06E-19 
 

1.07 57 

SER1-ADE12 19 5459 4.21E-07 
 

1.04 53 

KGD2-KGD1 48 5459 0.037 
 

0.88 55 

APE2-RCK2 118 5459 0.029 
 

0.64 35 

YBR225W-RIM101 429 5459 0.195 0.149 0.38 27 

TCO89-YML020W 232 5459 0.188 0.139 0.27 16 

RPB2-FUN12 524 5459 0.154 0.159 -0.30 -30 

SSS1-VMA10 239 5459 0.179 0.302 -0.38 -30 

PNO1-TRM2 52 5459 0.42 6.44E-25 -0.88 -59 

RPL18A-RPL2A 13 5459 
 

0.040 -1.18 -73 

RPF2-BRX1 262 5459 0.21 0 -1.24 -76 

RPS24A-RPL20A 56 5459 0.23 2.17E-274 -1.42 -82 

1770541_at-CGR1 9 5459 
 

2.99E-16 -1.55 -87 

Results significant above or below baseline (p<10-4) are colored in the categories for Top200-Enrichment, clique differential expression or 
UpRegScore. 
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GSEA yields gene sets with similarities to the strongest af-
fected cliques 
We finally aimed at testing whether other enrichment meth-
ods yield gene sets similar to the cliques identified here. To 
this end we used the same microarray experiments and 
evaluated them with the GSEA software. We included our 
cliques as additional gene sets in the gene set database and 
therefore obtained the enrichment scores also for them. For 
the response to α-pheromone we obtained several gene 
sets with high enrichment scores. Among them also our 
GPA1-SPE4 is present as second ranked and our clique 
YJL052C-A-YOR268C is ranked as number 20. When analyz-
ing the 20 Top scoring gene sets, we find that eight from 
those sets are sharing at least 30% of their genes with GPA1-
SPE4, implying that many of the identified gene sets are re-
lated to our clique GPA1-SPE4 (Supplemental Table S9). The 
same procedure was employed to compare Glycerol and 
Glucose based growth (Supplemental Table S10), for the 
heat-shock response (Supplemental Table S11) and for the 
experiments comparing either Q56 to Q0 (Supplemental Ta-
ble S12) or Q30 to Q0 (Supplemental Table S13). In all cases 
many of the best gene sets from GSEA-analysis contain the 
genes also enriched in the relevant cliques from our clique 
set. In the other direction also our Top scoring cliques are 
represented directly by the Top scoring gene sets from GSEA. 
But the less strongly affected cliques from our clique set, 
which still show significant deviations from baseline, are 
usually not represented in the Top20 cliques of the GSEA-
analysis. This implies that the clique set derived here may 
have advantages in uncovering significant but weakly re-
sponding sets due to its limitation to 72 static sets repre-

senting the full genome. 
 
 

DISCUSSION 
Application of the a priori clustered genome-wide co-ex-
pression cliques 
We have used a genome-wide approach to analyze expres-
sion levels by generating co-expression cliques representing 
the full genome and then used the statistical performance 
of those in genome-wide expression analyses. Indeed, in 
every microarray experiment tested by us, the enrichment 
of upregulated and downregulated cliques is observable. 
This confirms that in all these experiments, even if expres-
sion changes are very low, like for the comparison between 
Q30 and Q0-expressing yeasts, we are still analyzing expres-
sion differences that are significantly above the noise 
threshold. The 72 co-expression cliques representing the full 
genome allow visualizing even very small shifts of individual 
cliques and thus provide significant information that may be 
lost otherwise. Also the analyses suggest that it may have 
advantages to analyze repeated experiments also individu-
ally without averaging the expression values prior to analy-
sis as the individual analysis may better capture the influ-
ence of small differences between these repetitions. This 
level of detail could also not be achieved if genes are ana-
lyzed only as individual responders. Instead, in context of 
their clique, the concerted response of the clique enables 
significance tests on several levels and thus exposes even 
weak but concerted changes. Significance in our study has 
been achieved without the need to pre-filter the microarray 
data, without low signal probes  being excluded, without  
manual readjustments  to the cliques and without weighing 
factors on the probes. While we used defined parameter 
settings to produce the network (connections with the ten 
Top hits from the co-expression ranking) and to excise the 
cliques from it (protection threshold at five genes producing 
cliques  of  minimally six  genes),  an iterative  optimization  

FIGURE 5: Analysis of the toxic effects of polyglutamine expression with pQ56. Correlation between two experiments of Q56-expression 
induced toxicity based on the average expression differences (A) or the UpRegScore (B) The clusters, which are significantly up- or downreg-
ulated in both experiments, are highlighted in the respective color. 
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procedure could potentially improve the clique set quality 
further. It has to be realized though that producing smaller 
cliques will impact the ability to obtain significant results as 
the standard deviation increases strongly for smaller clique 
sizes (Supplementary Figure S4 and S5). Thus, we feel that 
the a priori clustered genome as presented here could be a 
good resource to perform a fast genome-wide analysis re-
garding the status of most of the important expression 
cliques encoded in the yeast genome. To enable general use 
of this analysis method, we made the network-files available 
and we included the analysis method into the webserver at 
www.clusterex.de.  

Beyond the analysis of the expression data, the correla-
tion of the 72 cliques with GO-terms and TFs interesting in-
formation on the molecular events that happen in the yeast 
cell. Several thousand genes could be directly related to the 
most prospective GO-terms or TFs for the 72 cliques. Poten-
tially uncharacterized genes are assigned within this ge-
nome-wide clustering, placing them in cliques with well 
characterized genes and thereby providing a functional cor-
relation at least in those cliques, where the GO-term 

assignment is very clear. These assignments are also poten-
tially valuable to target the most prospective TFs: at least for 
the TFs IFH1 and GCR1, which are assigned to the clique 
RPL24A-RPS20A, there is indeed strong evidence that they 
are involved in regulation of ribosomal protein expression 
[40, 41].  

In general, the main results compare well with other en-
richment methods, like the gene-set-enrichment analysis 
GSEA. In comparison to this approach the 72 clique sets de-
veloped by us are static and represent the full genome, with 
one gene being assigned to one clique. In most cases tested 
here by us, the GSEA finds the gene sets with the highest 
enrichment and our top scoring cliques perform comparably. 
While GSEA is performed on more than 2000 gene sets, our 
cliques represent the entire genome within 72 cliques and 
make all its potentially observable responses accessible in a 
fast and efficient way. Even cliques with lower expression 
changes, which would show up only after a large number of 
gene sets when using the entire GSEA gene set database are 
readily observable here.  

TABLE 6. Most prominent hits from differential expression between Q56 and Q0 within the 72 expression cliques. 

Clique Name Clique 
Size 

Genom 
Size 

UpSelected 
Experiment 

1 

DownSelected 
Experiment 

1 

Differ. 
Exp 1 

Differ. 
Exp 2 

UpReg 
1 

UpReg 
2 

Aver 
Exp 

Aver 
UpReg 

YGL117W-TMT1 7 5811 1.40E-243 
 

1.95 1.41 98 98 1.68 98 

ARG2-ORT1 9 5811 2.51E-43 
 

1.15 0.92 92 92 1.04 92 

GDE1-CRG1 7 5811 0.016 
 

0.72 0.92 78 89 0.82 83.5 

ARN1-SIT1 21 5811 1.93E-225 
 

0.81 0.70 59 77 0.76 68 

LYS21-LYS12 28 5811 6.76E-47 
 

0.73 0.48 65 60 0.60 62.5 

MET10-MET1 30 5811 4.47E-36 
 

0.73 0.37 41 40 0.55 40.5 

SER1-ADE12 19 5811 5.74E-11 
 

0.54 0.46 49 70 0.50 59.5 

HAL5-AYT1 24 5811 4.34E-12 
 

0.55 0.33 53 35 0.44 44 

RPS24A-RPL20A 56 5811 
  

0.48 0.07 68 27 0.28 47.5 

MRP1-MRPS9 65 5811 
  

-0.17 -0.30 -26 -51 -0.23 -38.5 

SPT10-PRP18 77 5811 0.53 0.38 -0.41 -0.09 -44 -16 -0.25 -30 

POL1-PDS5 35 5811 0.63 
 

-0.29 -0.22 -40 -36 -0.26 -38 

RPF2-BRX1 263 5811 0.10 0.13 -0.33 -0.30 -44 -51 -0.31 -47.5 

PNO1-TRM2 52 5811 
 

0.21 -0.51 -0.28 -56 -44 -0.39 -50 

KGD2-KGD1 48 5811 0.088 5.35E-57 -0.75 -0.21 -57 -33 -0.48 -45 

1770541_at-CGR1 9 5811 
  

-0.50 -0.45 -60 -71 -0.48 -65.5 

QCR7-COX6 53 5811 
 

4.62E-30 -0.87 -0.10 -67 -13 -0.48 -40 

DMA2-THI20 21 5811 0.15 1.28E-18 -0.90 -0.097 -50 -9 -0.50 -29.5 

ZPS1-ZRT1 7 5811 0.0008 2.62E-11 -0.38 -0.66 -27 -84 -0.52 -55.5 

VTC1-VTC3 16 5811 
 

4.68E-25 -1.05 -0.87 -60 -64 -0.96 -62 

CAT2-IDP2 89 5811 0.17 0 -1.69 -0.34 -76 -35 -1.02 -55.5 

Results significant above or below baseline (p<10-4) are colored in the categories for Top200-Enrichment of experiment 1, clique differential 
expression in both experiments or UpRegScore in both experiments. 

http://www.clusterex.com/
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Identification of cliques reporting on the presence of toxic 
and non-toxic polyglutamines 
We finally used the group of co-expression cliques to visual-
ize and re-evaluate the polyglutamine microarray experi-
ments for which we had obtained expression values. pQ56-
induced expression changes highlight strongly affected 
cliques, which contain many of the genes described before. 
Clearly significant in both experiments is the upregulation of 
the ARN1-SIT1 clique and the MET10-MET1 clique, which 
were previously identified as “iron-responsive” and “sulfur-
responsive” [24]. The many genes not assigned to specific 
clusters in our study of the Top100 genes [24], now are en-
riched in the cliques ARG2-ORT1, YGL117W-TMT1, LYS21-
LYS12 and SER1-ADE12. Also, we now can assign functions 
and potential TFs to the gene cliques that could not be as-
signed before [24]. The occurrence of those upregulated 
gene cliques in two different experiments (Experiment 1: 
Both samples three days on plate, Experiment 2: Q0 two 
days, Q56 four days on plates to compensate for the slow 
growth) implies that this result could be relatively stable 
over a broader range of incubation conditions. Similarly the 
downregulated cliques include the VTC1-VTC3 cluster previ-
ously assigned as “phosphor-related” [24], but also here the 
large number of genes, which previously were called “di-
auxic shift related” now can be assigned to the three clus-
ters PNO1-TRM2, RPF2-BRX1 and CAT2-IDP2, separating 
these genes into nucleus, nucleolus and metabolism-related 
gene groups. In general, this analysis provides a more de-
tailed description, even though this description does not in-
clude the fine structure of the genes within the cliques yet. 
From these results, we can conclude that several pathways 
are affected by the expression of the longer form of the pol-
yglutamine constructs. 

For the non-toxic Q30-YFP construct we also see signifi-
cant expression differences in the two experiments. In gen-
eral, these yeasts, which are not intoxicated, show much 
milder expression differences compared to Q56. Further-
more, only few clusters show reproducible responses in the 
two experiments. Nevertheless, each of the two experi-
ments produces its own significant response. The strongest 
overlap between the experiments is the VTC1-VTC3 cluster, 
which is downregulated in both samples. None appears sig-
nificantly upregulated in both experiments. This corre-
sponds to our previous analysis based on the Top100 hits, 
where the VTC1-VTC3 cluster was identified, but no further 
significant changes could be extracted from the Top100 
genes [24]. In the response of the cliques as presented here 
instead, additional cliques are significantly downregulated 
in both experiments: this is the ZPS1-ZRT1 clique and the 
PNO1-TRM2 cluster. Given that these cliques reacted twice 
in the Q56/Q0 experiments and twice in the Q30/Q0 exper-
iments, it may well be systematically affected by the pres-
ence of polyglutamine proteins, but due to the very weak 
expression differences, this will require further experiments. 
Similarly, the clique GL117W-TMT1 and the clique GDE1-
CRG1 are upregulated in both experiments and might re-
quire further reproduction due to their low expression 
changes. 

Based on these examples, we expect that this analysis 
method is generally applicable for analyzing and comparing 
single experiments regarding their up- or downregulated ex-
pression cliques on a genome-wide basis with an ability to 
detect weak, concerted and reproducible expression 
changes. 

FIGURE 6: Analysis of non-toxic effects of polyglutamine expression with pQ30. (A) Correlation based on the expression differences and (B) 
the UpRegScore with the cliques being labelled, if significantly shifted in the same direction in both experiments.   



S. Sima et al. (2019)  Yeast Genome-wide analysis of expression differences 

 
 

OPEN ACCESS | www.microbialcell.com 173 Microbial Cell | MARCH 2019 | Vol. 6 No. 3 

MATERIALS AND METHODS 
Yeast co-expression database  
To generate a co-regulation database specific for the GeneChip 
Yeast Genome 2.0 Array, we downloaded the 3493 GPL2529 da-
tasets currently available in the GEO microarray repository, ex-
cluded the 297 experiments for Schizosaccharomyces pombe, 
and normalized the remaining ones with the software RMAEx-
press [27]. For each gene-gene pair the remaining 3196 value 
pairs were used to calculate the Pearson correlation coeffi-
cients by utilizing the ‘Correlation’ class of science.dll (www.sci-
encecode.net) [28]. The highest coefficients were indicative of 
the strongest expression correlation between two genes. These 
values were used to rank all coregulated partners for each yeast 
gene and store these rankings in a systematic database for 5813 
Probe Sets. At that stage the database was translated to com-
monly used yeast gene names with the help of the information 
provided for the GPL2529 platform, retaining 5755 unique 
genes. Probe Set IDs were retained only, if no yeast gene name 
was assigned to the respective ID. This mostly was the case for 
Affymetrix control probes and the Probe Sets 1770455_at 
(ARG5,6), 1778252_at (ADE5,7), 1776844_at (PRM7), 
1770541_at (SHL1) and 1778857_at (DUR1,2). As this newly 
generated database (termed ‘GPL2529full’) specifically uses in-
formation from GeneChip Yeast Genome 2.0 Arrays it contains 
data on all its 5755 individual genes.  

 
Clustering of all yeast genes 
The co-expression database was used to generate a genome-
wide co-expression network containing all 5755 unique entries 
of the database with a procedure employed for limited gene 
numbers before [24-26] (Flow Diagram in Supplemental Figure 
S1). To this end we used the Top10 co-regulated genes from the 
database for each gene. This approach adds 351,055 connec-
tions to the network, of which 151,676 are different from each 
other. Despite the high number of edges and the average edge 
count of 2.31, the network density is only at 0.91% of the theo-
retical number of 16,557,135 connections between these 5755 
yeast genes. Co-expression cliques were then identified and 
isolated from the network by a simple procedure: First, the 

whole gene-gene network matrix was sorted with the strongest 
gene-gene connection on the top and then treated according to 
four simple rules: 1) Starting from the top a new clique is cre-
ated, if both genes are not included in a clique yet. 2) If one 
gene already is part of a previously defined clique, the second 
gene joins into this clique. 3) As long as cliques are fairly small 
(set to less than six genes), they are fused with larger ones, 
when they get connected via a new gene pair from the network 
matrix. 4) If both cliques are larger than five genes, instead, 
both genes remain as part of their previously assigned clique.  

Each gene was uniquely assigned to a clique by this proce-
dure. The cliques were then named according to the two genes 
with the highest number of intra-clique connections. In this 
procedure the clique number and composition depended 
mostly on two parameters: The gene-gene connections as set 
by the number of co-regulators used (here set to ten) and the 
clique separation as determined by the clique protection 
threshold (here set to larger than five). The employed clique 
separation method has been included for public use in the clus-
terex.de webserver. Furthermore the information on our ge-
nome-wide network and the clique set are available there. The 
assignment of genes to the respective cliques is also available 
as supplementary information to this manuscript in the form of 
a text file (Supplemental Table S1). 
 
Evaluation of the clique separation method 
To evaluate the success of the clique separation we employed 
the ‘GPL2529full’ database. For each clique we calculated the 
average ranking in the co-expression lists for genes within the 
clique and towards genes from other cliques. The resulting val-
ues were compared to see, whether genes within the clique are 
indeed better positioned in the ranked lists of the database 
than genes from the other 71 cliques. This approach also was 
employed on randomly scrambled clique sets and on clique sets 
from other studies, in particular that from Petti et al. [29]. To 
prevent bias during this evaluation, which may arise from using 
the same database for network generation and for clique eval-
uation, we performed the same tests with the other publicly 

TABLE 7. Most prominent hits from differential expression between Q30 and Q0 within the 72 expression cliques. 

CliqueName Clique 
Size 

Genome 
Size 

UpSelected 
Exp 1 

DownSelected 
Exp 1 

Differ. 
Exp 1 

Differ. 
Exp 2 

UpReg 
1 

UpReg 
2 

Aver 
Exp 

Aver 
UpReg 

YGL117W-TMT1 7 5811 2.87E-29 
 

0.21 0.15 41 39 0.18 40 

YDR261W-B-
YDR316W-B 

10 5811 0.016 
 

0.24 0.060 52 21 0.15 36.5 

GDE1-CRG1 7 5811 0.0013 
 

0.18 0.12 41 8 0.15 24.5 

SPT10-PRP18 77 5811 0.59 0.089 -0.0083 -0.38 1 -56 -0.19 -27.5 

1770541_at-CGR1 9 5811 
  

-0.14 -0.27 -49 -44 -0.21 -46.5 

PNO1-TRM2 52 5811 
 

0.0096 -0.20 -0.23 -56 -37 -0.21 -46.5 

GNP1-YER064C 9 5811 
 

0.023 -0.12 -0.55 -32 -74 -0.34 -53 

ZPS1-ZRT1 7 5811 
 

0.00018 -0.23 -0.69 -56 -74 -0.46 -65 

VTC1-VTC3 16 5811 
 

1.90E-109 -0.76 -0.43 -78 -49 -0.59 -63.5 

Results significant above or below baseline (p<10-4) are colored in the categories for Top200-Enrichment of experiment 1, clique differential 
expression in both experiments or UpRegScore in both experiments. 

http://www.sciencecode.net/
http://www.sciencecode.net/
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available database on yeast coexpression from COXPRESdb [21] 
(http://coxpresdb.jp/). 

 
Evaluation of isolated expression cliques 
GO-enrichment and transcription factor (TF) enrichment were 
used to assess the quality of the clique separation and to assign 
the cliques to cellular functions. To this end each isolated gene 
clique was subjected to GO enrichment and TF enrichment 
analysis using the slim tables from http://geneontol-
ogy.org/page/download-ontology [30, 31] and the flat tables 
from http://www.yeastract.com/formrankbytf.php [32, 33]. 
The enrichment calculation was done as described in 
https://github.com/ajmazurie/xstats.enrichment using the 
“hypergeometric _distribution” function. For each cluster the 
GO-term with the lowest pEnriched-value was recovered and for 
the TF enrichment the three TFs with the lowest pEnriched-values 
were retained in the disciplines of TF-binding, TF-activation and 
TF-inhibition. To obtain more information on the significance 
level of the selected GO-term or TF, the pEnriched-values were 
then compared to control experiments, which used same-sized 
cliques that contained randomly mixed genes. 20 such scram-
bled clique sets were usually analyzed to obtain average pEn-

riched-values and standard deviations for the top-selected term 
or TF. These were used to estimate Z-scores and finally con-
verted to pSelection-values that determine the significance of the 
employed term selection procedure. The Z-score to pSelection-
value conversion was based on the implementation at 
https://github.com/HIPS/Probabilistic-Backpropaga-
tion/blob/master/c/PBP_net/pnorm.c.  

 
Genome-wide analysis of microarray samples 
Experimental microarray data sets were obtained from our own 
experiments and from the SPELL-server [23] 
(https://spell.yeastgenome.org/). Expression values were ex-
ported to Cytoscape [34] to visualize the networks with the cor-
responding coloring of the genes. As such, we used thresholds 
of 0.25, 0.5, 0.75 and 1.0 to color the red-spectrum of the re-
sponse and -0.25, -0.5, -0.75 and -1.0 to define the green spec-
trum. Average expression values and the UpRegScore as de-
fined in Papsdorf et al. [26] were calculated for each clique. Fur-
thermore, to compare also with previous analyses, the Top200 
genes in each direction were used to determine their enrich-
ment within the 72 cliques. This enrichment analysis was per-
formed in similarity to the GO and TF-enrichment analyses and 
its results were described as (–log10(p)) for each clique. For the 
expression values and the UpRegScores we also performed 20 
identical analyses from randomly scrambled clusters to esti-
mate the significance of the deviation from baseline. The aver-
ages and standard deviations from random experiments were 
used to estimate Z-scores and p-values.   

Comparison to the GSEA method 
The predefined genome-wide set of 72 cliques allows enrich-
ment analyses in similarity to the commonly used gene set en-
richment analysis (GSEA) [35] and the GlobalTest [36]. By in-
cluding our cliques into the file containing all gene sets 
(Yeast_gene_set_Database_coexpression_gmt.gmt from 
http://ge-lab.org/gskb/), we compared the performance of our 
genome-wide clique set to the thousands of contributions from 
expression analyses already contained in this file. This modified 
database was used in GSEA analyses and the resulting enrich-
ment scores (ES) of the large number of contributed gene sets 
were compared with the ES-scores of the cliques determined 
here. The relationship between the genes contained in the 
identified gene sets and our cliques was determined by testing, 
whether the top scoring gene sets contain the same genes as 
the top scoring cliques from the genome-wide clique set. To do 
this, we determine the five cliques that contain the highest 
number of genes from each identified gene set. 
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