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Simple Summary: The transcription factor RBPJ is an integral part of the Notch signaling cascade.
RBPJ can function as a coactivator when Notch signaling is activated but acts as a repressor in the
absence of a Notch stimulus. Here, we characterized the function of RBPJL, a pancreas-specific
paralog of RBPJ. Upon depletion of RBPJ using CRISPR/Cas9, we observed specific upregulation
of Notch target gene expression. Reconstitution with RBPJL can compensate for the lack of RBPJ
function in the repression of Notch target genes but is not able to mediate the Notch-dependent
activation of gene expression. On the molecular level, we identified a limited capacity of RBPJL to
interact with activated Notch1–4.

Abstract: The Notch signaling pathway is an evolutionary conserved signal transduction cascade
present in almost all tissues and is required for embryonic and postnatal development, as well as
for stem cell maintenance, but it is also implicated in tumorigenesis including pancreatic cancer and
leukemia. The transcription factor RBPJ forms a coactivator complex in the presence of a Notch
signal, whereas it represses Notch target genes in the absence of a Notch stimulus. In the pancreas, a
specific paralog of RBPJ, called RBPJL, is expressed and found as part of the heterotrimeric PTF1-
complex. However, the function of RBPJL in Notch signaling remains elusive. Using molecular
modeling, biochemical and functional assays, as well as single-molecule time-lapse imaging, we
show that RBPJL and RBPJ, despite limited sequence homology, possess a high degree of structural
similarity. RBPJL is specifically expressed in the exocrine pancreas, whereas it is mostly undetectable
in pancreatic tumour cell lines. Importantly, RBPJL is not able to interact with Notch−1 to −4 and
it does not support Notch-mediated transactivation. However, RBPJL can bind to canonical RBPJ
DNA elements and shows migration dynamics comparable to that of RBPJ in the nuclei of living
cells. Importantly, RBPJL is able to interact with SHARP/SPEN, the central corepressor of the Notch
pathway. In line with this, RBPJL is able to fully reconstitute transcriptional repression at Notch
target genes in cells lacking RBPJ. Together, RBPJL can act as an antagonist of RBPJ, which renders
cells unresponsive to the activation of Notch.
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1. Introduction

The highly conserved Notch signal transduction pathway controls numerous de-
velopmental decisions in embryonic and postnatal development and controls not only
differentiation in several different organ systems but also stem cell maintenance and apop-
tosis. The pathway is highly sensitive to gene dosage; too little or too much signaling can
promote oncogenesis. Notch1 itself is a proto-oncogene that is often found mutated in
leukemia [1–3] and in breast cancer [4,5] Interestingly, in the context of skin cancer, Notch
has been reported to have a tumour-suppressive function [6]. The activation of Notch
signaling requires cell-to-cell contact and allows interaction between the Notch ligand on
the signaling cell with the Notch receptor on the signal-receiving cell. Ligand-receptor
interactions result in proteolytic cleavage of the Notch receptor and release of the Notch
intracellular domain (NICD). Subsequently, NICD migrates into the nucleus, associates
with the transcription factor RBPJ, assembles into a multifactorial coactivator complex and
activates Notch target genes. RBPJ is also called CSL (CBF-1/Suppressor of Hairless/Lag-1),
and is evolutionary conserved among Homo sapiens, Drosophila melanogaster and C. elegans,
reviewed in [7]. In the absence of a Notch signal, RBPJ is still found at Notch target gene
sites and represses the expression of Notch target genes.

Notch target genes can be defined at promoters by (a) being bound by transcription
factor RBPJ as measured by chromatin-immunoprecipitation [8–10], (b) the presence of
a typical RBPJ binding motif GTGGGAA [11,12] and (c) transcriptional upregulation
upon the induction of the activated form of Notch. Furthermore, Notch target genes can
be downregulated upon the addition of gamma-secretase inhibitor (GSI) preventing the
intracellular cleavage of the Notch receptor. Well-known Notch target genes include the
proto-oncogene c-myc, as well as several members of the helix-loop-helix (bHLH) Hes-
and Hey-transcription factor families [13,14] that again function as developmental master
regulators. Interestingly, the Notch target genes, NRARP and Deltex, represent negative
feedback regulators that make sure that the amplitude and duration of the Notch response
is well controlled.

The ubiquitously expressed transcription factor RBPJ is the central switch that can
actively repress transcription in the absence of a Notch signal and support gene activa-
tion upon Notch activation. In the absence of a Notch signal, RBPJ remains bound at
Notch target genes, recruits a SHARP/NCoR/HDAC-containing corepressor complex
and actively represses transcription. Direct interactors of RBPJ have been described as
SHARP/SPEN [15], KyoT2/FHL1 [16] and RITA [17]. SHARP/SPEN is able to recruit the
NCoR/HDAC complex [18]. Previously, it was shown that several Notch target genes get
derepressed upon depletion of RBPJ [19].

RBPJL is the only tissue-specific paralog of RBPJ, but its contribution in Notch signal
transduction remains elusive. In the context of pancreas development, both RBPJ and
RBPJL are able to form a heterotrimeric complex together with master regulator PTF1a and a
common E-protein (bHLH) partner such as TCF12/HEB [20,21]. For the final differentiation
step to the acinar lineage, RBPJL expression is strongly upregulated and ensures the
effective transcription of acinar specific digestive enzymes, such as amylases, lipases and
proteases, as components of the PTF1a complex. Apart from the activity of the Ptf1 complex,
pancreas development also depends on canonical Notch signaling. The loss-of-function
of one of the Notch components (Notch1 and Rbpj) results in the depletion of epithelial
precursors that in consequence do not promote acinar and islet cell formation and results
in switching the cell fates into the early endocrine lineage [22,23]. In humans, missense
mutations within the RBPJL gene have been detected in American Indians, resulting in the
lower expression of RBPJL when compared to wildtype [24]. It is thought that RBPJL is
important for keeping the acinar cell identity, since RBPJL-depleted cells start to express
genes that are specific for the hepatic lineage [20].

In our study, we addressed the mechanisms of action of the pancreas-specific tran-
scription factor RBPJL in comparison with its ubiquitously expressed paralog RBPJ. Both
RBPJL and RBPJ bind to the same conserved octamer motif. Single-molecule experiments
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reveal that the binding times of both transcription factors within the nucleus of living
cells are in the range of minutes. However, RBPJL shows slightly shorter binding times
to chromatin suggesting a different composition of complexes. Indeed, RBPJL is unable
to interact with the Notch1 intracellular domain (NICD) and other RAM-type binding
partners like RBPJ. In addition, RBPJL does not support transactivation together with any of
NICD1, -2, -3 or -4. However, both, RBPJL and RBPJ are able to interact with the corepressor
SHARP. Importantly, we demonstrate that RBPJL can functionally compensate for the lack
of RBPJ concerning the repression of endogenous Notch target genes. In summary, the
RBPJ paralog RBPJL acts as a transcriptional repressor of Notch targets but is unable to
respond to Notch-mediated transactivation.

2. Materials and Methods
2.1. Molecular Modeling of RBPJL

Homology modeling of mouse RBPJL was performed with swissmodel
(https://swissmodel.expasy.org/, accessed on 2 April 2020). The crystal structure of
mouse RBPJ/CSL bound to DNA (PDB entry 3BRG, [25]) was used for structural align-
ment. Modeling of human RBPJL was performed with swissmodel, alphafold2.0 [26] or
robetta [27]. The crystal structure of human RBPJ/CSL (PDB entry 5EG6 [28]) was used
for the structural alignment of human proteins. Figures were generated using PyMol
(Molecular Graphics System, Version 2.0 Schrödinger, LLC).

2.2. Cell Culture

The following cell lines were cultivated in Dulbecco’s modified eagle medium
(DMEM+/+, Gibco, #41965-039) supplemented with 10% fetal calf serum (FCS) (Biochrom,
#S0115), penicillin and streptomycin (Gibco, #15140-122): HEK293 (ATCC, CRL 1573), HeLa
(ATCC, CCL 2), CRISPR-edited HeLaRBPJ KO cells, AsPC-1 (ATCC, CRL-1682), PANC-1
(ATCC, CRL-1469), PA-TU-8902 (DSMZ, ACC 179), Capan-1 (ATCC, HTB-79), Panc-215
(kindly provided by P. Hermann, Ulm, Germany), MIA PaCa-2 (ATCC, CRL-1420), DAN-G
(CLS, #300162) and HCT-116 (colorectal carcinoma, ATCC, CCL-247). Cell lines U-937
(histiocytic lymphoma, DSMZ, ACC 5), NB-4 (acute promyelocytic leukemia, DSMZ, ACC
207) and THP-1 (acute monocytic leukemia, DSMZ, ACC 16) were grown in RPMI-1640
medium (Gibco, #21875-034) supplemented with 10% FCS, penicillin and streptomycin.

2.3. Retroviral Transduction of CRISPR/Cas9 RBPJ-Depleted Hela Cells for the Stable Expression
of EGFP-Tagged RBPJL

HEK 293T cells (2.5 × 106) were seeded in a 10 cm plate with 10 mL of DMEM+/+

medium and incubated at 37 ◦C and 5% CO2 for 24 h. Afterwards, 100 µL of DMEM+/+

medium, 1.5 µg of pVSV-G, 1.5 µg of pGAG-Pol and 7.0 µg of retroviral vector (see
Table S1) were mixed and incubated for 20 min at room temperature (RT). Separately
30 µL of Lipofectamine 2000 transfection reagent (Invitrogen, #11668019) were added to
900 µL of DMEM+/+ medium. Both solutions were collected and incubated for 20 min at
RT. Thereafter, the transfection mix was added to the HEK 293T cells and incubated at
37 ◦C and 5% CO2 for 48 h. Next, the viral supernatant was filtered (10 mL syringe and
0.45 micron filter), supplemented with 2 µg/mL of polybrene and used for the infection of
HeLaRBPJ KO cells seeded the day before (0.7 × 106 per 1 well of a 6-well plate). In order
to obtain fresh viral supernatant, HEK 293T cells were incubated with fresh DMEM+/+

medium for the next 24 h. HeLaRBPJ KO cells were spinoculated with 5 mL of the resulting
viral supernatant at 1800 rpm for 45 min. Afterwards, the supernatant was exchanged with
the DMEM+/+ medium. The spinning procedure was repeated with fresh viral supernatant
on the next day. After 48 h, cells were subjected to blasticidin (Gibco, #R21001) selection
medium (2.5 µg/mL), expanded and collected for Western blotting and gene expression
analysis.

https://swissmodel.expasy.org/
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2.4. RNA Extraction and qRT-PCR

Tissues and cells were homogenized by QIAshredder (Qiagen, #79656) or lysed with
TRIzol reagent (Ambion, #15596018), respectively. Total RNA was purified using the
RNeasy Mini Kit (Qiagen, #74106) and the DNase I (Qiagen, #79254) accordingly to
manufacturer′s instructions. RNA concentration was determined by the use of a NanoDrop
2000 (PeqLab Biotechnology). To reverse-transcribe RNA to cDNA, 1 µg RNA, 1 µL ran-
dom primers (100 ng/µL), 1 µL dNTP-Mix and DEPC-treated water (in total 13 µL) were
incubated for 5 min at 65 ◦C. Afterwards, 4 µL 5× First strand buffer, 2 µL 50 mM DTT
and 1 µL SuperScript II reverse transcriptase (Invitrogen, #18064-014) were applied to the
mixture and incubated for 1 h at 42 ◦C, followed by a heat inactivation step at 70 ◦C for
15 min. QuantiTect SYBR Green PCR kit (Qiagen, #204056) was used for the qPCR reaction
in a Light Cycler 480 Real-Time PCR system (Roche) device. The expression of the genes of
interest was normalized to the expression of the housekeeping gene HPRT1. The qRT-PCR
assays used in this study are given in Table S1.

2.5. Analysis of Single Cell RNAseq Data Set

The human pancreas scRNAseq data set (GSE81547 [29]) was reanalyzed as de-
scribed in [30].

2.6. Mice

Mice were bred and housed in specific pathogen-free conditions in accordance with
institutional, state and federal guidelines on animal welfare. All animal experiments were
carried out in cooperation with the animal facility at the University of Ulm in accordance
with the German animal protection law “Tierschutzgesetz” §8, Abs. 1 and 3.

2.7. Tumor Tissue Samples

Tumor tissue and normal pancreatic tissue from 9 pancreatic ductal adenocarcinoma
(PDAC) patients, whose informed consent was obtained prior to surgery, was drawn
from the tissue bank of the Department of General and Visceral Surgery of the University
Hospital Ulm. Tissue samples were collected during operation, and specimens were
subjected to routine pathological analysis and defined as “PDAC” or “normal”. Sample
collection was performed with the permission of the independent local ethics committee of
the University of Ulm (approval 235/15).

2.8. Isolation of Primary Pancreatic Acinar Cells and ADM Assay

In order to further analyze the acinar cells in vitro, the pancreas was directly taken
out from a C57BL/6 mouse and rinsed twice in ice cold HBSS (Corning, #21-021-CV) and
centrifuged at 1000 rpm for 3 min at 4 ◦C. The pancreas was sliced into 1–5 mm pieces, and
digested with 10 mL collagenaseP (2 mg) (Roche, #11213857001) solution for 20–30 min in
the 37 ◦C incubator. Mechanical dissociation was performed by up and down pipetting
of the cells (10 mL pipette) every 5 min. To stop the digestion, a 10 mL ice-cold washing
solution [HBSS with 5% FCS (boiled at 56 ◦C for 50 min before use) and 10 mM HEPES
(Gibco, #15630-056)] was applied. The whole mixture was centrifuged at 1000 rpm for
2 min at 4 ◦C. After washing twice using the washing solution, the mixture was filtered
through a 100 µm cell strainer (Corning, #431752). Afterwards, the cell suspension was
added dropwise on top of a 2 mL HBSS solution with 30% FCS. After centrifugation at
1000 rpm for 2 min at 4 ◦C, the acini were washed using 10 mL Waymouth’s medium (Gibco,
#31220-023) [after adding 1% FCS and 0.1 mg/mL trypsin inhibitor (Merck, #T9003) and
1 µg/mL dexamethasone (Merck, #D2915)]. The acinar cells were mixed with Waymouth’s
medium and growth factor reduced Matrigel (diluted 1:1.5) (Corning, #354230) and were
seeded in a 24-well plate. Each well was incubated with 400 µL of the cell-gel mixture for
30 min at 37 ◦C. Subsequently, 600 µL of Waymouth’s medium was applied to each well.
TGFα (500 ng/well) (Merck, #T7924) was added and used as positive control. The images
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were acquired using a Leica LEITZ DM-IRBE microscope and processed by QCapture Suite
PLUS software (QImaging).

2.9. DNA Transfection

HEK293 and HeLa cells were transfected using the Calcium-Phosphate protocol
(Promega, #E1200) or Lipofectamine 2000 transfection reagent (Invitrogen, #11668019),
according to the manufacturer’s instructions.

2.10. Protein Fractionation

In order to obtain nuclear extract (NE), protein fractionation was prepared as follows:
1 × 107 cells were pelleted, washed in 10 mL of PBS, transferred to a 1.5 mL reaction tube
and pelleted. The pellet was resuspended in 200 µL of freshly prepared extraction buffer A
(10 mM Hepes pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM β-mercaptoethanol
and 2 µL PMSF), incubated on ice, mixed with 5 µL of 10% NP-40 and centrifuged at
13,000 rpm for 10 s at 4 ◦C. Afterwards, the pellet was resuspended in 100 µL of freshly
prepared extraction buffer C (20 mM Hepes pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM
EGTA 1 mM 1 mM β-mercaptoethanol and 2 µL PMSF), incubated on ice for 20 min and
agitated every 4 min during the incubation time. The extraction mix was centrifuged at
13,000 rpm for 10 min at 4 ◦C. The resulting supernatant was transferred to a new 1.5 mL
reaction tube for subsequent protein concentration measurement using the Bradford assay
(BioRad, #5000006). Samples were afterwards subjected to Western blot analysis.

2.11. Co-Immunoprecipitation Experiments

Cells (HEK293) were transfected with the indicated constructs for the expression of
GFP- and Flag-tagged proteins. Then, 24 h after transfection, cells were lysed in 600 µL
CHAPS lysis buffer [10 mM 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate
hydrate (CHAPS, Merck, #C3023), 50 mM Tris-HCl (pH7.8), 150 mM NaCl, 5 mM NaF,
0.5 mM phenylmethanesulfonyl fluoride (PMSF) (Merck, #P-7626) and 40 µL/mL cOmplete
protease inhibitor cocktail (Roche, #13539320)]. Extracts were incubated with agarose-
conjugated anti-Flag antibody (M2, Merck, #A2220) at 4 ◦C overnight. After washing
(6 to 8 times with CHAPS lysis buffer), the precipitates were resuspended in 1× SDS-
polyacrylamide gel loading buffer. The plasmids used in this study are given in Table S1.

2.12. Western Blotting

Samples were mixed with 6× SDS loading dye and boiled for 5 min at 95 ◦C. All
samples were applied to SDS-polyacrylamide gels and transferred electrophoretically at
RT to PVDF membranes (Millipore, #IPVH00010) for 1 h at 250 mA using a Tris-glycine
buffer system. The membranes were blocked for 1 h in skim milk [3% for anti-GFP (mouse
monoclonal IgG, Roche, #11814460001); 5% for anti-TBP (rabbit polyclonal IgG, Santa
Cruz, #sc-273)] with 0.1% Tween-20 in TBS prior to incubation with the primary antibodies.
The membranes were blocked overnight at 4 ◦C in 3% skim milk for anti-Flag (mouse
monoclonal IgG, M5, Merck, #F4042).

To detect the proteins of interest, the anti-GFP (1:1000 in 3% skim milk with 0.1%
Tween-20 in TBS) and anti-TBP (1:500, in 5% skim milk with 0.1% Tween-20 in TBS)
antibodies were incubated overnight at 4 ◦C, while anti-Flag (M5, 1:1500, in 3% skim milk
with 0.1% Tween-20 in TBS) was incubated 1 h at RT. After washing five times for 5 min,
the secondary antibody against mouse (1:5000, GE healthcare, NA931V) or against rabbit
(1:5000, GE healthcare, NA934V) was applied. The membranes were finally incubated with
ECL solution, and chemiluminescence was detected with either X-ray films (GE Healthcare,
#70322) or chemiluminescence imaging system Vilber FUSION FX7 EDGE. The antibodies
used in this study are given in Table S1.
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2.13. Luciferase Assay

HeLa cells were seeded in 48-well plates at a density of 2.25 × 104 cells/well. Trans-
fection was performed with the Lipofectamine 2000 transfection reagent (Invitrogen,
#11668019) using 0.25 µg/well of the reporter plasmid alone or together with various
amounts of the expression plasmid (given in the corresponding figure legends). After 24 h,
luciferase activity was determined from at least four independent experiments with 10 µL
of cleared lysate in an LB 9501 luminometer (Berthold) by using the luciferase assay system
from Promega (#E2980).

2.14. Fluorescence Microscopy

HeLa cells were plated (1 × 105 cells/cm2) on chamber coverslips (Nunc-Lab-Tek,
#155380). After 18 h, cells were transfected with 150 ng of GFP-RBPJL specific expression
plasmids. 24 h after transfection, living cells were imaged using a fluorescence microscope
(IX71, Olympus) equipped with a digital camera (C4742, Hamamatsu) and a 100-W mercury
lamp (HBO 103W/2, Osram). Filter set for GFP detection: excitation, HQ470/40; emission,
HQ525/50. Filter set for DAPI detection: D360/50; emission: D460/50.

2.15. In Vitro Protein Translation

The in vitro protein translations were performed using the TNT-T7 coupled Reticulo-
cyte lysate system (Promega, #L4610) according to the manufacturer’s instructions. Prior
to electro mobility shift assays (EMSAs), the in vitro translations of wildtype (wt) and
mutant RBPJL proteins were monitored by Western blotting using an anti-Flag antibody
(M5, Merck, # F4042).

2.16. Electro Mobility Shift Assay (EMSA)

Reticulocyte lysates (1 µL and 2 µL) from in vitro translations were used for electro-
mobility shift assays (EMSAs). The binding reaction was performed in a buffer consisting
of 10 mM Tris-HCl (pH 7.5), 100 mM NaCl, 0.1 mM EDTA, 0.5 mM DTT and 4% glycerol.
For the binding reaction, 10 ng (0.02 U) poly(dI-dC) (GE Healthcare) and approximately
0.5 ng 32P-labeled oligonucleotides were added. The sequence of the double-stranded
oligonucleotide FO233 (see Table S1) corresponded to the two RBPJ-binding sites within
the EBV TP-1 promoter. DNA-protein complexes were separated using 5% polyacrylamide
gels with 1× Tris-glycine-EDTA at RT. Gels were dried and exposed to X-ray films.

2.17. Single Molecule Imaging and Residence Time Analysis

Generation of stable cell lines and FACS sorting: Halo-RBPJ-, Halo-RBPJ(R218H)- and
Halo-RBPJL-expressing HeLa cell lines were generated by lentiviral transfection following a
standard protocol (Addgene). For lentivirus production, Lenti-X-293T packaging cells were
transiently transfected with psPAX2 (Addgene, #12260), pMD2.G (Addgene, #12259), and
the transfer plasmid containing the tagged construct using JetPrime (Polyplus-transfection,
#114-15). After 48 h of transfection, the virus was harvested by filtering the medium
through a 0.45 µm membrane filter. HeLa cells were infected with filtered viral medium
and incubated for 72 h at 37 ◦C and 5% CO2. Successfully transfected HeLa cells were
sorted via FACS. For this, the cells stably expressing Halo-tagged RBPJ, RBPJ(R218H) and
RBPJL were incubated with 1.25 µM Halo-Tag TMR ligand (Promega, #G8251) according
to the manufacturer’s protocol. Unlabeled HeLa cells were used as negative control.

Preparation of cells for imaging: Cells were seeded on heatable glass bottom DeltaT
dishes (Bioptechs) the day before imaging. On the next day, 3 pM silicon rhodamine
(SiR) Halo-Tag ligand (kindly provided by Kai Johnson, MPI, Heidelberg, Germany) was
applied to the cells for 15 min following the Halo-Tag staining protocol (Promega). On av-
erage, the labeling density was 6 spots per nucleus and frame. Subsequently, the cells were
washed with PBS and recovered for 30 min in DMEM at 37 ◦C and 5% CO2. Afterwards,
the cells were washed three times with PBS and imaged in 2 mL OptiMEM.
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Microscope setup: A custom-built fluorescence microscope (as described previously [31])
was used for single-molecule imaging. It contained a conventional Nikon body (TiE, Nikon)
and was equipped with a 638 nm laser (IBEAM-SMART-640-S, 150 mW, Toptica), AOTF
(AOTFnC-400.650-TN, AA Optoelectronics) and a high-NA objective (100×, NA 1.45,
Nikon). The cells were illuminated with a highly inclined and laminated optical sheet
(HILO) as described in [32]. The emitted fluorescence signal passed a multiband emission
filter (F72-866, AHF, Tübingen, Germany) and was detected by an EMCCD camera (iXon
Ultra DU 897, Andor, Belfast, UK).

Single molecule time-lapse imaging: Time-lapse (tl) illumination with a fixed camera
integration time of 50 ms and variable dark periods between two consecutive frames was
performed in order to measure dissociation rates within a broad temporal range and to
correct for photobleaching. Frame cycle times were 0.1 s, 0.4 s, 1.6 s, 6.4 s and 14 s for RBPJ,
0.1 s, 0.4 s, 1.6 s and 6.4 s for RBPJ(R218H) and 0.1 s, 0.4 s, 3.2 s and 14 s for RBPJL. Movies
covered 30 s (0.1 s tl), 120 s (0.4 s tl), 480 s (1.6 s tl), 960 s (3.2 s tl and 6.4 s tl) and 1400 s (14 s
tl). Before each measurement, the laser power was adjusted to 1.13 mW to avoid major
differences due to photobleaching.

Single-molecule analysis using TrackIt: Tracking analysis of single-molecule data was
done with the software TrackIt [33]. Bright pixels were identified as fluorescent molecules
if the signal-to-noise ratio (SNR) was above 4.5. To distinguish bound from diffusing
molecules, we selected for tracks confined to a certain radius (tracking radius) for a certain
time period (given by the minimum track length in units of frames). Tracking settings for
tracking radius, minimum track length, gap frames and minimum segmentation length
were adjusted for each time-lapse condition. The tracking radius was set to 0.9 pixels
(0.1 s tl), 1.19 pixels (0.4 s tl), 1.75 pixels (1.6 s tl), 2.4 pixels (3.2 s tl), 2.8 pixels (6.4 s tl)
and 3.1 pixels (14 s tl). The minimum track length was 3 frames for 0.1 s tl and 0.4 s tl
and 2 frames for longer time-lapse conditions. To compensate the measurement noise,
detected tracks were connected even if a molecule was not detected for a certain number of
gap frames. In this study, 2 gap frames were allowed for 0.1 s tl, while 1 gap frame was
allowed for the other tl conditions. The minimum segmentation length was set as 2 for all
tl conditions.

Survival-time distribution analysis using GRID: For each tl condition, track lengths (in
units of time) were combined and assembled to fluorescence survival-time distributions.
The survival-time distributions of each construct were analyzed globally with GRID. GRID
uses an inverse Laplace transformation to extract a dissociation rate spectrum from survival-
time distributions [31,34]. This spectrum of dissociation rates (“event spectrum”) displays
how frequently dissociation from a certain binding state with a corresponding dissociation
rate occurs during an observation period. The event spectrum can be converted into a
“state spectrum”, which gives information about the probability of a molecule to be in
a certain binding state with a corresponding dissociation rate at any time snapshot. We
report the state spectrum. To estimate the error of dissociation rates obtained by GRID, the
analysis was repeated 499 times with 80% of the data for each run. The resampled GRID
runs were merged into one state spectrum. The average dissociation rate and standard
deviation of the slowest dissociation rate cluster was determined by manually setting
borders that cover the resampled data.

2.18. Statistical Analysis

Statistical tests and graphical data presentations were performed by means of Graph-
Pad Prism 5.0 software. The statistical significance of differences between the indicated
groups was tested by using the unpaired Student’s t-test. All data represent the mean ± s.d.
(standard deviation) of three independent experiments. The level of statistical signifi-
cance is presented by asterisks (*) p-value (p) > 0.05 = (NS), p ≤ 0.05 = (*), p ≤ 0.01 = (**),
p ≤ 0.001 = (***).
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2.19. Antibodies, Plasmids, Oligonucleotides and Reagents

Detailed information is given in supplementary Table S1.

3. Results
3.1. Structural Conservation of Transcription Factors RBPJ and Its Paralog RBPJL

When comparing the primary amino acid sequence of RBPJ and its paralog RBPJL,
the overall sequence similarity is low (Needleman-Wunsch alignment tool [35]: 49% iden-
tities, 64% positives, 6% gaps) (Figure 1A). However, the three structural domains NTD
(N-terminal domain, cyan), BTD (beta-trefoil-domain, green) and CTD (C-terminal do-
main, orange) are apparent. A detailed analysis for human and mouse RBPJ and RBPJL
alignments is given in Supplementary Table S1.

In order to compare the overall structure of RBPJ with RBPJL, we took advantage of the
available X-ray structure of RBPJ in complex with DNA (Figure 1B, left side). Furthermore,
for RBPJL, we used a crystal structure modeling tool (homology modeling by swissmodel)
(Figure 1B, middle). The structure alignment revealed a high degree of similarity. The same
was true when we aligned the human RBPJ crystal structure (pdb entry 5EG6) with human
RBPJL structure models from swissmodel, alphafold2.0 [26] and robetta [27] (Figure S1).
The latter two use a deep learning modeling approach instead of homology modeling.
Again, the functional domains of RBPJ (NTD, BTD and CTD) are clearly aligning within the
two structures (Figure 1B, right side). The linker regions of RBPJL are markedly different
though the length is conserved. Importantly, the amino acid residues previously implicated
in DNA binding (R218) and cofactor binding (F261 and L388) of RBPJ are conserved (RBPJL:
R220, F262, L393). These amino acids are highlighted in red in the primary amino acid
sequences (see Figure 1A).

3.2. Expression of RBPJL Is Highly Specific and Overlaps with PTF1a

We compared relative mRNA levels of RBPJL (Figure 2A,B) and RBPJ (Figure 2C,D) in
different tissues from Mus musculus and Homo sapiens by qRT-PCR.

The expression of RBPJ is ubiquitous, also clearly detectable in human pancreatic
tissue, PDAC and pancreatic cancer cell lines (Figure 2D). In contrast, RBPJL expression
is highly expressed in the pancreas in both mouse (Figure 2A) and human (Figure 2B).
Surprisingly, in human PDAC samples RBPJL is significantly less expressed compared
to RBPJ (compare Figure 2B,D). In addition, RBPJL expression is almost undetectable in
human PDAC cell lines. Since tumor cells resemble a ductal fate in PDAC, we hypothesized
that RBPJL not only is a pancreas specific marker, but more specifically, is an acinar marker
of the pancreas. Therefore, we re-analyzed single-cell RNAseq data from human adult
pancreas samples (GSE81547, [29]) with regard to the expression of the two paralogs
RBPJ and RBPJL. Again, RBPJ is expressed in all subtypes of cells, including acinar-,
ductal- and mesenchymal types (compare Figure S2A with Figure S2B). PTF1a is a well-
known acinar marker, and, when mapping RNA-levels in single cells, the overlap is
clearly in the acinar fraction (upper left) and a small amount in the progenitor fraction,
see Figure S2C. The expression of RBPJL is almost identical to PTF1a expression (compare
Figure S2C with Figure S2D). In addition, when we used a well-established acinar-to-
ductal differentiation model ex vivo by adding TGFα to freshly isolated and dissociated
pancreata from wildtype mice, ductal differentiation is evident after three days (Figure S3A,
inlay at lower right). This acinar to ductal differentiation can be monitored by qRT-PCR
showing the upregulation of the ductal marker cytokeratine 19 (Ck19) together with a
downregulation of the acinar marker Ptf1a, amylase (Amy2a2) and again Rbpjl (Figure S3B).
Together, RBPJL expression is specifically restricted to the pancreatic acinar lineage and
strongly induced therein, whereas RBPJ is more ubiquitously expressed.
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Figure 1. Comparison of RBPJ and RBPJL: (A) Protein sequence alignment of mouse RBPJ and mouse RBPJL. RBPJ consists
of three domains: the NTD (N-terminal domain, cyan), the BTD (beta-trefoil domain, green), and the CTD (C-terminal
domain, orange). The “linker region” between the BTD and the CTD is highlighted in magenta. The numbers indicate
the amino acid positions. Residues within RBPJ critical for DNA binding (R218) and SHARP binding (F261 and L388,
highlighted in red) are conserved between RBPJ and RBPJL. (B) Structural alignment of RBPJ and RBPJL in complex with
DNA based on homology modeling. Structure of RBPJ bound to DNA (left; PDB entry 3BRG), RBPJL bound to DNA
(middle) and the structural alignment of both complexes (right) reveal a high conservation on the structural level. The
NTD, BTD and CTD of RBPJ are presented in the same color code as in (A). The putative homolog domains within RBPJL
are labeled in dark blue (NTD), dark green (BTD) and dark yellow (CTD). The linker region is also colored in magenta.
The DNA is colored in gray. Lower panels show the complexes after 90◦ rotation around a vertical axis revealing the
responsible DNA binding regions of RBPJ and RBPJL. All structures, as well as the alignment, were performed using
PyMOL (https://www.pymol.org, accessed on 2 April 2020). Color schemes are formated as in (A).

https://www.pymol.org
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Figure 2. mRNA expression of RBPJL (A,B) and RBPJ (C,D) in murine and human tissue samples
and PDAC cell lines. (A) Relative mRNA expression of Rbpjl in tissues from C57BL/6J mice analyzed
by qRT-PCR. Rbpjl shows specific expression in pancreas (high), lung (median), spleen (low), brain,
colon and stomach (very low). In the other tissues, Rbpjl mRNA is barely detectable. (B) Relative
mRNA expression of RBPJL in human pancreas, PDAC and PDAC cell lines. Expression of RBPJL
is downregulated in PDAC and lost in PDAC cell lines. (C,D) mRNA expression of Rbpj shows no
significant tissue specificity in mice (C) and only a modest down regulation in some human PDAC
cell lines compared to pancreatic tissue. All mRNA expressions levels were normalized by the HPRT
housekeeping gene. *** p < 0.001, unpaired Student’s t-test.

3.3. RBPJL Does Not Interact with the Coactivator NICD

Transcription factor RBPJ is known to interact not only with DNA but also with the
NICD and mechanistic details have been studied in great detail not only structurally but
also biochemically and functionally [36,37] and reviewed in [38]. The NICD contacts the
BTD and CTD domains of RBPJ, and this binding surface is conserved not only for NICD
but also for additional cofactors KyoT2/FHL1 [39] and RITA [28]. Whereas RBPJ strongly
interacts in co-immunoprecipitation experiments with NICD (Figure 3A, left), KyoT2/FHL1
(Figure 3B, left) and RITA (Figure S4A, left), RBPJL does not interact with NICD (Figure 3A,
right), KyoT2 (Figure 3A, right) or RITA (Figure S4A, right). As a positive control, we
used PTF1a, which was previously described as strongly interacting with RBPJL. This was
also the case in our co-immunoprecipitation experiments: Both RBPJ and RBPJL were able
to interact with PTF1a (Figure S4B). Importantly, both RBPJ and RBPJL also showed an
interaction with the corepressor SHARP (Figure 3C). In summary, differently from RBPJ,
RBPJL does not interact with the classical RAM-like binding partners NICD, KyoT2 or
RITA but does interact with the Notch corepressor SHARP.
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Figure 3. RBPJL does not interact with RBPJ “RAM”-type binding proteins (NICD, KyoT2) but
does interact with corepressor SHARP. In contrast to RBPJ (left panels), coimmunoprecipitations
(CoIPs) show no binding of RBPJL to NICD (A, right) and KyoT2 (B, right). (C) RBPJL interacts with
corepressor SHARP (right) and with RBPJ (left). HEK293 cells were cotransfected with Flag-tagged
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RBPJ or RBPJL together with the indicated GFP-tagged constructs: NICD (which corresponds
to the human NOTCH1 intracellular domain, aa 1761-2555), KyoT2 and SHARP (aa 2776-2833
correspond to the RBPJ interaction domain, RBPID). CoIPs were performed 24 h after transfection.
Immunoprecipitation was performed using an anti-Flag antibody and coimmunoprecipitated proteins
were detected by using an anti-GFP antibody (upper panels). Expression of proteins was verified by
Western blotting (middle panels and lower panels). Original blots see Figure S8.

To further characterize the molecular mechanism of RBPJL action, we took advan-
tage of the combined structural and functional data of its paralog RBPJ [19] and the
sequence comparison of RBPJL with RBPJ (Figure 1 and Figure S1). Subsequently, we
generated RBPJL mutants at the positions R220H, F262A and L393A and the double mutant
F262A/L393A (corresponding to the residues R218, F261 and L388 in RBPJ). These residues
where shown to be involved in DNA binding and/or cofactor interaction of RBPJ [19,25].
We tested the ability of the corresponding mutants to bind DNA in electrophoretic-mobility-
shift assays (EMSA) using a double-stranded oligo containing two TGGGAA-motifs repre-
senting a canonical RBPJ DNA-binding site (Figure 4A).

In vitro translated RBPJL variants used for the DNA binding assays were tested by
Western blotting (Figure 4B). As expected, the R220H-mutant RBPJL was defective in DNA
binding (Figure 4A, lane 4, 5), whereas all the other mutants were able to bind to DNA.

Moreover, we compared the binding behaviour of RBPJ and RBPJL in the nucleus
of live cells using single-molecule tracking (Figure 4C and Methods) [31,33]. To visualize
single molecules, we created HeLa cell lines stably expressing RBPJ or RBPJL fused to a
HaloTag [40], which we labeled with the organic dye SiR before imaging [41]. We enabled
long observation times using time-lapse microscopy with 50 ms frame acquisition time and
frame cycle times between 0.1 s and 14 s (see methods for details). Tracks of individual
molecules, analyzed with TrackIt [33], revealed binding events in the nucleus of up to
several hundred seconds (Figure 4C). We collected the binding times of each time-lapse
condition and analyzed the resulting fluorescence survival-time distributions (Figure 4D)
with the method GRID, which reveals spectra of dissociation rates [34]. Binding times
can be calculated from these dissociation rate spectra by taking the inverse value. The
dissociation rate spectra we obtained for both RBPJ and RBPJL were complex with several
dissociation rate clusters (Supplementary Figure S6). For RBPJL, the longest binding time,
corresponding to the dissociation rate cluster with smallest value, was reduced compared
to RBPJ (Figure 4E).

To obtain further insight into the molecular underpinnings of the dissociation rate spec-
trum of RBPJ, we performed analogous measurements on the mutant RBPJ (R218H) [42],
whose ability to bind DNA was disturbed—(Figure 4D and Supplementary Figure S6).
For this mutant, binding events in the time-lapse condition of the longest frame cycle
time of 14 s were extremely rare, wherefore we excluded this condition from the analysis.
Compared to RBPJ, the longest binding time of RBPJ (R218H) was considerably reduced
(Figure 4E). This indicates that the longest binding time of RBPJ is associated to DNA
binding.
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Figure 4. Nuclear binding of RBPJL compared to RBPJ. (A) EMSA analysis of in vitro translated wildtype RBPJL and
mutated RBPJL proteins used in the study. RBPJL (wt) and mutants (F262A, L393A and F262A/L393A) show unchanged
DNA-binding capacity to the canonical RBPJ binding sequence. Only the BTD-mutant R220H has lost DNA-binding capacity
(lanes 4,5) The RBPJL-DNA binding complexes are labeled A (lane 1, 2, 6–11). The asterisk highlights an unspecific binding
complex also seen in the negative controls (lanes 13 and 14). The 32P-labeled oligonucleotide (s) FO233F/R was used as
probe. (B) Quality of RBPJL proteins after in vitro translation was verified by Western blotting using an anti-Flag antibody.
Increasing amounts of TNT lysates (1 µL and 2 µL) were used for EMSA and Western blot. Original blots see Figure S8.
(C–E): Comparison of residence times of RBPJ, RBPJ (R218H) and RBPJL in the nucleus of living cells. (C) Single-molecule
fluorescence image of SiR-labeled HaloTag-RBPJ with 50 ms acquisition time. Scale bar denotes 3 µm. Right panels:
Kymographs of the green and orange circled molecules of the 100 ms time-lapse movie and of molecules from a 14 s
time-lapse measurement. (D) Residence times of RBPJ, RBPJ(R218H) and RBPJL calculated using the slowest dissociation
rate cluster of the state spectra obtained by GRID. Error bars the denote standard deviation of the spectrum resampled
499 times with 80% of the data. (E) Cumulative survival time distribution of SiR-HaloTag-RBPJ, SiR-HaloTag-RBPJ(R218H)
and SiR-HaloTag-RBPJL (red lines) at the time-lapse conditions indicated on top and survival-time functions obtained
by GRID (black lines). Number of bound molecules/total number of molecules: RBPJ: 1459/19835 (100 ms time-lapse);
1149/19921 (400 ms time-lapse); 2648/26782 (1.6 s time-lapse); 1584/19203 (6.4 s time-lapse); 434/5593 (14 s time-lapse).
RBPJ(R218H): 1329/16990 (100 ms time-lapse); 1064/20562 (400 ms time-lapse); 1978/22143 (1.6 s time-lapse); 882/11619
(6.4 s time-lapse). RBPJL: 975/19647 (100 ms time-lapse); 940/19921 (400 ms time-lapse); 878/12865 (3.2 s time-lapse);
525/7662 (14 s time-lapse).
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In our comparison of the live-cell binding of RBPJ and RBPJL, we thus focused on
the longest binding time (Figure 4E). We found the longest binding time was 910s (±256 s,
mean ± s.d. from resampling) for RBPJ, compared to 194 s (±26 s, mean ± s.d. from
resampling) for RBPJ(R218H) and 465 s (±58 s, mean ± s.d. from resampling) for RBPJL.
Binding times in the range of minutes have also been reported for SRF [43], CDX2 [34],
TBP [44], LacI [45] and TetR [46]. The two-fold difference in binding time between RBPJ
and RBPJL might reflect the differences in complex composition of the two factors (see
Figures 4 and S6).

3.4. RBPJL Does Not Support Notch-Mediated Transactivation

Next, we performed functional Notch-dependent luciferase assays in RBPJ-depleted
HeLa cells, reconstituted with either RBPJ or RBPJL. RBPJ was previously shown to support
transcriptional activation together with NICD using a reporter gene construct containing
12 perfect RBPJ binding sites [47].

Indeed, as shown in Figure 5C, NICD-mediated transactivation was strongly reduced
after expression of SHARP. Since RBPJL and RBPJ bound to the same DNA sequence, we
wanted to know if RBPJL was able to replace the whole RBPJ-NICD coactivator complex.
Activated luciferase activity was significantly reduced after the coexpression of RBPJL
(wt) and the RBPJL mutant (F262A/L393A) in a dose-dependent manner (Figure 5D,E).
However, the DNA binding mutant RBPJL (R220H) was unable to reduce RBPJ-NICD
transactivation. Thus, RBPJL is able to disturb Notch mediated transcription through the
replacement of the RBPJ-NICD coactivator complex.

3.5. RBPJL-SHARP Interaction Depends on Conserved Amino Acid Residues

Since we have shown that corepressor SHARP interacts with RBPJL (Figure 3C) using
the same domain within SHARP (RBP Interaction Domain; RBPID) as for RBPJ binding,
we wanted to investigate the interaction between RBPJL and SHARP in more detail.

Therefore, we aligned the structure of the RBPJ-SHARP complex [19] (PDB: 6DKS)
with the RBPJL structure model using PyMol software (Figure 6A). Previously, the co-
crystal structure of RBPJ and the SHARP RBPID revealed that there are two interaction
surfaces for SHARP on RBPJ (Figure 6A, cyan circles) and that amino acid residues L388
and F261 within RBPJ are necessary for SHARP binding [19]. In addition, two residues
(L2791, I2811) were identified within the SHARP RBPID, critical for RBPJ binding.

When comparing the RBPJ-SHARP complex with RBPJL in higher resolution, the
structural overlap was recognized (Figure 6B,C). Thus, we used the RBPJ binding defec-
tive (L2791A/I2811A) SHARP RBPID (Figure 6D) in coimmunoprecipitation experiments
with RBPJL (wt). The SHARP-mutant that no longer interacted with RBPJ was also defi-
cient for RBPJL binding (Figure 6D) comparing wildtype-SHARP in lane 3 with mutant
SHARP in lane 6. Next, we analyzed RBPJL mutants F262A, L393A and the double mutant
F262A/L393A.

The corresponding amino acids within RBPJ are involved in SHARP interaction
and show a high degree of three-dimensional alignment in the predicted structure of
RBPJL (Figure 6A,B). Coimmunoprecipitation assays with the SHARP RBPID (2776-2833)
revealed that the double mutant RBPJL (F262A/L393A) interacts significantly weaker than
wildtype-RBPJL (Figure 6E). Taken together, the amino acid residues critical for SHARP-
RBPJ interaction are also involved in SHARP-RBPJL interaction. Therefore, the binding
mechanism of corepressor SHARP seems to be conserved within RBPJL.
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Figure 5. RBPJL binds to the canonical RBPJ-DNA binding sequence but cannot transactivate together
with NICD1–4 proteins. (A) In contrast to RBPJ, RBPJL is not able to transactivate a Notch-dependent
reporter together with the mammalian NICD proteins. HeLaRBPJ-KO cells were transfected with the
luciferase reporter construct pGa981/6 (250 ng) and with plasmids expressing NICD-1, -2, -3, -4
(10 ng), alone or together with either RBPJ (100 ng) or RBPJL (100 ng). Lower panel illustrates the
reporter construct and protein expression in the transcription assay. (B) RBPJL fused to VP-16 is
able to transactivate a Notch/RBPJ-dependent reporter. The pGa981/6 luciferase reporter construct
(250 ng) was transfected alone or together with plasmids expressing either RBPJ-VP16(wt) (50 ng),
RBPJL-VP16 (wt) (50 ng), RBPJL-VP16 (F262A/L393A) or RBPJL-VP16 (R220H) into HelaRBPJ-KO

cells. Lower panel illustrates the reporter construct and protein expression in the transcription assay.
(C) Corepressor SHARP represses Notch dependent transactivation through the displacement of
NICD from the Notch coactivator complex. The luciferase reporter construct pGa981/6 (250 ng) was
transfected alone or together with either NICD (10 ng) alone or together with increasing amounts
(50 ng, 100 ng and 150 ng) of SHARP expressing plasmids into HeLa cells. Lower panel illustrates
the reporter construct and the proposed displacement mechanism. (D) RBPJL(wt) is able to displace
the RBPJ/NICD coactivator complex at canonical RBPJ binding sites. (E,F) While the RBPJL mutant
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(F262A/L393A) is also able to displace the RBPJ/NICD coactivator complex complex similar to
wildtype RBPJL (E), the RBPJL DNA binding mutant (R220H) is unable to do so (F). The luciferase
reporter construct (250 ng) was transfected alone or together with either NICD (10 ng) or together
with increasing amounts (50 ng, 100 ng and 150 ng) of RBPJL-expressing plasmids into HeLa cells.
Lower panel illustrates the reporter construct and the proposed displacement mechanism. Luciferase
activity was determined from total-cell extracts and normalized to the basal promoter activity of the
reporter construct. Mean values and standard deviation are from six independent experiments, ns:
not significant, *** indicates statistical significance (p < 0.001, Student’s t-test) compared to control.

Figure 6. Conserved amino acid residues involved in RBPJL-SHARP interaction. (A) Structural
alignment of the RBPJ-SHARP complex (PDB: 6DKS) with RBPJL (B) Zoom into the C-terminal
domain (CTD) shows the localization of critical residues L2791 of SHARP (orange), L388 of RBPJ
(blue) aligned with L393 of RBPJL (red). (C) Zoom into the beta-trefoil domain (BTD) shows the
localization of critical residues I2811 of SHARP (orange), F261 of RBPJ (blue) aligned with F262
of RBPJL (red). (D) SHARP mutant I2811A/L2791A does not interact with RBPJL (compare lane
3 to 6). HEK293 cells were cotransfected with GFP-tagged SHARP (aa 2776-2833) wildtype or the
I2811A/L2791A mutant and Flag-tagged RBPJL. CoIPs were performed 24 h after transfection using
an anti-Flag antibody. (E) Mutant RBPJL (F262A/L393A) has lost most of the SHARP binding capacity.
GFP-SHARP (aa 2776-2833) and Flag-tagged RBPJL wt or F262A/L393A mutant constructs were
transfected into HEK293 cells. CoIPs were performed 24 h after transfection using an anti-Flag
antibody. Expression of Flag-RBPJL (middle panel) and GFP-SHARP proteins (bottom panel) was
verified by Western blotting. Original blots see Figure S8.
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3.6. RBPJL Can Reconstitute Transcriptional Repression of Endogenous Notch Target Genes

Having shown the RBPJL-SHARP interaction, we wanted to characterize the functional
consequences and determine the repressive capacity of RBPJL at endogenous Notch target
genes. As we previously found that the deletion of RBPJ results in the derepression of
Notch target genes in a mature T cell line [19] and in HeLa cells [48], we now performed
rescue experiments re-expressing RBPJ or RBPJL fused to GFP using RBPJ-depleted HeLa
cells (Figure 7A,B).

Figure 7. Reconstitution of Notch target gene repression in RBPJ knockout cells by RBPJ and RBPJL:
(A) RBPJ is able to reconstitute repression of Notch target genes in RBPJ depleted cells. Cells were
stably transfected with GFP-tagged RBPJ fusion protein. RBPJ expression and TBP expression were
analyzed by Western blotting (upper). Total RNA was purified and analyzed by qRT-PCR with
primers specific for Notch target genes HEY1, HEY2, HEYL and NOTCH3 in GFP-RBPJ transfected
cells (lower). (B) RBPJL wt but neither the DNA binding mutant (R220H) nor the SHARP binding
mutant (F262A/L393A) are able to reconstitute transcriptional repression of Notch-target genes in
RBPJ knockout cells. Cells were transfected with RBPJL (WT, R220H, F262A/L393A) constructs.
RBPJL fusion proteins and TBP were analyzed by Western blotting (upper). Notch-target genes were
analyzed by qRT-PCR in transfected cells (RBPJL WT, R220H, F262A/L393A) (lower). All mRNA
expression levels were normalized to the expression of the HPRT housekeeping gene. Mean values
and standard deviation are from four independent experiments (** p < 0.01, *** p < 0.001, ns = not
significant, unpaired Student’s t-test). Original blots see Figure S8.

Consistent with our former findings, the repression of Notch target genes Hey1, Hey2,
HeyL and Notch3 was reconstituted. Expression was significantly reduced relative to
house-keeping gene HPRT after re-expressing RBPJ in RBPJ-depleted HeLa cells (Figure 7A,
lower panel). Next, we used RBPJ-depleted HeLa cells to stably express wildtype RBPJL,
the DNA-binding defective RBPJL (R220H) and the SHARP-binding defective RBPJL
(F262A/L393A) fused to GFP (Figure 7B). The protein expression of RBPJL and mutant-
RBPJL was comparable (Figure 7B upper panel), and the cellular localization of RBPJL DNA-
binding defective mutant (R220H) and SHARP-binding defective mutant (F262A/L393A)
was comparable to that of wildtype RBPJL (Figure S5). Again, we measured the gene
expression levels of several Notch target genes by qRT-PCR. Importantly, only wildtype
RBPJL but not DNA binding defective (R220H) nor SHARP binding defective RBPJL
(F262A/L393A) could rescue the transcriptional repression of endogenous Notch targets
(Figure 7B, lower).
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Taken together, we conclude that RBPJL, the distantly related paralog of RBPJ, can in-
deed functionally compensate the repression capability of RBPJ and acts as a transcriptional
repressor, most likely by recruiting the corepressor SHARP.

3.7. Expression of RBPJL in a Tumorigenic Context

To gain insight on the role of RBPJL in cancer, we looked for the expression of RBPJL in
several cell lines. Since specificity towards RBPJL of commercial anti-RBPJL antibodies was
low, we consulted publicly available databases, for example the human protein atlas [49].
We validated the observed specific expression pattern in several AML cell lines using
qRT-PCR. Surprisingly, in selected myeloid leukemia cell lines U937 (histiocytic lymphoma)
and NB-4 (acute promyelocytic leukemia) we found RBPJL expression levels comparable to
that of RBPJ. In THP-1 cells (acute monocytic leukemia), RBPJL expression was detectable,
but less than that of RBPJ. (Figure S7A–C). In an unrelated colon cancer cell line, HCT-116,
RBPJL was barely detectable (Figure S7D). Thus, it is possible that RBPJL offers a selective
advantage for certain subtypes of myeloid leukemia, even in the absence of PTF1a, most
probably deregulating Notch target genes.

4. Discussion

Here, we have shown that RBPJL is a highly specific acinar marker and is significantly
downregulated in PDAC and several PDAC cell lines. Although the sequence conserva-
tion between RBPJ and RBPJL is low, RBPJL is capable of replacing RBPJ with regard to
transcriptional repression. Interestingly, RBPJL is re-expressed in leukemia (AML).

4.1. RBPJL as an Acinus-Specific Exocrine Marker

RBPJL expression was already previously described as tissue-specific to the pan-
creas [21] but also to a lesser extent in the brain, spleen and lung [50], whereas the expres-
sion of RBPJ is ubiquitous. The highly specific expression as an acinar marker is in line with
RBPJL’s function within the PTF1a-complex. Data from the McDonald laboratory strongly
support an important function for RBPJL in the expression of acinar gene expression, due
to its role within the activating PTF1a-trimeric complex [20]. Our rescue-experiments in
RBPJ-depleted cells indicate that RBPJL also plays a PTF1a-independent role at bona fide
Notch target genes. This is one aspect of RBPJL function, but the complete lack of interac-
tion with all the different Notch-coactivators (NICD1, -2, -3 and -4) might be another. Our
data argues for an additional role of RBPJL at Notch target genes. The strong expression
of RBPJL will support repression but not Notch-mediated transactivation. Concerning
diagnostic value, RBPJL can clearly serve as a negative marker for PDAC (loss of RBPJL
expression) and could be potentially used for transdifferentiation experiments as a highly
specific acinar marker.

4.2. Functional Comparison between RBPJL and RBPJ

RBPJ and RBPJL, despite their limited amino acid sequence homology, are predicted
to be structurally similar. Using reporter-gene assays, EMSA-assays and single-molecule
tracking, we show the two paralogs exhibit comparable but not identical residence times
within the minute (s) range. However, differences in complex formation capabilities of
these two factors might result in overall shorter residence times of RBPJL compared to RBPJ,
as revealed by our single-molecule experiments. A similarity of both paralogs has also
been observed for their role within the PTF1 complex [21,23]. Although the DNA-binding
specificity of the two paralogs is comparable, the cofactor binding and tissue expression is
clearly different. It is striking that RBPJL displays such a tissue-specific expression pattern,
especially in the pancreas, while its paralog RBPJ is ubiquitously expressed. Apart from
its undisputed role within the PTF1 complex, in our view, it might also have a role as
a functional opponent of RBPJ. It is known that RBPJ can bind to cofactors harboring a
WxP motif including Notch1-4, KyoT2/FHL1 [36–38] and RITA [17]. A WxP motif binding
surface is not conserved in RBPJL as presented biochemically in the present study. However,
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the binding to the central corepressor SHARP is conserved between RBPJ and RBPJL, and
mutating the SHARP binding surface within RBPJL leads to the loss of repression. In
the future, ChIPseq experiments for the genome-wide binding of RBPJL are required to
unequivocally address direct gene regulation of RBPJL. Unfortunately, we were unable to
perform such experiments due to a lack of suitable anti-RBPJL antibodies. Our data also
strongly suggest an important role for cofactor SHARP in pancreas development and also
for terminal acinar differentiation (or transdifferentiation). SHARP (MINT) knockout mice
are embryonic lethal [51] and have not been analyzed with regard to pancreas development
in detail. Conditional targeting of SHARP (MINT) [52] might allow to address its potentially
important role in the pancreas in future experiments.

4.3. Re-Expression of RBPJL in Cancer

Expression levels of RBPJL are increased in certain cell lines, such as myeloid leukemia
cell lines NB-4, U-937 and THP-1. Interestingly, in the myeloid lineage Notch signaling
inhibits the growth and survival of myeloblastic leukemia, reviewed in [53]. Thus, it is
tempting to speculate that the expression of RBPJL, which only represses but does not
coactivate together with Notch, might be a selection advantage in certain cancer types.

Along these lines, a tumour-suppressive role for enhanced Notch signaling has been
postulated in skin cancer [54]. Thus, it will be interesting to see whether RBPJL expression
can be associated with certain types of cancer in the clinical setting.

5. Conclusions

Here, we have shown that RBPJL, the pancreas-specific paralog of RBPJ, is a novel,
highly specific exocrine marker. RBPJL is partially able to compensate for loss-of RBPJ
concerning the gene repression of Notch target genes. RBPJL is able to recruit the core-
pressor SHARP/HDAC complex but is unable to facilitate Notch-mediated transactivation
(Figure 8). Thus, in addition to its positive regulatory role in the PTF1-complex, RBPJL is
able to repress Notch target gene expression.

Figure 8. Model of RBPJ vs. RBPJL specific transcription complexes. (A) In the absence of activated
Notch signaling, the RBPJ-SHARP complex represses the Notch target genes by recruiting core-
pressors (CoR; repressed state, left). Upon ligand binding to Notch receptor, the NICD is released,
translocates to the nucleus and interacts with the transcription factor RBPJ. The RBPJ-NICD complex
recruits Mastermind (MAM) and additional coactivators (CoA), and thereby activates Notch target
gene expression (active state, right). (B) Proposed model of repression of Notch target genes via the
RBPJL-SHARP complex in the absence of RBPJ. In RBPJ-depleted HeLa cells, the RBPJL interacts
with SHARP and represses the Notch target genes by recruiting corepressors (left). However, RBPJL
is unable to form a coactivator complex with NICD (right).
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