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Abstract 

Purpose: To investigate the potential mechanisms contributing to metastasis of clear cell renal cell 
carcinoma (ccRCC), screen the hub genes, associated pathways of metastatic ccRCC and identify 
potential biomarkers.  
Methods: The ccRCC metastasis gene expression profile GSE47352 was employed to analyze the 
differentially expressed genes (DEGs). DAVID was performed to assess Gene ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The protein-protein interaction (PPI) 
network and modules were constructed. The function pathway, prognostic and diagnostic analysis of 
these hub genes was picked out to estimate their potential effects on metastasis of ccRCC.  
Results: A total of 873 DEGs were identified (503 upregulated genes and 370 downregulated genes). 
Meanwhile, top 20 hub genes were displayed. GO analysis showed that the top 20 hub genes were 
enriched in regulation of phosphatidylinositol 3-kinase signaling, positive regulation of DNA replication, 
protein autophosphorylation, protein tyrosine kinase activity, etc. KEGG analysis indicated these hub 
genes were enriched in the Ras signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, 
Pathways in cancer, etc. The GO and KEGG enrichment analyses for the hub genes disclosed important 
biological features of metastatic ccRCC. PPI network showed the interaction of top 20 hub genes. Gene 
Set Enrichment Analysis (GSEA) revealed that some of the hub genes was associated with metastasis, 
epithelial mesenchymal transition (EMT), hypoxia cancer and adipogenesis of ccRCC. Some top hub genes 
were distinctive and new discoveries compared with that of the existing associated researches.  
Conclusions: Our analysis uncovered that changes in signal pathways such as Ras signaling pathway, 
PI3K-Akt signaling pathway, etc. may be the main signatures of metastatic ccRCC. We identified several 
candidate biomarkers related with overall survival (OS) and disease-free survival (DFS) of ccRCC 
patients. Accordingly, they might be novel therapeutic targets and used as potential biomarkers for 
diagnosis, prognosis of ccRCC. 
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Introduction 
Renal cell carcinoma (RCC) is one of the most 

frequently malignant tumors in the urinary system. 
Renal cell carcinomas (RCC) contribute to an 
evaluated 338,000 new cancer diagnoses and 144,000 
tumors related deaths in 2012[1]. Although the 
pathological types of RCC are diverse, the clear cell 

renal cell carcinoma is the most common type [2]. 
Although the treatment of renal cancer had achieved 
great results, many patients with advanced stage, 
especially who with metastatic tumors, still have poor 
prognosis. Metastasis is the leading cause of cancer 
death [3]. In this respect, intervention at the point of 
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metastasis will be more valuable than at time when 
ccRCC has advanced to later stages. Thus, it is highly 
desirable to effectively estimate ccRCC with increased 
metastasis risk. Identifying effective biomarkers to 
better predict the diagnostic and prognostic levels of 
this malignancy is also of vital importance.  

The current exploitation of high-throughput 
gene microarray to analyze normal and tumor tissue 
samples from patients confers us an opportunity to 
detect and explore the comprehensive molecular 
landscapes of tumors at multiple levels ranging from 
somatic mutations and copy number alteration at the 
genome level to gene expression changes at 
transcriptome level [4-6]. While, the use of 
microarrays in clinic is greatly restricted because of 
countless genes detected by gene profiling, lack of 
independent stability, likewise the complex statistical 
analyses. Meanwhile experimentally identifying key 
genes in genome-wide is a waste of time and 
formidable. To apply these expression profiles in 
clinical practice as soon as possible, it is necessary to 
develop an optimal method that could be handled by 
routine detection. Moreover, there is a clear need to 
improve our ability to discovery ccRCC patients with 
high risk of metastasis. The challenge of accurately 
predicting ccRCC metastasis may be partly 
attributable to an intricate network of pathways that 
facilitate the disease development. 

In present study, we downloaded GSE47352 
from the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/ geo/) and perform 
the GEO2R online tool to systematically measured the 
differentially expressed genes (DEGs). Then, we 
established protein-protein interaction (PPI) network 
of the DEGs and selected the top 20 hub genes by a 
high degree of connectivity. Furthermore, the GO and 
KEGG pathways of the 20 hub genes were explored. 
Meanwhile, overall survival (OS) and disease-free 
survival (DFS) analysis of the 20 hub genes were 
operated based on GEPIA (Gene Expression Profiling 
Interactive Analysis) database. Some of them not only 
associated with OS but also DFS. Receiver operating 
characteristic (ROC) curve analysis of the hub genes 
with both OS and DFS significance was performed. 
Several genes could adequately distinguish ccRCC 
from paired normal tissues with an area under the 
curve (AUC) of 0.9235-0.9451. After that, genes were 
selected to further evaluate the mRNA expression in 
normal and tumor sample tissues by TCGA. Finally, 
we focused our attention on AURKB, a member of the 
Aurora kinase subfamily that encoded a 
serine/threonine kinase, and regulated the 
arrangement and segregation of chromosomes during 
mitosis and meiosis by correlating with microtubules. 
Although some of previous studies displayed that 

AURKB may play a key role in the tumorigenesis and 
progression of several types of cancer[7-10], the study 
of this gene in ccRCC had not been elucidated. To 
acquire further insight into the function of AURKB, 
we performed GSEA to map into GO analysis and 
KEGG pathways database. We also found that the 
expression of AURKB associated with clinical and 
pathological characteristics of patients with ccRCC 
and its expression levels were independent prognostic 
factors for ccRCC. In conclusion, our study identified 
20 hub genes, which may play leading roles in ccRCC 
progression. Some dispensable biological function 
pathway in metastatic ccRCC was identified. This 
study also demonstrated that AURKB may be a novel 
biomarker for predicting the diagnosis and prognosis, 
and may be an important target for the treatment of 
metastatic ccRCC.  

Materials and methods 
Microarray Data 

Gene expression profile of GSE47352 was 
download from the GEO database, which was a free 
and open available database. The GSE47352 dataset 
has a total of 9 samples, containing 5 primary ccRCC 
samples, 4 metastasis ccRCC tissues, according to 
agilent GPL570 platform (Affymetrix Human Genome 
U133 Plus 2.0 Array). It includes genome-wide mRNA 
expression data of this 9 samples.  

Identified genes of differential expression 
The DEGs between metastasis and 

non-metastasis ccRCC samples were analyzed using 
GEO2R https://www.ncbi.nlm.nih.gov/geo/geo2r/, 
based on R language, which was an online analysis 
tool for the GEO database. We defined DEGs as 
differentially expressed with logFC > 2 (upregulated 
genes) or logFC < − 2 (downregulated genes), 
according to the criteria [11, 12]. The P value < 0.05 
was considered statistically significant, which was 
utilized to decrease the false positive rate. Then, 503 
upregulated genes and 370 downregulated genes 
were found, and the top 20 genes with a high degree 
of connectivity were chose as hub genes. 

Gene Ontology and KEGG Pathway Analysis of 
DEGs 

Genes could be annotated by Gene ontology 
(GO) analysis and their functions were classified by 
biological pathways, molecular function, as well as 
cellular components [13]. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) is a set of databases that 
could dispose biological pathways and genomes 
related to diseases and drugs. KEGG substantially is a 
channel for the overall and deep understanding of 
biological systems [14]. The cut-off criterion with 
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statistic difference was P < 0.05. Used the DAVID 
online database (DAVID, http://david.ncifcrf .gov), 
cellular components, molecular functions, biological 
processes, and pathways of DEGs were analyzed.  

PPI Network Analysis 
The protein-protein interaction (PPI) 

information, like physical and functional associations, 
was assessed and integrated by The Search Tool for 
the Retrieval of Interacting Genes (STRING), an online 
tool. Until now, STRING version 10.0 has covered a 
total of 9,643,763 proteins from 2031 organisms [15]. 
To estimate the interactional correlation of these 
DEGs, DEGs was first drawn by STRING and then the 
Cytoscape software was used to construct a PPI 
network and module. Also, STRING was used to map 
20 hub genes according to maximum number of 
interactors ≤ 5 and confidence score ≥ 0.4. GO and 
KEGG pathway was also utilized to analysis their 
potential information. 

The Hub Gene Expression Level 
In this study, the boxplot was employed to 

visualize the expression of 2 hub genes in 533 ccRCC 
samples and 72 normal renal samples from 
TCGA-KIRC (clear cell renal cell carcinoma) dataset. 
The Human Protein Atlas (HPA, 
https://www.proteinatlas.org/) is a Swedish-based 
project, which was launched in 2003 with the goal to 
map all human proteins in organs, tissues, cells and 
using the integration of diverse omics technologies 
[16]. By acquiring immunohistochemical data of 
patients with or without ccRCC based on HPA, we 
further confirmed the expression of the two hub 
genes. 

Survival Analysis of Hub Genes 
The overall and disease-free survival 

information was based on GEPIA database. The 
hazard ratios (HR) with 95% confidence intervals 
were calculated and P < 0.05 was regarded as 
statistically significant. 

Gene Set Enrichment Analysis (GSEA) 
533 ccRCC samples from TCGA were classed 

into two groups (high versus low) based on the 
mRNA expression level of AURKB, and the median 
expression value was believed to be the cut-off point. 
To explore the potential mechanism of AURKB, GSEA 
(http:// software.broadinstitute.org/gsea/index.jsp) 
was operated between the two groups. We selected 
annotated gene sets c2.cp.kegg. v5.2.symbols.gmt as 
the reference gene sets. FDR < 0.05 and gene size ≥ 100 
were considered as the cut-off criteria. 

Tissue samples and Cell culture 
Tissue samples and Cell culture executed as 

previously described [17]. 

Transient transfection assay 
The siRNA targeting AURKB (siAURKB) and the 

siRNA negative control (si-NC) were chemosynthetic 
by GenePharma (Shanghai, China). According to the 
manufacturer's recommendations, AURKB and si-NC 
with a final concentration of 50 nM were transfected 
with Lipofectamine® 2000 (Invitrogen, USA). 

Cell migration and invasion assays 
Migration and invasion assays were 

implemented as previously described [17]. 

Statistical Analysis 
The values of each group were shown as the 

mean ± SD. A difference of P < 0.05 was considered 
statistically significant. The statistical analysis 
software performed in this study was GraphPad 
Prism 6.0 (GraphPad Software, Inc., USA) and SPSS 
22.0 (IBM SPSS, Chicago, IL). Unpaired t-test was 
used to evaluate the statistical difference. And 
Mann-Whitney test was used to analyze the difference 
of AURKB expression in the ccRCC subgroups. The 
receiver operator characteristic (ROC) curve was used 
to analyze diagnostic values of AURKB in different 
patients with ccRCC. The association between the 
AURKB expression level and the OS, DFS rate were 
computed by the Kaplan-Meier curve and log-rank 
test.  

Results 
Screening of DEGs 

There were 4 metastatic and 5 non-metastatic 
ccRCC samples in this study. The DEGs were 
identified by the GEO2R online analysis tool, using P 
value < 0.05 and |logFC| ≥ 2 as cut-off criteria. A total 
of 873 DEGs were detected after analyzing GSE47352, 
503 of which were upregulated genes while 370 were 
downregulated (Figure 1a).  

Hub Genes Screening from the PPI Network 
20 hub genes were identified, according to their 

degree of connectivity from high to low (Table 1) and 
the expression of them was presented by the heatmap 
(Figure 2b). According to the message of the STRING 
protein query, we built the PPI network of the top 20 
hub genes based on the degree of connectivity (Figure 
1c). The top 20 hub genes are as follows: RIPK4, TNF, 
CDC42, KNG1, PTPN11, KITLG, PTGS2, SYK, IGF1R, 
EPO, SERPINE1, FLT1, AURKB, GNA13, DLG2, 
ACTN2, CHEK1, FGF8, CD80 and MCHR2. 
Furthermore, MCODE plugin in Cytoscape was used 
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to identify the top 3 significant modules from the PPI 
network (Figure 1d-f). Based on GO biological 
progress analysis, these modules were enriched in 
inflammatory response, G-protein coupled receptor 
signaling pathway, positive regulation of cytosolic 
calcium ion concentration and positive regulation of 
vasoconstriction (Table 4).  

Functional Enrichment Analysis 
To acquire a more comprehensive and deep 

understanding of those chosen hub genes, DAVID 
was used to analysis GO function and KEGG pathway 
enrichment. The TOP5 gene ontology categories were 
shown in Table 1. In biological processes (BP), the hub 
genes were mainly enriched in phosphatidylinositol- 

mediated signaling; regulation of phosphatidyli-
nositol 3-kinase signaling; positive regulation of DNA 
replication; phosphatidylinositol phosphorylation; 
protein autophosphorylation; And in molecular 
function (MF), these genes were mainly associated 
with phosphatidylinositol-4,5-bisphosphate 3-kinase 
activity, protein tyrosine kinase activity, protein 
binding, protein kinase activity, Ras guanyl- 
nucleotide exchange factor activity. In addition, GO 
cell component (CC) analysis shown that they were 
principally involving the plasma membrane, 
extracellular space, platelet alpha granule lumen, 
filopodium, and extracellular region (Table 2).  

 

 
Figure 1. Protein-protein interaction network of the top 20 hub genes and modular analysis. (a)The DEGs of GSE47352. (b) The heatmap of 20 hub genes. (c)The 
PPI network of the top 20 hub genes. (d) module 1 (e) module 2 (f) module 3 of DEGs from PPI network. 
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Figure 2. Gene Ontology enrichment analysis and KEGG pathways of top 20 hub genes (a) GO analysis of top 20 hub genes. (b) KEGG pathway of top 20 hub genes. 

 

Table 1. Top 20 hub genes with higher degree of connectivity. 

Gene Degree of connectivity Pvalue 
RIPK4 52 2.11E-02 
TNF 43 1.92E-03 
CDC42 38 1.70E-02 
KNG1 26 3.25E-02 
PTPN11 23 3.27E-05 
KITLG 22 3.61E-02 
PTGS2 22 4.05E-02 
SYK 22 3.12E-02 
IGF1R 20 1.00E-02 
EPO 20 4.50E-02 
SERPINE1 17 2.64E-02 
FLT1 17 6.29E-03 
AURKB 17 6.59E-03 
GNA13 16 1.57E-03 
DLG2 16 8.08E-03 
ACTN2 16 2.87E-02 
CHEK1 16 4.55E-02 
FGF8 16 7.36E-03 
CD80 15 4.21E-02 
MCHR2 15 7.91E-03 

 
 
Table 3 uncovered the most significantly KEGG 

pathway of the top 20 hub genes. These genes were 
enriched in Ras signaling pathway, PI3K-Akt 
signaling pathway, Rap1 signaling pathway, HIF-1 
signaling pathway, Pathways in cancer, Proteoglycans 
in cancer, Adherens junction, Viral carcinogenesis, 
Focal adhesion, Regulation of actin cytoskeleton. 
Figure. 2a, b gives a GO and KEGG pathway 
enrichment plot of these hub genes.  

The Kaplan-Meier survival analysis 
The present study analyzed the association 

between the top 20 hub gene expression and overall 
survival (OS), disease-free survival (DFS) of ccRCC 
patients by Kaplan-Meier analysis. The results shown 
that expression of RIPK4 (HR=0.58, log-rank P = 
0.00042) was correlated with worse OS for ccRCC 
patients, as well as CDC42(HR=0.6, log-rank P=0.001), 
PTPN11 (HR=0.6, log-rank P=0.0011), KITLG 
(HR=0.55, log-rank P=0.00012), IGF1R (HR=0.4, 

log-rank P = 2.3e-08), FLT1 (HR=0.51, log-rank 
P=1.9e-05), AURKB (HR=2.1, log-rank P=2.8e-06), 
GNA13 (HR=0.63, log-rank P=0.0027), DLG2 
(HR=0.63, log-rank P=0.0033) (Figure 3a-i). The 
expression of RIPK4 was correlated with worse DFS 
for ccRCC patients, as well as CDC42 (HR=0.68, 
log-rank P=0.033), PTPN11 (HR=0.65, log-rank 
P=0.021), KITLG (HR=0.56, log-rank P=0.002), IGF1R 
(HR=0.48, log-rank P=7.8e-05), SERPINE (HR=1.7, 
log-rank P=0.0065), AURKB (HR=2, log-rank 
P=0.00029), GNA13 (HR=0.68, log-rank P=0.04), 
DLG2 (HR=0.48, log-rank P=7.9e-05), ACTN2 
(HR=2.2, log-rank P=2.3e-05) (Figure 4a-j).  

 
The Receiver Operating Characteristic (ROC) 
curve analysis of Hub genes 

To investigate the diagnostic value of hub genes 
that may be potential prognostic biomarkers in 
ccRCC, ROC curves were evaluated. As shown in 
Figure. 5a-i, several genes could adequately 
distinguish ccRCC from paired normal tissues with an 
area under the curve (AUC) of 0.9235-0.9451. The 
results indicated that these hub genes may be effective 
diagnostic biomarkers for patients with ccRCC. 

The Expression of Hub Genes 
Then, we chose RIPK4, CDC42, PTPN11, KITLG, 

IGF1R, AURKB, GNA13, DLG2 and ACTN2, which 
was associated with both OS and DFS, to evaluate the 
expression level between ccRCC and normal tissue 
using TCGA database. And as shown in Figure. 6a-i, 
compared to normal tissue, most of them have 
significant changes in ccRCC tissue. Only GNA13 and 
AURKB were elevated in ccRCC patient samples. 
Based on higher expression fold changes both in 
GSE47352 and TCGA databases and better diagnostic 
value, we selected AURKB to operate the further 
assessment.
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Figure 3. Hub genes have prognostic value of overall survival. (a) RIPK4 (b) CDC42, (c) PTPN11, (d) KITLG, (e) IGF1R, (f) FLT1, (g) AURKB, (h) GNA13, (i) DLG2, 
(j) ACTN2, (k) CD80. The overall survival information was based on GEPIA database, P < 0.05 was considered statistically different. 

 

Table 2. Gene ontology analysis of top 20 hub genes associated with ccRCC Metastasis. 

Category Term Count % P value 
GOTERM_BP_DIRECT GO:0048015~phosphatidylinositol-mediated signaling 5 25 5.40E-06 
GOTERM_BP_DIRECT GO:0045740~positive regulation of DNA replication 4 20 1.37E-05 
GOTERM_BP_DIRECT GO:0014066~regulation of phosphatidylinositol 3-kinase signaling 4 20 8.86E-05 
GOTERM_BP_DIRECT GO:0046854~phosphatidylinositol phosphorylation 4 20 1.54E-04 
GOTERM_BP_DIRECT GO:0046777~protein autophosphorylation 4 20 9.07E-04 
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GOTERM_CC_DIRECT GO:0005886~plasma membrane 13 65 1.75E-04 
GOTERM_CC_DIRECT GO:0005615~extracellular space 8 40 2.71E-04 
GOTERM_CC_DIRECT GO:0031093~platelet alpha granule lumen 3 15 1.48E-03 
GOTERM_CC_DIRECT GO:0030175~filopodium 3 15 2.45E-03 
GOTERM_CC_DIRECT GO:0005576~extracellular region 7 35 4.66E-03 
GOTERM_MF_DIRECT GO:0046934~phosphatidylinositol-4,5-bisphosphate 3-kinase activity 4 20 4.38E-05 
GOTERM_MF_DIRECT GO:0004713~protein tyrosine kinase activity 4 20 4.22E-04 
GOTERM_MF_DIRECT GO:0005515~protein binding 18 90 6.64E-04 
GOTERM_MF_DIRECT GO:0004672~protein kinase activity 4 20 7.18E-03 
GOTERM_MF_DIRECT GO:0005088~Ras guanyl-nucleotide exchange factor activity 3 15 7.29E-03 

 

Table 3. KEGG pathway analysis of top20 hub genes associated with Metastasis ccRCC. 

Term Count % P value 
hsa04014:Ras signaling pathway 6 30 1.61E-04 
hsa04151:PI3K-Akt signaling pathway 6 30 1.13E-03 
hsa04015:Rap1 signaling pathway 5 25 1.44E-03 
hsa04066:HIF-1 signaling pathway 4 20 1.63E-03 
hsa05200:Pathways in cancer 6 30 2.03E-03 
hsa05205:Proteoglycans in cancer 4 20 1.20E-02 
hsa04520:Adherens junction 3 15 1.28E-02 
hsa05203:Viral carcinogenesis 4 20 1.29E-02 
hsa04510:Focal adhesion 4 20 1.30E-02 
hsa04810:Regulation of actin cytoskeleton 4 20 1.39E-02 

 

Table 4. GO biological progress analysis of Top three significant modules. 

Module Term Count P value Genes 
Module1 GO:0006954~inflammatory response 5 1.66E-05 KNG1, PTGER3, CXCL5, HRH4, CXCR3 

GO:0007186~G-protein coupled receptor signaling pathway 6 2.13E-05 TAS2R16, PTGER3, CXCL5, GRM7, 
TAS2R7, CXCR3 

GO:0007204~positive regulation of cytosolic calcium ion concentration 4 2.70E-05 KNG1, PTGER3, HRH4, CXCR3 
GO:0001580~detection of chemical stimulus involved in sensory perception of bitter taste 2 1.89E-02 TAS2R16, TAS2R7 
GO:0007200~phospholipase C-activating G-protein coupled receptor signaling pathway 2 3.10E-02 MCHR2, PTGER3 

Module2 GO:0007204~positive regulation of cytosolic calcium ion concentration 3 1.89E-04 AGTR1, AVPR1A, TBXA2R 
GO:0045907~positive regulation of vasoconstriction 2 5.71E-03 AVPR1A, TBXA2R 
GO:0007186~G-protein coupled receptor signaling pathway 3 8.28E-03 AGTR1, AVPR1A, TBXA2R 
GO:0019722~calcium-mediated signaling 2 9.08E-03 AGTR1, AVPR1A 

 
 

AURKB expression was correlated with 
various clinicopathological parameters in 
ccRCC 

Analysis of the 533 ccRCC cases in the TCGA 
database shown that the upregulation of AURKB 
expression was significantly associated with higher 
pathological T stage, lymph node metastasis, distant 
metastasis and grade stage in ccRCC (Figure 7a-d). 
The expression of AURKB tended to elevate with 
enhancing tumor T stage and G grade. 
Clinicopathological information for the 526 ccRCC 
tissues in TCGA database was shown in Table 5. 
There was a significant correlation between high 
AURKB expression and these clinicopathological 
parameters, which was identical with the 
aforementioned results. These results indicated that 
AURKB could promote the progression and 
metastasis of ccRCC. Patients with high AURKB 
expression exhibited worse OS and DFS (Figure 3c, 
Figure 4d). To further explore prognostic value of 
AURKB, the prognostic value of each 
clinicopathological parameter, containing AURKB 
expression status, was estimated for OS (Table 6). 

Univariate Cox proportion hazard ratio (HR) analysis 
suggested that age (HR, 1.786; P<0.001), T stage (HR, 
3.103; P<0.001), N stage (HR, 3.846; P<0.001), M stage 
(HR, 4.292; P<0.001), G grade (HR, 2.616; P<0.001) and 
AURKB expression status (HR, 2.761; P<0.001) were 
correlated with OS. Furthermore, multivariate 
analysis revealed that age (HR, 1.591; P=0.004), T 
stage (HR, 1.502; P=0.030), N stage (HR, 2.145; 
P=0.017), M stage (HR, 2.466; P<0.001), G grade (HR, 
1.531; P=0.023) and AURKB expression (HR, 1.935; 
P<0.001) could be regarded as independent 
prognostic indicators of OS. 
Gene Set Enrichment Analysis 

To obtain deeper insight into the function of the 
AURKB, GSEA was used to map into KEGG 
pathways and GO analysis database. 10 functional 
gene sets associated with metastasis or hypoxia 
pathway were shown, based on the cut-off criteria 
FDR < 0.05, and gene size ≥ 100, (Figure 8a-j). This 
result shown that high expression of AURKB was 
enriched in JAEGER_METASTASIS_UP gene set 
(NES=1.868261, p=0.001957, FDR=0.059234), 
LIAO_METASTASIS_UP gene set (NES=1.687044, 
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p=0.013619, FDR=0.130064), RAMASWAMY_ 
METASTASIS_UP (NES=1.670244, p=0.009862, 
FDR=0.136635) and ZUCCHI_METASTASIS_UP 
(NES=1.6955399, p=0.009881, FDR=0.124113). Other 

gene sets which were important pathway for ccRCC 
progression and metastasis were also associated with 
AURKB mRNA expression. 

 

 
Figure 4. Hub genes have prognostic value of disease-free survival. (a) RIPK4, (b) CDC42, (c) PTPN11, (d) KITLG, (e) IGF1R, (f) SERPINE1, (g) AURKB, (h) GNA13, 
(i) DLG2, (j) ACTN2. The disease-free survival information was based on GEPIA database, P < 0.05 was considered statistically different. 

 
 
 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

1720 

 
Figure 5. Diagnostic value of the selected top hub genes. 

 
Figure 6. Expression of the selected top hub genes based on TCGA database. 
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Figure 7. AURKB is overexpression in ccRCC, and is correlated with various clinicopathological parameters. The high mRNA expression of AURKB was correlated 
with various clinicopathological parameters: (a) T stage, (b) lymph node metastasis, (c) distant metastases, (d) G stage. 

 

Table 5 Association between AURKB mRNA expression and 
clinicopathological parameters of patients with ccRCC. 

  AURKB mRNA expression  
Parameter Number Low (n=263) High (n=263) P-value  
Age (years)     
 <60 243 122 121  
 ≥60 283 141 142 1.000 
Gender     
 Female 185 107 78  
 Male 341 156 185 0.010 
T stage     
 T1 or T2 337 202 135  
 T3 or T4 189 61 128 <0.001 
N stage     
 N0 or NX  510 261 249  
 N1 16 2 14 0.004 
M stage     
 M0 or MX 448 244 204  
 M1 78 19 59 <0.001 
G grade     
 G1 or G2  246 158 88  
 G3 or G4 280 105 175 <0.001 
TNM stage     
 I + II 319 202 135  
 III + IV 207 61 128 <0.001 

 
 

AURKB expression and Biological function in 
ccRCC 

AURKB expression was examined in 8 pairs 
adjacent normal and ccRCC tumor tissues with 
western blot. We demonstrated that AURKB was 
overexpression in ccRCC tissues (Figure 9a). To 
investigate the mechanism of AURKB on the 

development of renal cancer, then we detected the 
biological function of AURKB. As the Figure 9c 
showed, AURKB knockdown significantly decreased 
the capacity of migration and invasion of ACHN cells. 

 

Table 6. Univariate and multivariate analyses of AURKB mRNA 
expression and patient overall survival. 

Risk factors Univariate analysis Multivariate analysisc 
Variable HRa 95% CIb P-value HR 95% CI P-value 
Age (years)       
 <60 (n=244)  1.786 1.304-2.445 <0.001 1.591 1.155-2.190 0.004 
 ≥60 (n=282)       
Gender       
 Female (n=183) 0.942 0.692-1.282 0.703    
 Male (n=343)       
T stage       
 T1 or T2 (n=355) 3.103 2.293-4.201 <0.001 1.502 1.041-2.167 0.030 
 T3 or T4 (n=191)       
N stage       
 N0 or NX (n=510) 3.846 2.082-7.104 <0.001 2.145 1.144-4.023 0.017 
 N1 (n=16)       
M stage       
 M0 or MX (n=447) 4.292 3.147-5.853 <0.001 2.466 1.719-3.540 <0.001 
 M1 (n=79)       
G grade       
 G1 or G2 (n=246) 2.616 1.867-3.666 <0.001 1.531 1.061-2.210 0.023 
 G3 or G4 (n=280)       
AURKB       
 Low (n=263) 2.761 1.987-3.836 <0.001 1.935 1.366-2.740 <0.001 
 High (n=263)       
aHR estimated from Cox proportional hazard regression model; bCI of the estimated 
HR; cMultivariate models were adjusted for T, N, M, G grade classification and age. 
CI, confidence interval; HR, hazard ratio. 
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Figure 8. Gene set enrichment analysis (GSEA) of AURKB. 10 representative functional gene sets enriched in ccRCC with AURKB highly expressed were listed. 

 

Discussion 
ccRCC is the most common subtype of kidney 

cancer, and its prognosis is influenced by tumor 
progression correlated with complex gene 
interactions. Investigating the molecular markers of 
ccRCC is important for the survival of ccRCC patients. 
Despite significant efforts, the transformation of 
metastasis has thus far not been identified [18-20]. 
Metastasis causes almost 90% of human cancer deaths 
[21]. 

In the current study, GEO2R was exploited to 
analyze the gene expression profile of GSE47352, 
including 4 metastatic and 5 non-metastatic ccRCC 
samples to explore the molecular mechanism of 
metastatic ccRCC and find some biomarkers, which 
might be useful therapeutic targets by using 
bioinformatics analysis. There was a total of 873 
DEGs, including 503 up-regulated genes and 370 

down-regulated genes, compared to the control 
ccRCC tissues. PPI network analysis and Cytoscape 
MCODE analysis were operated to evaluate 
protein-protein interactions and gene co-expression 
modules. Meanwhile, functional and pathway 
analysis were also operated to identify biological 
process and pathways of metastatic ccRCC patients.  

According to the GO analysis of top 20 hub 
genes, biological process was mainly enriched in 
phosphatidylinositol-mediated signaling, positive 
regulation of DNA replication, regulation of 
phosphatidylinositol 3-kinase signaling, 
phosphatidylinositol phosphorylation, protein 
autophosphorylation. Molecular Function was mainly 
enriched in phosphatidylinositol-4,5-bisphosphate 
3-kinase activity, protein tyrosine kinase activity, 
protein binding, protein kinase activity, Ras 
guanyl-nucleotide exchange factor activity. KEGG 
pathway analysis showed that top 20 hub genes were 
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enriched in Ras signaling pathway, PI3K-Akt 
signaling pathway, Rap1 signaling pathway, HIF-1 
signaling pathway. As we can see, most signaling 
pathways were correlated with Ras, 
phosphatidylinositol 3-kinase and protein tyrosine 
kinase pathway. Previous studies have reported that 
RAS families directly regulated various 
phosphatidylinositol 3-kinase isoforms [22]. 
Meanwhile, one study investigated more than 400 
ccRCC use different genemoic platform and found 
PI3K/AKT pathway was recurrently mutated, 
indicating this pathway was a potential therapeutic 
target [23]. Phosphatidylinositol 3-kinase was 
demonstrated that metastatic RCC patients treated 
with anti-vascular inhibitory therapy who detected 
overexpression PI3K pathway have poor prognosis 
[24]. Other studies also reported that PI3K signaling 
played a leading role in progression and metastasis of 
ccRCC [24-27]. Not to mention protein tyrosine kinase 
pathway, NCCN, EAU have treated Tyrosine kinase 
inhibitor (TKI) drugs (solfatinib, sunitinib, etc.) as 
first-line treatment for metastatic renal cell 
carcinoma[28, 29]. Given their well-known 
pharmacology, therapeutic strategies to target them 

could demonstrate to be promising cancer treatment. 
Our study further confirmed the important regulatory 
role of signaling pathways such as RAS, PI3K 
pathway in renal cell metastasis. Therefore, 
monitoring of these signaling pathways may be 
helpful to further understanding the mechanism of 
metastasis and researching treatment. 

Furthermore, PPI network analysis identified 
that RIPK4, TNF, CDC42, KNG1, PTPN11, KITLG, 
PTGS2, SYK, IGF1R, EPO, SERPINE1, FLT1, AURKB, 
GNA13, DLG2, ACTN2, CHEK1, FGF8, CD80 and 
MCHR2 had the highest degree of connectivity 
among DEGs. RIPK4 could promote cancer cell 
aggressiveness by upregulate VEGF-A [30]. TNF 
mediates resistance to EGFR inhibition in cancer [31, 
32]. CDC42 as a member of Rho GTPases involved in 
cell proliferation and migration [33]. The low 
expression of CDC42 was associated with poor 
prognosis and enhanced metastasis behavior [34-37]. 
It was reported that PTPN11 play an important role in 
promoting progression and metastasis of cancer 
[38-41]. Another hub gene, such as KITLG, PTGS2, 
SYK, FLT1 (VEGFR-1), GNA13, etc. could also 
regulate invasion and metastasis of cancer [42-48].  

 

 
Figure 9. Expression and Biological function of AURKB. (a) The expression of AURKB in ccRCC tumor(T) and adjacent normal tissues(N), (b)AURKB knockdown 
in ACHN cell lines, (c) Transwell assay of AURKB in ACHN cell lines. 
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Cytoscape MCODE module analysis identified 3 
modules with highly relevant expression pattern. 
Then GO biological progress analysis was operated to 
explore the signaling pathway of each module. These 
modules were mainly enriched in inflammatory 
response, G-protein coupled receptor signaling 
pathway, positive regulation of cytosolic calcium ion 
concentration. Inflammatory responses played 
leading roles at different stages of tumor progression, 
including initiation, malignant conversion, 
angiogenesis, invasion, and metastasis [49-51]. 
G-protein coupled receptor was reported a central 
rule in tumor metastasis and induced angiogenesis 
[52]. 

To explore the diagnostic value of hub genes, 
ROC curves were used. The results revealed that 
mRNA level of several genes such as KITLG, AURKB, 
DLG2, could discriminate ccRCC tissues from normal 
tissues, yielding an AUC of 0.9235-0.9451. These data 
indicated that these hub genes may be potential 
biomarkers for the diagnosis of ccRCC. 

AURKB, encoding a member of the aurora 
kinase subfamily of serine/threonine kinases, play an 
important role in tumorigenesis, inducing aneuploidy 
and genomic instability [53-57]. In this study, we, for 
the first time, investigated the expression pattern, 
clinicopathological parameters and biological 
functions of AURKB in ccRCC. AURKB expression 
was uncovered to be upregulated in ccRCC tissues 
compared with in normal renal tissues, and was 
correlated with poor prognosis of patients with 
ccRCC. Multivariate regression analysis suggested 
that AURKB expression level was an independent 
prognostic factor for ccRCC; AURKB was a risk factor 
(HR=1.935; P<0.001). AURKB mRNA level could 
discriminate ccRCC tissues from normal tissues, 
yielding an AUC of 0.9451 (95% CI: 0.9055 to 0.9846; p 
< 0.0001). These results indicated that AURKB could 
be a potential and novel biomarker for diagnosis and 
prognosis of ccRCC patients. GSEA analysis was used 
to explore the biological function of AURKB by the 
expression of it in ccRCC TCGA database. The result 
showed that high expression of AURKB was 
associated with various metastasis gene data sets. 
Pervious study has reported that inhibition of Aurora 
kinases induced apoptosis and autophagy in 
leukemia cells via AURKB/p70S6K/RPL15 axis with 
the involvement of PI3K/Akt/mTOR, AMPK, and 
p38 MAPK signaling pathways [58]. Other study 
uncovered that AURKB may activate the PTK2/ 
PI3K/AKt/nuclear factor-KappaB pathway [59]. 
These studies indicated that AURKB was involved in 
PI3K/AKt signal pathway. Epithelial-mesenchymal 
transition (EMT) plays a leading role in diversified 
biological and pathological processes, including 

metastasis and cancer cell drug resistance [60-62]. 
EMT and Hypoxia pathway were both significantly 
correlated with the expression of AURKB. A hallmark 
of ccRCC is a clear cytoplasm that reflects increased 
lipid and glycogen deposition [63]. Many studies 
reported that carcinogenesis of renal cancer could 
have very closely correlation with lipid metabolism 
[64, 65]. In our study, the adipogenesis gene set was 
positively associated with the expression of AURKB. 
All these results indicated that AURKB may play an 
important role in invasion and metastasis of ccRCC. 

In summary, by using a range of bioinformatics 
analyses, the present study has demonstrated the hub 
genes and important pathways that may be involved 
in ccRCC progression and metastasis, based on 
differentially expressed genes between metastatic and 
non-metastatic ccRCC samples. We also identified 
that some hub genes expression was associated with 
prognosis and diagnosis of ccRCC. Meanwhile, 
AURKB expression level was an independent 
prognostic factor for ccRCC. However, further 
explorations to confirm the function of the candidate 
biomarkers in ccRCC and to investigate the 
underlying molecular mechanisms of the genes 
involved in metastasis of ccRCC are needed.  
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